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Abstract

Along with Network Function Virtualization (NFV), Mobile Network Operator started
to build the fifth generation (5G) networks while enhancing network flexibility, agility,
scalability, and cost-efficiency. However, 5G technology is predicted to be unable to adapt to
the huge data traffic generated by massive IoT devices in the future beyond 5G (B5G) and
the future 6G era. This has raised the tremendous challenge of upgrading the existing 5G
network to adapt to the exponential growth in data demands and stricter requirements of user
experience.

To make the 5G network adapt to forthcoming B5G/6G traffic and improve the Quality
of Experience (QoE) for upcoming B5G/6G applications, in this dissertation, the author
developed three research. First, the author developed a system for scaling the network
function capacity to handle massive traffic from B5G/6G applications. Second, the author
ensures the Quality of Service (QoS) for 5G applications. The solutions aim to improve
the QoS of 5G applications, such as reducing delay and ensuring sufficient throughput
for different 5G services. Finally, the author optimized the QoE for real-time B5G/6G
applications like Digital twin (DT) and Virtual/Augmented Reality (VR/AR). The author
uses a metric called Age of Information (AoI) to measure QoE in B5G/6G applications and
solve the traffic routing problem to ensure QoE.
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Chapter 1

Introduction

1.1 Background

1.1.1 The Development of Mobile Communication

The evolution of mobile communication spans multiple generations, each marking significant
advancements in technology and society. Starting with 1G in the 1980s, which introduced
analog voice communication, it progressed to 2G in the 1990s, enabling digital voice and
text messaging. The 2000s saw 3G, offering mobile internet and data services, followed by
4G in the 2010s, which revolutionized connectivity with high-speed broadband for streaming
and applications.

With the trend of 4G reaching its capacity limits due to increasing demands from users and
emerging technologies, the development of enhanced Mobile Broadband (eMBB) for faster
speeds and higher capacity, massive Internet of Things (mIoT) connectivity to support billions
of interconnected devices simultaneously, and Ultra-Reliable Low-Latency Communication
(URLLC) to enable real-time applications, is becoming a necessity. To address this situation,
the fifth generation (5G) emerged to deliver ultra-low latency, massive device connectivity,
and unprecedented speeds. For example, 5G enables faster internet speeds, supporting
seamless video streaming and high-quality video calls. 5G also powers smart cities by
connecting Internet of Things (IoT) devices, such as traffic lights, sensors, and surveillance
cameras, ensuring efficient urban management.

According to an Ericsson Mobility Report [30], global 5G devices will grow exponentially,
reaching to 6.3 billion by 2030. Furthermore, IoT-driven applications, including autonomous
vehicles, remote robotic surgery, digital twins, and immersive extended reality (XR), are
experiencing a sharp rise in demand for lower latency, increased data rates and higher
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reliability [33]. Current 5G systems are considered to be inadequate for future trends, which
appeals to create a next-generation mobile communication standard.

1.1.2 Network Function Virtualization (NFV)

From the era of 1G to 4G, the mobile telecommunications network was based on physical
middlebox infrastructure. Traditionally, Mobile Network Operators (MNOs) relied on
dedicated hardware middleboxes to implement specific network functions. Fig. 1.1 shows a
physical 4G Evolved Packet Core (EPC) network. Network functions such as Packet Data
Network Gateway (PGW), Home Subscriber Server (HSS), switch, Mobility Management
Entity (MME) and Online charging system (OCS) are running on different dedicated hardware
and perform various functionality.

OCSHSS

Switch

DNS

Internet

Router
Router

4G Network

Fig. 1.1 4G Evolved Packet Core (EPC) Network

In the 5G era, more 5G connections bring more diversified user requirements and more
automatic control. Traditional middlebox-based network architecture was no longer suitable
for the development of 5G due to its lack of flexibility, scalability, and efficiency. As 5G
networks require dynamic resource allocation, ultra-low latency, and the ability to support
diverse services and massive device connectivity, the static and hardware-dependent nature of
middlebox-based architectures fails to meet these demands. Additionally, the high operational
costs and limited adaptability of traditional architectures hinder their ability to support the
rapid innovation and deployment cycles required for 5G.

Recently, Network Function Virtualization (NFV) [14] was proposed to solve the draw-
back of traditional middlebox-based networks. The key idea behind NFV is the integration
of virtualization technology into network functions. Different from traditional middleboxes,
NFV softwarizes network functions so that run them as Virtual Network Functions (VNF)
on commodity hardware, shown in Fig. 1.2. As compared with traditional middleboxes,
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Fig. 1.2 Network Function Virtualization (NFV)

NFV brings benefits as follows: (1) agility and scalability: NFV enables MMOs to deploy
and scale network functions as virtualized instances rapidly. With the ability to spin up or
down VNFs on demand, MMOs can adapt to changing network requirements quickly and
efficiently; (2) cost efficiency: By eliminating the need for dedicated hardware appliances,
NFV reduces capital expenditure and lowers operational costs. VNFs can be run on standard
servers, reducing hardware costs, power consumption, and maintenance efforts; (3) network
optimization: With NFV, hardware resources are virtualized into virtual resources that can be
flexibly allocated based on demand. This flexibility improves network performance, enhances
Quality of Service (QoS), and optimizes resource utilization.

In summary, NFV facilitates service provision and makes networks more flexible, agile
and cost-efficient. Leveraging these benefits, MMOs have adopted this technology in building
5G core networks and EPC networks to provide users with the requested 5G network service.

1.1.3 5G, Beyond 5G and 6G

Recently, many MMOs started to deploy 5G networks. Several MMOs, e.g., Rakuten,
Softbank, AT&T, Vodafone and China Mobile explore the opportunities that 5G development
would induce new business models and user requirements. The 5G feature is classified into
three categories, each driving new tendency for use cases:

• Ultra-Reliable Low Latency Communication (URLLC): URLLC provides low-latency
and highly reliable communication for real-time applications. For example, smart
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industries use URLLC to monitor the environment of factories and the status of
machines to keep workers safe and improve production.

• enhanced Mobile Broadband (eMBB): eMBB is a 5G service that delivers high-
capacity broadband with speeds of up to 1 Gbps and high reliability. For example,
eMBB supports 3D 8K Virtual Reality (VR) at frame rates of 90 to 120 frames per
second.

• massive Machine Type Communication (mMTC): mMTC empowers the network
with the ability of massive device connectivity. With mMTC, a 5G network supports
millions of simultaneous IoT connections while maintaining a low latency of around
50 ms.

As 5G communication is predicted to be unable to catch up with increasing data traffic
generated by massive IoT devices in the future beyond 5G (B5G) and the future 6G era,
academics and industry are paying more attention to the next generation communication
standard.

Compared with 5G, B5G/6G further enhances connectivity by integrating advanced
technologies like artificial intelligence, quantum computing, and terahertz communication.
It aims to provide ultra-high-speed data transfer, seamless global coverage, and support
for intelligent networked systems. This next-generation network is expected to enable
revolutionary applications such as holographic communication, immersive XR/VR/AR, and
autonomous systems, pushing the boundaries of innovation and transforming industries
worldwide.

1.2 Challenge

The 6G network is expected to support more advanced applications. However, to support
these applications, MMOs are facing three main challenges in the current 5G NFV network.

1.2.1 Large 6G Traffic

6G traffic is significantly greater than 5G due to its support for advanced applications and
services. For example, holographic communication in B5G/6G requires data rates of several
terabits per second (tbps) to transmit 3D images in real-time, far exceeding the bandwidth
demands of 5G applications like 4K video streaming.

While the maximum throughput of 5G eMBB reaches up to 20 Gbps, 5G still falls short of
meeting the substantial traffic demands up to tbps level from 6G applications. With the advent
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of B5G and the anticipated 6G traffic, our experiment shows that the hardware resources of a
single NFV server are not adequate to handle huge traffic from B5G/6G applications. An
upgrade to increase network capacity and support B5G/6G application is essential for MMOs
to consider.

1.2.2 Quality of Service Guarantee

5G NFV network is constructed of servers, each server has certain resources to execute
multiple VNFs simultaneously. In the 5G NFV network, a network service is implemented
as a service chain consisting of several VNFs that are chained together.

MMO must strategically place VNFs onto the Resource-constrained servers and route
traffic to pass through a set of VNFs in the pre-defined order. By optimizing VNF-to-node
mapping and traffic path, MMOs can significantly reduce operational/capital costs and en-
hance network services performance. However, determining server selection and managing
traffic path is challenging, as multiple solutions are available and each brings distinct per-
formances. Adding to this complexity, 5G services come with varying requirements for
latency, throughput, and reliability, making the problem even more difficult to address. An
efficient VNF placement approach is important and indispensable to achieve better overall
performance of the 5G network.

1.2.3 Stricter User Experience

To ensure better user experience, stricter Quality of Experience (QoE) standards are necessary
to support B5G/6G applications. For example, AR and VR in 6G require lower latency to
ensure that digital elements are seamlessly integrated into the real world, providing a more
natural and convincing experience. In Digital Twin (DT), it needs real-time updates from the
real world to create a digital replica of the physical world. A small lag

However, 5G features (i.e., URLLC, eMBB and mMTC) are insufficient to support the
critical requirement of maintaining data freshness for those applications. Therefore, how to
optimize the QoE for those applications in the 5G NFV network has also become a critical
challenge.

In short, those applications not only produce massive data traffic but also require stricter
Quality of Experience (QoE). Toward B5G/6G, MNOs face significant challenges in adapting
to the exponential growth in data demands and stricter QoE.
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1.3 System Outline

In this dissertation, the author proposes a system to solve the above challenge so that makes
the 5G network adapt to forthcoming B5G/6G traffic and improves QoE for upcoming
B5G/6G applications.

First, in the precious research, NFV was proposed for building flexible network manage-
ment in the data center network. In comparison with them, my research focuses on mobile
networks where users have stricter requirements on performance. When NFV comes to
mobile networks, I also consider user mobility. Second, my research is the first attempt to
apply NFV to adapt to the trend of beyond 5G (B5G) and the future 6G area. In the B5G/6G
area, user traffic extremely increases to the tb/s level. Furthermore, users require a better
user experience than the 5G area. To adapt to these trends, my research scales the network
function capacity and uses a new metric called Age of Information (AoI) to measure user
experience, which makes my research completely different from the prior.

The system optimizes the 5G network in each level of NFV, as shown in Fig. 1.3.

SOFTWARE

HARDWARE

Running VNFs in 

parallel to satisfy 

huge 6G traffic
Placing VNFs to 

meet the quality of 

service of network 

service

Routing 6G traffic to 

pass through VNFs 

to ensure quality of 

experience

TRAFFIC

Fig. 1.3 System Outline

1.3.1 Parallel Network Functions Processing for 6G Traffic

The hardware resource of a modern server is becoming insufficient to handle huge 6G
data traffic. To accommodate time-varying and huge 6G traffic, scaling VNF computation
capacity is an important issue. However, precious research only focuses on scaling VNF



1.3 System Outline 7

in one machine, limiting the scalability of VNF performance. To build this gap, the author
presents a VNF performance scaling system. The system scales the VNF performance by
running this VNF in parallel on another server. The process of scaling the VNF performance
includes three steps: (1) monitoring the real-time loads of each VNF in the server; (2)
deciding on whether a VNF needs to be scaled based on its load; and (3) scaling a VNF
performance by running it in parallel on another idle server. Experimental results show that
our system surpasses the raw NFV platform on performance by 1.02 times.

1.3.2 Network Function Placement for Quality of Service

In the 5G NFV network, a service is implemented as a service chain consisting of several
VNFs that are chained together. A recent survey has revealed that when multiple VNFs are
co-located in the same machine, resource contention for shared physical resources will occur
and hence degrade the throughput of a VNF and finally increase its processing delays by
50%, as compared to it runs in isolation. However, prior works fail to capture this important
characteristic because they simply treat machines as a resource pool without any resource
contention happening, making their approach inapplicable to the VNF embedding problem
when resource contention is taken into consideration. In this research, the author studied a
contention-aware QoS-guaranteed VNF embedding problem. The problem is coded into a
mathematical program under a couple of constraints. Given the problem is challenging to
solve due to its nature of high complexity, a low-complexity approach is highly desirable for
efficient VNF placement.

1.3.3 Data Traffic Routing for 6G User Experience

Compared with 5G, 6G is more sensitive to Quality of Experience (QoE) to deliver a smoother
and more seamless experience. To maintain QoE in 6G applications like DT and XR, it
is crucial to ensure not only low latency in data traffic but also regular data arrival. In
this research, the author uses a novel metric, Age of Information (AoI), to quantify these
two requirements, providing a comprehensive measure of the user’s QoE. Then, the author
studies AoI in a 5G NFV network. Considering that the traffic routing strategy in the NFV
network significantly impacts the AoI in the B5G/6G application, the author aims to optimize
the AoI by adjusting the traffic routing strategy. The problem is proved to be a Markov
Process that can be solved by reinforcement learning. Therefore, the author proposes a Deep
Reinforcement Learning (DRL)-based approach to train an intelligent agent that outputs an
optimal traffic routing strategy. Finally, simulation results record a 20.3% reduction in AoI
for B5G/6G applications.
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1.4 Originality and Contributions

This dissertation’s main originality and contributions are summarized as follows:

• In the first research, the precious work of NFV platforms in the past five years has been
discussed. The author designed and implemented the system based on an open-source
NFV platform. This system fully exploits scalability in VNF performance and is
implemented on an open-source NFV platform. The author validated the scalability of
the proposed system through extensive experiments, which show that it outperforms
the other NFV platforms. For all we know, this research is the only study that has
designed a VNF performance scaling system on an open-source system.

• In the second research, the author formulates the VNF placement problem as mathe-
matical programming. Compared to the previous works, the author takes the dynamic
network scenarios (i.e., user mobility) and resource contention into consideration. The
author conducts simulation experiments on a real-world 5G network topology and the
results show that the benefit of the proposed algorithms is higher MMO profit and
service chain success rate. To the best of our knowledge, a few research focus on
optimizing VNF placement in the consideration of resource contentions. This research
is one of them.

• In the third research, the author aims to optimize QoE for upcoming B5G/6G appli-
cations in the NFV network. The author is the first to use AoI to measure QoE for
B5G/6G applications. The author proves the traffic routing problem is a Markov pro-
cess that can be solved by reinforcement learning. Therefore, the author designs a deep
reinforcement learning-based approach to provide an optimal traffic routing strategy in
the real-time network environment. This research is the pioneer in improving AoI in
the context of NFV network.

1.5 Organization

The dissertation organization is as follows. The author briefly introduces the VNF perfor-
mance scaling system for huge 6G traffic in Chapter 2. In Chapter 3, QoS optimization for
5G applications in the NFV network is considered. The author discusses the AoI metric in
Chapter 4 and designs a traffic routing system to optimize AoI for B5G/6G applications. The
author concludes this dissertation in Chapter 5.



Chapter 2

Parallel Network Functions for 6G Traffic

This chapter introduces our research at the hardware level for enabling VNFs to run in parallel
on two servers to scale the performance.

2.1 Motivation

6G traffic is significantly greater than 5G due to its support for advanced applications and
services. Despite the advantages of NFV, a critical challenge is to leverage its flexibility in
scaling VNF Instances (VNFIs) in response to 5G traffic demand. To meet the Service Level
Agreement (SLA) of the Service Function Chain (SFC), it’s crucial for the VNFIs to have
the ability to scale their capacities in a timely and efficient manner. Generally, as shown in
Fig. 2.1, we can classify VNF scaling methods into the following three categories.

• Vertical Scaling (VS): VS increases the VNFI capacity by allocating idle hardware
resources to it. For example, letting more physical CPU cores and memory space to a
running VNFI. While VS can achieve rapid and fine-grained scaling with the help of
dockers (for containers) or hypervisors (for VM), VS is limited in its scalability as it is
unable to scale outside single physical machines [55].

• Horizontal Scaling across CPU Cores (HSC): HSC creates an additional VNFI by
running them on other CPU cores and splits flows across the two instances. However,
after HSC scaling, multiple homogeneous VNFIs will run parallelly in a single server
with scarce hardware resources (e.g., CPU cores, cache, memory, storage, and NIC).
According to recent research [76, 9], embedding two multiple VNFIs at the same server
can lose half of their throughput (50.3%) compared to running in isolation because of
resource contention.
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• Horizontal Scaling across Servers (HSS): HSS creates an additional VNFI on several
physical servers to adjust VNF capacity. Unlike VS, which is limited by the capacity of
a single server, which is limited by the capacity of a single server, HSS can leverage the
hardware resources of all servers in the network, offering better scalability. However,
HSS will bring unexpected startup overhead, such as the required time for building
a new firewall VM instance [54], increasing the likelihood of SLA violations [38] or
even incurring disaster during decision-making.
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Fig. 2.1 Three Scaling Methods.

In this paper, we propose HyScaler, a dynamic, hybrid VNF scaling system that imple-
ments elastic SFCs by leveraging the benefits of all three VNF scaling methods to scale
VNFIs. Moreover, HyScaler can thoroughly combine the pros. of vertical and horizontal
VNF scaling to scale VNFIs and avoid their cons. We design and implement the prototype
HyScaler upon OpenNetVM [81], a popular Data Plane Development Kit (DPDK)-based
NFV platform that runs VNFIs in a docker container. Finally, we evaluate the scalability of
HyScaler on a testbed and validate the effectiveness of the proposed algorithm by simulations.
Overall, the primary contributions of this paper can be summarized as follows.

• We thoroughly investigate the popular high-performance NFV platforms and relevant
works on VNF scaling algorithms in recent five years;

• We design and implement HyScaler, a fully exploiting NFV scalability to enhance
VNFI performance on the real-world NFV platform;

• We validate the scalability of HyScaler through extensive experiments, which show
that it outperforms the original OpenNetVM platform.
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2.2 Related Work

Our proposed HyScaler is a hybrid VNF scaling mechanism built upon the DPDK-based
OpenNetVM platform. In this section, we first review background knowledge of fast packet
processing. Then, we review recent efforts in building scalable NFV platforms. Lastly, we
summarize the related works on VNF scaling algorithms in the recent five years, as shown in
Table 2.1.

Table 2.1 Summary of recent studies on VNF scaling Algorithms in 5 years

Literatures Year VS HSC HSS Algorithm(s) Implementation

Ghaznavi et al. [20] 2017 ✓ heuristic MIP simulations
Rahman et al. [52] 2018 ✓ Machine Learning simulations

Yu et al. [73] 2018 ✓ heuristic simulations
Yu et al. [74] 2018 ✓ ✓ heuristic ILP simulations

Tang et al. [62] 2018 ✓ ✓ heuristic MILP Openstack
Fei et al. [17] 2018 ✓ ✓ heuristic simulations

Woo et al. [69] 2018 ✓ ✓ heuristic simulations
Zhou et al. [85] 2019 ✓ heuristic simulations
Toosi et al. [65] 2019 ✓ ✓ ✓ heuristic simulations
Hu et al. [25] 2020 ✓ ✓ heuristic INLP simulations
Luo et al. [46] 2020 ✓ heuristic ILP simulations
Zhai et al. [77] 2021 ✓ ✓ ✓ ILP simulations
Liu et al. [45] 2022 ✓ heuristic INLP OpenFlow

HyScaler 2022 ✓ ✓ ✓ heuristic INLP OpenNetVM

2.2.1 High-performance I/O Libraries

To meet the growing traffic demands, 10Gbps (or 100Gbps) Network Interface Cards (NICs)
are today widely equipped in the servers. However, despite the popularity of high-speed NICs,
packet processing often struggles to reach the line rate, due to the considerable overhead
incurred by the Linux kernel [86]. Faced with this dilemma, several network I/O libraries,
such as Netmap [53] and DPDK [1], were introduced as data plane libraries with the aim of
accelerating the speed of packet processing. For example, Netmap [53] preallocates memory
resources for NIC buffers, reduces system calls in large batches, and eliminates memory
copying between userspace and kernel using shared buffers. Intel’s DPDK [1] enables fast
packet processing by completely bypassing the OS kernel and allowing network packets to be
directly processed by the applications in the user space. We do not introduce more technical
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details of these libraries, but they are now available in [3]. Because of its open source, rich
APIs, high performance, broad community support, etc., DPDK has successfully become
a popular standard to implement NFV in servers and is widely used in operator networks
[78]. That’s why we chose a DPDK-based NFV platform, OpenNetVM [81], to build our
HyScaler.

2.2.2 Scalable NFV Platforms

While I/O libraries such as DPDK provide a high-performance solution for packet processing,
they do not have APIs that are specifically designed to support VNF deployment. To address
this issue, several NFV platforms have been developed on top of these I/O libraries. For
instance, ClickOS [47] is a Xen-based NFV platform that leverages the netmap [53] data plane
and VALE switch to boost the movement of packets between virtual machines. Additionally,
NFP [61], HybridSFC [84], and ParaBox [83] take advantage of the parallelism between
two VNFs within the same SFC to shorten the SFC length and reduce end-to-end latency.
On the other hand, OpenNetVM [81] is a container-based implementation of NetVM [26]
that leverages DPDK’s high-throughput packet processing capabilities and optimizes packet
delivery between VNF instances within a single server.

However, the above NFV platforms cannot build scalable implementations of VNFIs
across multiple servers. Without a global SDN controller, they cannot be directly extended to
the multi-server environment. Similar to Hyscaler, NFV Platforms, such as ScaleFlux [45]
and E2, [48] support automatically scaling SFCs across multiple servers to improve SFC
performance. For instance, E2 [48] is an NFV platform for placing, scaling, and end-to-end
chaining VNFIs for SFCs. If a VNFI is overloaded, E2 scales the VNFI by adding an instance
of this VNF and evenly distributes its load across two instances. However, they don’t use a
hybrid scaling strategy as Hyscaler does. Different from the above works that can merely
scale a VNFI in a single server or a single data center, Duan et al. [11] and Jia et al. [28]
propose a global management system that enables dynamic and flexible SFC placement and
deployment. They also adopt a hybrid strategy of scaling SFCs across multiple data centers,
but their works are out of the scope of this paper as we focus on scaling VNFIs in a single
data center.

2.2.3 Virtual Network Functions (VNF) Scaling Algorithm

Significant efforts have been made in solving the VNF scaling problems. Here, we summarize
the related works on VNF scaling algorithms in the recent five years, as shown in Table 2.1.
These works adopt various techniques, such as traditional heuristics, machine learning, and
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deep learning, to solve the NP-hard mathematical optimization problem of VNF scaling.
Rahman et al. [52] develop a proactive QoS- and OpEx-aware VNF scaling algorithm based
on machine learning. Yu et al. [73, 74] introduce ElasticNFV, a reactive approach for dynamic
fine-grained VNF scaling to achieve high resource utilization and reduce flow migration
time during scaling. Zhang et al. [82] designed the POLAR algorithm, an online proactive
VNF scaling algorithm, to minimize the effect of inaccurate predictions by modeling the
problem as a non-convex objective function and predicting the traffic load. Their goal is
to minimize the effect of inaccurate prediction. Zhou et al. [85] define the problem as a
bipartite matching problem, which heuristic algorithms solve. Different from HSC and HSS,
VS may fail because it can’t scale VNF instances outside single physical machines. When
the hardware resources of the machine are unable to meet the demands of scaling, the scaling
operation may become unsuccessful. As a result, the success ratio of VS is lower than HSC
and HSS [77].

To overcome the limitations of VS, recent works concentrated on developing elastic
SFC through horizontal scaling (HSC and HSS). For example, Ghaznavi et al. [20] solve
the problems using Mixed Integer Programming (MIP) that distributedly places VNFI of
the same VNF across multiple servers to minimize resource utilization and CapEx. Tang
et al. [62] deploy a dynamic VNF scaling system in China Telecom, which scales VNFIs
horizontally based on traffic estimation. However, HSC and HSS scaling at a coarse-grained
level may cause unnecessary resource over-provisioning or under-provisioning, degrading
resource utilization and increasing OpEx.

While homogeneous VNF scaling has its limitations in adapting to all network scenarios
and meeting network service requirements, the hybrid design of VNF scaling is becoming
more popular. Researchers, such as Yu et al. [74], assume the problem as an Integer Linear
Programming (ILP) model and present the Rubik’s algorithm to achieve a balance between
performance and resource cost by exploiting fine- and coarse-grained hybrid scaling. Hu et
al. [25] propose Palm, a proactive VNF scaling that aims to meet latency guarantees in a
multi-tenant cloud environment. However, Rubik and Palm only exploit VS and HSS but
ignore the advantage of HSC, which may lead to sub-optimal performance. The mentioned
works [52, 73, 74, 82, 77, 20, 62, 74, 25] do not adapt a hybrid scaling that combines all VNF
scaling methods as HyScaler does. Similar to HyScaler, [65] and [77] scale SFC through
VS, HSC, and HSS. Toosi et al. [65] and Zhai et al. [77] propose hybrid scaling algorithms
with improved vertical and horizontal scaling methods, but lack a real-world implementation.

In summary, existing NFV platforms reviewed don’t scale VNFI considering all VNF
scaling methods during runtime, while related works on the VNF scaling algorithm consid-
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ered the VNF scaling problem as a mathematical optimization problem without real-world
implementation.

2.3 System Design

2.3.1 NFV Platform

OpenNetVM acts as a bridge between VNFIs and NICs, facilitating packet delivery between
VNFIs and NICs, maintaining the Flow Table, and enabling communication between VNFIs
[81]. Fig. 2.2 provides an overview of OpenNetVM. To understand how OpenNetVM works,
it’s essential to understand its key components. When OpenNetVM starts, it launches a
Manager thread to create a memory region in 2MB huge pages by invoking relevant DPDK
APIs. This memory region is shared by all threads associated with OpenNetVM. After
initialization, the manager thread manages all active VNFIs running on OpenNetVM.

Generally, each VNFI runs as an individual thread and is linked to its receive (rx) and
transmit (tx) packet queues. The Rx thread is in charge of receiving incoming packets in the
NIC Rx buffer and distributing them to the corresponding VNFI’s rx based on the flow table.
On the other hand, Tx threads removes packets from VNFI’s tx and sends them to their next
destinations, which could be another VNFI’s rx, or the NIC Tx buffer. It’s important to note
that the queues and buffers are implemented as a ring buffer and are managed according to
the First-in-First-Out (FIFO) rule.
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Fig. 2.2 The system overview of HyScaler.

In detail, the process of packets passing through OpenNetVM experiences the following
steps, which are shown in Fig. 2.2:

1⃝ A batch of packets {p} reaches in a NIC port from outside;
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2⃝ For per p in {p}, NIC uses Direct Memory Access (DMA) 1 to copy p’s data into the
shared memory region and insert p’s descriptor into the Rx buffer associated with this
NIC port;

3⃝ For each p in {p}, the Rx thread looks up the Flow Table to route p to the corresponding
VNFI; Once p is matched to a VNFI, p’s descriptor is copied into that VNFI’s rx by
the Rx thread, and then the Rx thread wakes the VNFI up to process the p’s descriptor
in its rx;

4⃝ The VNFI reads and empties its rx and then processes the p;

5⃝ 6⃝ After finishing processing the p, the VNFI adds the p’s descriptor back to its tx, where
the descriptor will be read by Tx thread and redirected to the next VNFI (see 6⃝-b) or
send the packet out the machine (see 6⃝-a).

Algorithm 1 Procedure for processing a batch of packets in OpenNetVM
Input: {p}, a batch of packets arrives at a NIC port,

FT, flow table
1: for each p in {p} do
2: DMA_copy(p, NIC, Rx);
3: /*The packets are transferred from the NIC to the Rx buffer using DMA.*/
4: end for
5: for each p in {p} do
6: rx, tx = FT(p);
7: if rx == NULL or tx == NULL then
8: Continue /* No match of this packet in FT */
9: end if

10: enqueue(rx, p);
11: /*Rx thread enqueues packet’s descriptor to VNFI’s rx*/
12: end for
13: each p is processed by the corresponding VNFI;
14: for each p in {p} do
15: dequeue(tx, p);
16: /*Tx thread dequeues packet’s descriptor from VNFI’s tx*/
17: end for

Algorithm 1 describes the procedure for processing packets in OpenNetVM in pseudo-
code. Note that our HyScaler runs transparently to deployed VNFs and traffic flows. This
section presents how key components work behind regular packet processing. Furthermore,

1Direct Memory Access (DMA) is a hardware device that enables input/output (I/O) devices to send or
receive data directly to or from the main memory, bypassing the CPU to speed up memory operations.
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the design concept behind HyScaler can be extended to other DPDK-based NFV platforms
as the packet processing mechanism is similar to that on other platforms that use DPDK. We
chose to implement HyScaler using OpenNetVM, as its container-based implementation of
VNFs unlocks the scalability potential of HSS, but the same approach could also be used for
other VM-based NFV platforms.

2.3.2 Monitor Module

One of HyScaler’s goals is responsiveness. To achieve this goal, HyScaler reacts rapidly to
scale a VNFI when this VNFI becomes overloaded, avoiding SLA violations of SFCs. The
critical problem is determining whether a running VNFI is overloaded? The monitor is a
fundamental module to answer this problem. We think the VNFI’s receive packet queue rx is
in an ideal position to observe the load of each VNFI since any packets that are processed by
this VNFI need to be enqueued into its rx at first. If the speed of VNFI processing packets
cannot match the traffic load, arrived packets will overstock in the rx. The rx’s length will
increase over time, where rx’s length refers to the number of packets currently stored in the
rx. Therefore, a sudden increment of the rx’s length is a clear semaphore indicating that the
traffic load is rising [45].

Threshold. The scaling operation in HyScaler is triggered based on two predefined
thresholds: (1) an upper bound threshold to scale the overloaded VNFI and (2) a lower
bound threshold to release a redundant VNFI (if it exists). One significant challenge in
implementing this is determining the suitable thresholds that can accurately probe changes
in traffic load and thus trigger a scaling/releasing operation in a timely manner. However,
determining the suitable thresholds is non-trivial, as the traffic load dynamically changes
over time. There is a possibility that the rx’s length may surpass the threshold for a while and
soon fall back to the normal level. When the monitor module gets the rx’s length surpasses
the upper threshold, it will trigger the VNFI scaling. Then, the monitor module gets the
average value, it will release the VNFI, which leads to unnecessary scaling of the VNFI and
violates the efficiency design goal. Setting a lower bound threshold can avoid this condition.
We set the upper and lower bound thresholds as 75% and 25% of the rx’s size, where rx’s
size refers to the maximum capacity of packets that can be held in the rx. If the upper bound
threshold is set too high, such as greater than 75%, it may lead to packet loss as the VNFI
can not handle the incoming packets in rx timely due to overload. The same principle applies
to the lower bound threshold, where if it is set too low, HyScaler may not perceive changes
in traffic load in a timely manner and may release redundant instances prematurely.
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2.3.3 Scaling Module

The scaling module is the basis for reaching the scalability design goal. We have the
scaling priority: VS→ HSC→ HSS. The design of the scaling module strictly follows this
priority. As a VNFI runs as a thread in OpenNetVM, it can VS itself by calling resource
allocation APIs of DPDK. Therefore, the scaling module is responsible for scaling a VNFI
for supporting HSC and HSS.

The scaling module reacts to commands from two sources, the Monitor module, and the
Orchestrator:

• When it gets a command from the monitor module, that means a VNF is overloaded
and needs to be scaled as soon as possible. According to the scaling priority, then,
the Scaling module checks whether there are enough hardware resources in the server
to create an additional VNFI. If yes, it creates a new VNFI and migrates an existing
flow to the new instance. Contrary, if not, it sends a command to the Orchestrator for
making an HSS decision, that is, deciding which server to create an additional VNFI.

• When it gets a command from the Orchestrator, that means the Orchestrator has made
an HSS decision on the local server. Therefore, it creates a new VNFI and migrates an
existing flow to the new VNFI.

The reactive process of the Scaling module when it receives a command from different
sources is shown in Fig. 2.3.

Implementation. We implement the scaling module within the OpenNetVM’s manager
thread. OpenNetVM provides a communication channel (implemented as ring buffers) to the
manager thread so that the monitor module running in each VNFI and Rx thread can use this
channel to send a command to the scaling module. The manager thread runs by polling the
communication channel to listen to commands from the monitor module. This information
will be input for the algorithm to make a VNF placement and chaining decision. The scaling
module and orchestrator communicate via Remote Procedure Call (RPC).

2.4 Evaluation

In this section, we demonstrate if HyScaler can scale VNF’s performance by running it on a
testbed, and validate the effectiveness of our proposed algorithm by simulations.
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Fig. 2.3 Working process of the scaling module.

2.4.1 Testbed

Our experimental testbed consists of two commercial off-the-shelf servers connected via a
10 Gb switch. The configurations of each server are as follows:

Server A: (1) Dual Intel® Xeon® E5-2630 v3 CPU (Haswell), each of which has eight
cores running at 2.4GHz; (2) 512KB L1 and 4MB inclusive L2 cache per core; (3) All cores
in the same CPU share 40MB non-inclusive L3 cache; and (4) Each CPU is equipped with
one 8GB DDR4 memory.

Server B: (1) One Intel® Core® i9-10900X CPU (Cascade Lake) with a total of 10 cores
running at 3.70GHz; (2) 64KB L1 and 1MB L2 cache per core; (3) All cores share 19.25MB
non-inclusive L3 cache; and (4) The CPU is equipped with one 64GB DDR4 memory.

Server A and B (5) disable Intel® Turbo Boost and Hyper-threading technologies; (6) are
equipped with dual DPDK compatible Intel® I210 and I200 NICs, respectively; and (7) run
OpenNetVM with DPDK version 20.10. Ubuntu 20.04 (with Linux kernel 5.4) and Ubuntu
19.10 (with Linux kernel 5.3) are used for Server A’s and Server B’s operating systems,
respectively. Since we offload monitor tasks to the Rx thread and VNFI, there is no need
to deploy an additional thread to implement its functionality. Likewise, the Scaling module
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runs with the manager thread in OpenNetVM. We implement the Orchestrator as a thread
running on Server A.

2.4.2 Experiment Result

Setup. In this experiment, we are to prove if HyScaler can scale VNFI’s performance with
traffic rising. To achieve this, we first select several basic VNFs in OpenNetVM and then
created a simple SFC to test the scalability of our HyScaler: (1) Load Generator (LG): This
VNF generates and delivers packets with a defined size and rate while measuring the latency of
the packets when they are returned to the LG. (2) Firewall: The Firewall is a network security
system that monitors and controls incoming and outgoing traffic based on predetermined
security rules, acting as a barrier between trusted and untrusted networks. (3) Router: The
Router directs data packets between computer networks, ensuring data is sent to its destination
efficiently while enabling communication between different network segments. (4) IDS: The
IDS monitors network traffic for suspicious activities or known threats, alerting administrators
to potential security breaches. (5) Monitor: The Network Monitor continuously observes
the performance, availability, and health of a network, providing insights and alerts for
troubleshooting and optimization.

Next, we create a simple SFC (LG→ target VNFI) in server A, with the target VNFI as
the VNFI is expected to be overloaded and require scaling. To simulate rising traffic load, we
used an LG to constantly generate packets at a rate of 10 million packets per second (pps).
We simulate traffic load rising by increasing the number of LG instances and observe the
scaling action of Hyscaler. However, due to our small testbed, we had to colocate other
VNFIs on the same server with the LGs. Since the LGs would consume massive resources
to generate packets, this could cause resource contention and potentially interfere with the
performance of other VNFIs. As such, this experiment is primarily designed to demonstrate
the scalability of HSS and discuss the effectiveness of Hyscaler. We design two baseline
NFV platforms to compare with our system:

• OpenNetVM: The original OpenNetVM, without any optimization, cannot scale over-
loaded VNFIs across CPU cores or servers.

• OpenNetVM with HSC: The OpenNetVM with the ability to scale overloaded VNFIs
across CPU cores through HSC.

Performance. The performance metric used to evaluate VNFI performance is “normal-
ized pps", the ratio of the VNFI pps when it receives traffic from its upstream LGs, to its
pps when it receives traffic from only one LG. Fig. 2.4, 2.5, 2.6 and 2.7 show normalized
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Fig. 2.4 Performance of Firewall.

Fig. 2.5 Performance of Router.

Fig. 2.6 Performance of IDS.

Fig. 2.7 Performance of Monitor.
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pps of different target VNFs running on various baseline NFV platforms. As depicted in the
figure, we find that resource contention is ubiquitous. All target VNFIs suffer performance
degradation, with the number of upstream LG instances increasing when OpenNetVM is
without HSS. For example, when a target VNFI IDS runs on OpenNetVM, its performance
drops from 9.5×106 pps to 7.1×106 pps with LG instances increasing from 1 to 4. Even
HSC can’t play its role in scaling target VNFI performance in this situation, because it cannot
scale outside a single physical server. On the contrary, our Hyscaler can avoid resource
contention since our Hyscaler provides OpenNetVM with the ability to create an additional
instance for the target VNFI in server B. When the num of upstream LG instances rises
to 2, Hyscaler can detect the receive packet queue’s length of the target VNF exceeding
the threshold. Hyscaler timely create an additional VNFI to support the overloaded target
VNFI and migrate a flow to the new VNFI. Therefore, when the number of upstream LG
instances varies from 1 to 4, Hyscaler shows superior performance compared with other
baseline NFV platforms. For example, when the target VNFI is Firewall, and the number of
upstream LG instances is 4, Hyscaler outperforms the two counterparts about 1.02× and
0.98×, respectively.

2.5 Conclusion

In this research, we introduce HyScaler, a dynamic, hybrid VNF scaling system for building
elastic SFCs by scaling VNFIs across multiple servers. HyScaler provides a monitor module
to detect network load changes and launch the scaling process timely. We design a scaling
module to forward the scaling request to a global orchestrator, which will run the scaling
algorithm to decide on placing and chaining the new VNFI in the network. Finally, we build
a prototype of HyScaler on OpenNetVM and evaluate the scalability of HyScaler on a
two-server-based testbed. Extensive experiments are conducted to evaluate the effectiveness
of the algorithm in terms of the acceptance ratio, the number of used servers, execution time,
resource utilization, and end-to-end delay of flows. From the experiment results, HyScaler
shows great potential in scalable and flexible VNF scaling for future data center networks.





Chapter 3

Network Function Placement for 5G
Quality of Service

This chapter introduces our research at the software level for optimizing VNF placements to
ensure QoS.

3.1 Motivation

The development of the fifth-generation (5G) mobile communication networks enables a
proliferation of diversified 5G network services, such as Autonomous Vehicles, VR/AR [10],
Internet of Things (IoT) and so on. To support these emerging 5G applications, modern
Telco Operators (TOs) tend to softwarize their core networks, making it easier and cheaper to
customize, manage and orchestrate network services over a single shared physical network
infrastructure. The two pivotal technologies to support this trend are: (1) Network Function
Virtualization (NFV) to virtualize network services as a set of software instances called
Virtual Network Functions (VNFs) and run them on commercial machines. (2) Software-
Defined Networking (SDN) separates network control from data forwarding, thus creating
the opportunity to apply different routing policies to different traffic flows.

According to the 3GPP 5G standards [21], the 5G core network (5GCN) of TOs, is based
on Service-Based Architecture. In 5GCN, each service is generated by the user equipment
(UE) and enters the network via the 5G base station (called gNB). Then, the user traffic
flow passes processing through a chain of Virtual Network Functions (VNFs) in a specific
order to gain an end-to-end customized 5G service. Conceptually, the chain interconnecting
these VNFs is called a Service Function Chain (SFC). The ITU [56] has categorized 5G
services into three major use cases: ultra-reliable and low-latency communication (URRLC)
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for autonomous vehicles, enhanced mobile broadband (eMMB) for VR/AR, and massive
machine-like communication (mMTC) for connecting a large number of IoT devices. On
the other hand, these 5G services diversified with Quality of Service (QoS) requirements
in terms of latency, security, reliability, and complexity. A typical use case of eMMB is
watching a video streaming from the Internet, which can be represented by an SFC request:
{NAT→FW→TM→VOC→IDPS}, as shown in Fig. 3.1. To fulfill the requirements specified
in the Service Level Agreements with users, TOs need to embed the corresponding SFC
onto the 5GCN infrastructure and sequentially steer the traffic flows through the SFC. This
process, known as SFC embedding, is a critical and challenging task for TOs because the
embedding decisions of SFCs can significantly influence the overall network performance
and the profitability achieved by the TOs [41]. In this paper, we call this problem the
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Fig. 3.1 NFV-based 5G core network.
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SFC embedding problem and solve it by taking the following two key observations into
consideration:

i) High mobility of UE. Generally speaking, mobility is an important characteristic of the
5G UE. Consider a UE that enjoys 5G service via a gNB and then migrates to another
gNB due to its location change. In this case, it has to be associated with a new adjacent
gNB and reconnect the service. Consequently, the initial SFC embedding decision for
this service might no longer remain optimal. TO should migrate the related SFC to
maintain user connectivity. Failure to do so may result in a communication breakdown
for the user, ultimately leading to QoS requirement violations [68].

ii) Resource contention within the NFV nodes and links. Modern NFV nodes in 5GCN
are usually powered by commercial multi-core CPUs with the capability to operate
multiple VNFs concurrently. In a multi-core NFV node, resource contention is ubiqui-
tous and exits due to the limited capacity of shared physical resources, such as CPU
cache, memory, and I/O subsystem. According to [31, 58], resource contention can
lead to resource conflicts and result in degrading VNF throughput and finally increas-
ing processing delays by nearly 50% as compared to it runs in isolation. Moreover,
bandwidth contention in links is also non-negligible, especially in scenarios with high
network traffic. The limited bandwidth of links can lead to congestion and performance
degradation, affecting the overall end-to-end latency of SFCs. Fig. 3.1 shows that
resource contention would happen if two VNFs are embedded in the same node, such
as node B and H.

The above observations reveal two critical challenges: i) static SFC embedding ap-
proaches are not suitable for dynamic network environments due to the mobility of UE, and
ii) the impact of intra-machine/intra-link resource contention on SFC performance must
be carefully considered during the SFC embedding. For observation i), the dynamic SFC
embedding problem was dedicated to solving in [64, 24, 70, 67, 22] but most of the existing
studies make an assumption that all nodes and links are a simple resource pool without
any resource contention. This simplification falls short of representing the general network
environment, thereby rendering their methodologies inapplicable for the SFC embedding
problem when resource contention comes into play. For observation ii), [51, 42, 37, 80]
attempt to formulate the SFC embedding problem while taking resource contention into
account. However, they fail to provide a comprehensive formulation because neither of them
considers both two kinds of resource contention simultaneously. In summary, it remains open
to solving the SFC embedding problem with the considerations of both observation i) and ii),
and prior approaches are inapplicable to this problem due to their impractical assumptions
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and simplified formulations. To the best of our knowledge, none of the existing works have
completely captured this important characteristic when making SFC embedding decisions.

Therefore, in this paper, we investigate a QoS-guaranteed SFC embedding problem where
both intra-machine and intra-link resource contentions are taken into consideration. We adopt
a commercial perspective from TOs, recognizing that the primary goal of TOs is to operate
their 5GCNs in the most cost-efficient manner, as it directly affects their financial success
and overall business performance.

3.2 Related Work

Table 3.1 shows piror research about VNF placement. Existing efforts solve the SFC
embedding problem according to various performance objectives. Although a comprehensive
survey about embedding SFC requests in the different network scenarios has been discussed
in [2, 23], much less attention has been paid to maximizing the profit of SFC embedding.
Since the objective of our SFC embedding problem is to maximize the total profit derived
from SFC requests, here we mainly discuss the prior research related to cost and profit
optimization while emphasizing the differences between our work and the existing works.

Table 3.1 Piror research about VNF placement.

Literatures Mobility Delay Throughput Cost Resource contention

Chen et al. [4] ✓ ✓
Peng et al. [16] ✓ ✓

Hantoutiel et al. [23] ✓ ✓
Jin et al. [29] ✓ ✓
Jia et al. [70] ✓ ✓

Zhang et al. [80] ✓ ✓
Li et al. [42] ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

Regarding resource contention, [58] first discloses that existing placement approaches
may result in hardware resource contention of co-located VNFs. Resource contention
will cause performance interference between co-located VNFs, leading to performance
degradation ranging from 12.36% to 50.3%. [31] shows VNFs that run coresident on the
same machine, contend over their hardware resources and, thus, might suffer from reduced
performance compared to running alone on the same hardware. Some of the existing VNF
placement approaches have taken the performance interference among co-located VNFs into
consideration, such as literature [51, 42, 37] have attempted to capture resource contention
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based on congestion game formulation. Literature [80] captures performance interference
that arises from intra-machine resource contention and proposes an Adaptive Interference-
aware Algorithm (AIA) to solve the SFC embedding problem. However, they solely focus on
either intra-link or intra-machine resource contention but ignore another one, which does not
appear to be comprehensive and practical. In our formulation, we aim to capture performance
interference incurred both from intra-link or intra-machine resource contention.

Regarding cost optimization, some existing studies solely focus on minimizing the
operational cost or deployment cost of VNF instances when embedding SFC requests. Chen
et al. [6] investigated the problem of how to embed SFC requests with a dynamic data rate in
the edge cloud with the lowest cost. Lin et al. [43] achieved a cost-efficient SFC embedding
in a satellite edge computing network using game theory. Wang et al. [67] proposed an
approach to optimize resource costs, covering both communication and computation costs,
in a multi-layered network integrating air, ground and space segments. Gao et al. [18]
focused on the cost of virtual machines in public cloud networks and proposed an efficient
heuristic algorithm while considering the launch cost of virtual machines. However, the
above works didn’t provide a holistic view of total network costs, since the network cost
not only includes deployment cost but also operational cost. Moreover, their approaches
are not directly applied to the problem formulated in this research, as optimizing the cost
independently cannot guarantee the maximization of profit.

Regarding profit optimization, Liu et al. [44] explored the SFC embedding problem
within a multi-tier computing network to maximize the total profit. Yu et al. [72] investi-
gated the orchestration of SFCs in an inter-datacenter network, which is dedicated to profit
maximization for TOs. They address the problem by proposing an ILP and two online
heuristic algorithms to optimize the deployment cost of SFC requests while guaranteeing
the acceptance ratio. With the introduction of deep learning, Fan et al. [15] solved the
SFC embedding problem in an online manner. Even though these works considered profit
optimization in the SFC embedding problem, it is important to note that the above works
didn’t fully consider the influence of resource contention on the performance of SFC requests
and the total profit. Therefore, to achieve efficient SFC embedding solutions, it is necessary
to take into account the contention factor and its implications on performance, in addition to
maximizing profit. Different from the above works, in this paper, we introduce a resource
contention factor and M/M/1 queue model to capture the impact of resource contention on
link accurately.
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3.3 Problem Formulation

The system model mainly consists of two parts: i) an NFV/SDN-based 5G core network and
ii) service requests with different data rates and QoS requirements. Then we mathematically
formulate the SFC embedding problem as an INLP. Moreover, the important notations in our
formulation are shown in Table 3.2.

3.3.1 Network Model

Consider a 5GCN as shown in Fig. 3.1 which consists of N and L. The N denotes the set of
NFV-compliant nodes in 5GCN, and L denotes the set of 10 Gb/s high-capacity fiber links that
interconnect these nodes. There are two kinds of NFV nodes in the network: (1) switching
node that runs Open vSwitch [66] to forward and transfer the traffic to neighbor nodes [63]
via southbound protocols such as OpenFlow, (2) computing nodes that are equipped with
generic-purpose hardware and are responsible for hosting different kinds of VNF instances to
accommodate SFC requests. For each computing node n ∈N associated with total computing
resources, Ccpu

n , which are sufficient to host more than one VNF instance.
In 5GCN, each link ln,n′ ∈ L is a bi-directional fiber link connecting contiguous nodes n

and n′ within the network. And ln,n′ is associated with the total bandwidth capacity Cln,n′ ,BW .
The computing resources are measured in terms of Million Instructions Per Second (MIPS).
To ensure that our model accurately reflects the real-world network, we allow multiple SFC
requests to share a single computing node and a link if their resource capacity is sufficient
[40].

3.3.2 Service Chain Requests

We consider a scenario where there is a set of SFC requests, denoted by R, that arrive at the
network one by one. Then ISP needs to deploy them onto the network infrastructure and
thus each SFC request is equivalent to a chain of VNFs. When a user needs to request a
network service, the request will be first sent to an access point, to enter the 5G core network.
Generally, an SFC service request is accomplished by an SFC, which is a series of VNFs that
are linked together to direct the traffic passing through the VNFs in a specific order. Each
SFC request r ∈ R encompasses a series of VNF requests denoted by Vr. Each r enters or
departs the 5G core network through a different node located near the network edge. In the
NFV-based network, the SFC requests from UE are represented by the traffic flows. To obtain
the required network service r, the traffic from users originating from the ingress nodes must
traverse the VNF instances of Vr in predefined orders given by Vr and finally arrive at the
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Table 3.2 List of Notations

Physical Network

N Set of NFV nodes in the network, n,n′ ∈ N.
L Set of physical links in the network, ln,n′ ∈ L.

Cn,cpu Capacity of computing resource in n.
Cln,n′ ,BW Capacity of bandwidth in link ln,n′ .

SFC Requests

R Set of SFC requests, r ∈ R.
Vr Set of VNF requests of SFC request r.

Er
Set of virtual links connecting two adjacent VNF
requests in Vr

.

λr Data rate of r.
nr,in, nr,out Ingress and egress nodes of r.
Delaymax

r Maximum tolerated delay of r.

Decision Variables

xr,vi
n

A binary variable demonstrating whether VNF request
vi in r is embedded on node n.

y
r,evi,vi+1
ln,n′

A binary variable demonstrating whether virtual ev,v′

of r is embedded on link ln,n′ .

Delay-related Variables

Delaytran
ln,n′

Transmission delay of link ln,n′ .
Delayprop

ln,n′
Propagation delay of link ln,n′ .

Delayque
ln,n′

Queuing delay of link ln,n′ .

Delaypro
n Processing delay in node n.

Delayr End-to-end delay of r.
Iln,n′ Physical distance of the link ln,n′ .

s Speed of light.
loadn The load of node n.

loadln,n′ The load of link ln,n′ .

Profit-related Variables

ϒr
N Operation cost of VNF instance in r.

ϒr
L Communication cost of virtual links in r.

ϒ Total profit of embedding all SFC requests in R.

Pr
Revenue of an SFC request r when it is embedded on
the network.

Pcpu Price of CPU resource per unit.
PBW Price of bandwidth per Gb/s.
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egress node. Different SFC requests have different QoS requirements. Based on the above
description, an SFC request r can be represented by a six-tuple,

r = {λr;nr,in; nr,out ;Vr;Er;Delaymax
r ;Pr}. (3.1)

In (3.1), the variables represent the following: λr is data rate of r, indicating the amount
of data to be processed. nr,in and nr,out are the ingress node and egress node of r, where the
traffic flow of r enters and exits the network, respecticely. For each SFC request r, the Vr

represents the set of associated VNF requests in the SFC of r that traffic needs to be traversed
in order to gain the service, thus Vr = {v1,v2, ...,vi, ...,v|Vr|−1,v|Vr|}, 0 < i ≤ |Vr|. In Vr,
each individual VNF request vi ∈ Vr represents the i-th VNF request in r, corresponding to a
specific type of VNF, such as DPI, NAT and FW. And Er represents the set of virtual links
between two adjacent VNF requests of r. In the Er, each individual virtual link evi,vi+1 ∈ E
ensures the proper connectivity and sequencing between the i-th and (i+1)-th VNF requests,
thus ensuring the order of VNF requests in the SFC r. Delaymax

r is the maximum tolerated
delay of r, indicating the maximum acceptable delay for completing the request r. Pr is the
revenue gained by embedding this SFC request r without violating its maximum acceptable
delay requirement Delaymax

r .
The binary variable xr,vi

n represents if the VNF request v of SFC request r is embedded on
node n, as expressed in (3.2).

xr,vi
n =


1, i-th VNF request of r is embedded on

node n,
0, otherwise.

(3.2)

The binary variable y
r,evi,vi+1
ln,n′

represents if the virtual link ev,v′ of SFC request r is served
by the physical link ln,n′ , as expressed in (3.3).

y
r,evi,vi+1
ln,n′

=


1, virtual link evi,vi+1 of r is embedded

on physical link ln,n′ ,
0, otherwise.

(3.3)

3.3.3 Delay Model

Note that different SFCs have distinct QoS requirements based on the network services they
support. When an SFC request r within the network, we mainly consider four kinds of delays
associated with each SFC request [75, 12] as follows.



3.3 Problem Formulation 31

1) Transmission delay.

Delaytran
ln,n′

=
λr

Cr
ln,n′ ,BW

. (3.4)

where Cr
ln,n′ ,BW is the bandwidth allocated to r.

2) Propagation delay. When an SFC request r traverses the link ln,n′ ∈ L, its propagation
delay depends on the bandwidth allocated to r and the physical distance of the link ln,n′ . The
propagation delay is modeled as follows,

Delayprop
ln,n′

=
Iln,n′

s
. (3.5)

where Iln,n′ is the physical distance of the link l, Cr
l,BW is the bandwidth allocated to r, and s

is the speed that traffic propagates in that medium.
3) Queuing delay. The queuing delay at a link can be modeled using a queuing theory

model, i.e., M/M/1 queue. In this model, the queuing delay is influenced by the link load,
which is determined by the bandwidth utilization of the link before the arrival of SFC request
r at node n. The queuing delay in link ln,n′ , can be expressed as follows.

Delayque
ln,n′

=
loadln,n′

1− loadln,n′
Delaytran

ln,n′
, (3.6)

where loadln,n′ is the load of the link ln,n′ in term of bandwidth resource. The loadln,n′ can be
calculated as follows.

loadln,n′ =

∑
r∈R

∑
evi,vi+1∈Vr

y
evi,vi+1
ln,n′

λr

Cln,n′ ,BW
. (3.7)

4) Processing delay. Recent works [31, 58, 41] reveal that multiple VNF instances embed-
ded on the same node will cause resource contention, resulting in performance degradation
and increasing the processing delay. The contention factor captures the impact of resource
contention on the processing delay at a node. Specifically, the delay at node n is modeled as
follows.

Delaypro
n =

loadn

1− loadn

λr

Cr,vi
n,cpu

, (3.8)

where Delaypro
n represents the processing delay at node n, loadn is the node load, λr is the

date rate of r, and Cr,vi
n,cpu is the CPU resource allocated to i-th VNF of r at node n, and Cn,cpu

is the total CPU resource capacity at node n.
The loadn is the load of the node n in term of computation resource, which can be

calculated as the proportion of the total computation resource allocated to all SFC requests to
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the total computation resource capacity in node n. It’s expressed as follows.

loadn =

∑
r∈R

∑
vi∈Vr

xr,vi
n Cr,vi

n,cpu

Cn,cpu
. (3.9)

By considering all the mentioned delays, the E2E delay of the r can be calculated as
follows.

Delayr = ∑
vi∈Vr

∑
n∈N

xr,vi
n Delaypro

n +

∑
evi,vi+1∈E

∑
ln,n′∈L

y
r,evi ,v′

ln,n′

[
Delaytran

ln,n′
+Delayprop

ln,n′
+Delayque

ln,n′

]
.

(3.10)

3.3.4 Profit Model

After giving the delay model, we are now ready to construct the profit model of the TOs. The
total profit of TOs is obtained by summing up the individual profits of each SFC request,
ϒr
N+ϒr

L. The profit of each SFC request is composed of three parts: 1) the operation cost
of VNF requests, 2) the communication cost of virtual links, and 3) the revenue gained by
successful embedding.

1) Operation cost of VNF instance.

ϒ
r
N = ∑

vi∈Vr

∑
n∈N

xr,vi
n Cr,vi

n,cpuPcpu. (3.11)

where Pcpu represents the cost of computation resource per unit, indicating the cost associated
with utilizing CPU resources.

2) Communication cost of virtual links.

ϒ
r
L = ∑

ev,v′∈Er

∑
ln,n′∈L

y
r,evi,vi+1
ln,n′

λrPBW . (3.12)

where PBW represents the cost of link bandwidth per unit.
We assign a revenue denoted as Pr to each SFC request r when its embedding decision

successfully fulfills its QoS requirements. Therefore, The total profit of TOs can be computed
by summing up the profits of all individual SFC requests, which can be represented as follows.

The total profit of TOs can be computed by summing up the profits of all individual SFC
requests, which can be represented as follows.

ϒ = ∑
r∈R

(Pr−ϒ
r
N−ϒ

r
L). (3.13)
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With the aforementioned system model and decision variables, we now introduce the
INLP formulation of the problem. When making embedding decisions, there are several
constraints that must be satisfied. Given a physical 5G core network G and a set of SFC
requests R needed to be embedded in the network, we have the following constraints:

• QoS requirements of SFCs requests must be met, especially in terms of the end-to-end
delay and bandwidth.

• Resource capacity constraint of nodes and links must be met.

• The profit of SFC deployment and scheduling is maximized.

3.3.5 Constraint

Thus, we have these constraints as follows:
1) Node and link capacity constraint. Since different VNF instances may share the same

physical node and link, we ensure that the computation resource occupied by embedded VNF
instances on node n must not surpass the capacity Cn,cpu in that node. The node resource
constraint can be expressed as follows.

∑
r∈R

∑
vi∈Vr

xr,vi
n Cr,vi

n,cpu ≤Cn,cpu,∀n ∈ N. (3.14)

∑
r∈R

∑
vi∈Vr

xr,vi
n Cr,vi

mem ≤Cn,mem,∀n ∈ N. (3.15)

Likewise, for each link ln,n′ ∈ L, we have a similar resource constraint as follows.

∑
r∈R

∑
evi,vi+1∈Er

y
r,evi,vi+1
ln,n′

.λr ≤Cln,n′ ,BW ,∀ln,n′ ∈ L. (3.16)

2) VNF placement constraint. These constraints guarantee that all VNF requests must be
embedded on one and only one computing node.

∑
n∈N

xr,vi
n = 1,∀v ∈ Vr (3.17)

Likewise, the virtual link between the VNF request has to be embedded onto equal to or
greater than one physical link.

∑
ln,n′∈L

y
r,evi,vi+1
ln,n′

≥ 1,∀ln,n′ ∈ L,∀evi,vi+1 ∈ Er. (3.18)
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3) Single flow constraint. For simplicity, we ensure the flow of each deployed SFC
request r cannot be split into multiple flows.

∑
ln,n′∈L

y
r,evi,vi+1
ln,n′

= 1,∀evi,vi+1 ∈ Er,∀r ∈ R (3.19)

4) Ingress and egress node constraint. This constraint ensures that the traffic of SFC
request r will enter/leave the 5GCN from/through the ingress/egress node.

∑
n′∈N

y
r,ev1,v2
lnr,in,n′

= ∑
n′∈N

y
r,ev|Vr |−1,v|Vr |
lnr,out ,n′

= 1,∀r ∈ R. (3.20)

3.3.6 Objective

By incorporating complete knowledge of the system model, we formulate the SFC embedding
problem into an INLP with the objective of achieving the maximum total profit of the TOs,
as expressed follows.

P1 : max ϒ

= max ∑
r∈R

(Pr−ϒ
r
N−ϒ

r
L),

s.t. Eq. (3.2),(3.3),(3.15)− (3.20).

(3.21)

By decomposing the original problem P1 into static ones, the total cost ϒG now becomes
a part of the objective function. According to equation (3.13), the revenue ϒr

∗ generated from
deploying the SFC requests remains unchanged once they are embedded in the network. We
can further transform P1 into a cost-minimizing SFC-E problem, as represented in P2.

P2 : min ∑
r∈R

ϒ
r
N+ϒ

r
L,

s.t. Eq. (3.2),(3.3),(3.15)− (3.20).
(3.22)

3.4 Algorithm Design

We first demonstrate the hardness of the problem by proving its NP-hardness. As finding the
optimal solution becomes infeasible when the problem size grows, we propose a three-stage
heuristic approach with low complexity, tailored to solve the SFC-E problem formulated in
Section 3.3.4.

By assuming SFC requests in R that arrive one by one into an arriving queue, denoted
by Q, our approach is focused on deploying and routing a single SFC. Our solution consists
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of three steps. First, we introduce the Cost Efficiency Factor Priority Sorting (CEF-PS)
algorithm, which prioritizes high-value SFC requests at the head of Q. Second, we embed the
SFC requests one at a time, starting from the head of Q. To accomplish this, we devise a K-
Cost Minimizing Path (K-CMP) algorithm, which finds out the K paths with the lowest cost
and chooses one for embedding the SFC request. Additionally, to avoid the local optimum
of K-CMP, we randomly select B paths from the network for comparison with the paths
obtained from K-CMP. Finally, with a set of K +B paths at our disposal, we compute the
delay and cost of each path in accordance with equations (3.10) and (3.13). Then, we select
a path using the Delay-Aware VNF Embedding (DAVE) algorithm, designed to fulfill the
requirement of the maximum tolerated delay for SFC.

3.4.1 Hardness Analysis

We present proof demonstrating that the SFC embedding problem is NP-hard. This implies
that finding an optimal solution to the problem becomes computationally challenging as
the problem size increases. While existing optimization solvers such as CPLEX, Gurobi,
or GLPK can find optimal solutions for small-scale cases, their computational complexity
becomes prohibitive for larger problem sizes. Therefore, we have developed a heuristic
algorithm that strikes a balance between solution quality and computational efficiency,
providing efficient solutions for practical scenarios.

Proof: The SFC embedding problem defined in P2 is an INLP that can be considered as
a reduction case of an NP-hard Bin Packing (BP) problem.

The BP problem involves determining whether a given set of items can be packed into a
fixed number of bins, for which each bin is with a limited capacity. The objective of BP is to
maximize the total value of the packed items while ensuring that the total weight of the items
in each bin does not exceed that bin’s capacity.

We prove it by following these steps. First, we relax the objective Eq. (3.22) with only
resource constraints on nodes Eq. (3.15). Next, we assume the VNF request only consumes
CPU resources and sets the computation resource capacity of all nodes to be to a fixed
constant. At this point, if we treat the nodes as bins with a fixed capacity and the VNF
requests as items with different weights, the problem can be viewed as a reduction from
the BP problem. Considering our problem is harder than the BP problem with additional
constraints Eq. (3.2), (3.3), (3.16)-(3.20), the SFC embedding problem defined in Eq. (21) is
also NP-hard.
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3.4.2 Cost Efficiency Factor Priority Sorting (CEF-PS) Algorithm

Due to the resource constraints in the network, including the limitations on node and link
resources, it is possible that not all incoming SFC requests can be accommodated simul-
taneously. In such cases, it is essential to prioritize the execution of high-profit requests
to maximize the overall profit and resource utilization. However, when an SFC request is
received by the TOs, the embedding decisions for that request are not known in advance, and
therefore, its corresponding profit is also unknown. To measure the expectant profit of each
SFC request, we define a new concept, the Cost Efficiency Factor (CEF). The CEF provides
a metric that captures the cost efficiency of each SFC request, allowing the network operator
to assess the profitability of different requests. By considering the CEF values, the operator
can prioritize the execution of SFC requests with higher CEF values, as they indicate a higher
revenue-to-data rate ratio and therefore potentially higher profitability.

CEFr =
Pr

λr
. (3.23)

Therefore, we use an ascending priority queue Q to store all arrived SFC requests and
decide their order of execution. In Q, requests with a higher priority are placed closer to the
head of the queue and are executed earlier. Clearly, the design principles of Q should be:

• The SFC request with a higher CEF should have a higher priority, while those with a
lower CEF have a lower priority. This ensures high-value requests are embedded prior
to low-cost requests.

• If two or more SFC requests have the same CEF, the request with higher revenue
should be placed in front.

It is important to note that the order in which SFC requests R initially reaches into an
arriving queue Q is arbitrary and not optimized. To address this issue, we design a CEF
Priority Sorting (CEF-PS) algorithm with the purpose to ensure that SFC requests with high
CEF values are prioritized in Q, allowing them to be embedded earlier than other requests
with lower CEF. The CEF-PS algorithm is inspired by the bubble sort sorting algorithm. It
iterates through Q and compares each pair of adjacent requests. If the CEF value of the
current request is higher than that of the next request, the two requests are swapped. This
process continues until the entire list is sorted in descending order of CEF values.
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3.4.3 K-Cost Minimizing Path (K-CMP) Algorithm

Next, we introduce the K-Cost Minimizing Path (K-CMP) algorithm, which is specifically
designed to obtain K candidate paths. The K-CMP algorithm follows the steps as follows.

1) Constructing a weighted undirected graph P. Before embedding VNFs on the network,
first, we need to find the paths with the lowest cost. We construct the cost-weighted network
as a |N|× |N| matrix to indicate the cost of each edge when r traversing them, represented by
P. The weighted graph is designed according to the following principles:

• The physical link with a higher cost should have a higher weight, while a link with
a lower cost has a lower weight. This means that the algorithm prioritizes links with
lower costs when making placement decisions for an SFC request.

• If the unused bandwidth of a link is not sufficient to accommodate the traffic of the
SFC request, the weight of that link will be a very large number, which means that the
link cannot be considered for the placement of the SFC request. This indicates that the
link is not eligible for consideration in the placement of the SFC request. By assigning
a weight of a very large number to such links, the algorithm ensures that only links
with sufficient bandwidth are considered, thereby avoiding infeasible or inefficient
placements.

2) Pruning P. Since the original graph, P, is too large to run our algorithm efficiently, we
first prune the unnecessary and redundant links to reduce execution time and computation
complexity. We consider redundant links just those that have a bandwidth capacity lower than
the data rate of the request. By eliminating these links from the graph, we can significantly
reduce the search space for our algorithm and improve its efficiency. To do this, we create a
pruned graph, P′, by removing the redundant links from the original graph, P.

3) Obtaining a set of K paths with the lowest cost. To find the K available paths from
an ingress node to an egress node in a graph, we employ the K-shortest paths algorithm.
This algorithm can constantly generate multiple paths by iteratively removing edges from
the previously obtained shortest path. The process can be briefly described as follows: First,
the algorithm initializes an empty set to store K paths with the lowest cost and initializes an
empty priority queue to store candidate paths. Add the source node as the first path to the
candidate paths. The process of path exploration is as follows: while the priority queue is not
empty and the path set has not reached the desired size (K), perform the following steps: a)
Pop the path with the smallest cost from the priority queue. b) Check if the last node in the
path is the target node. If so, add the path to the path list. c) If the last node is not the target
node, expand the path by exploring its neighboring nodes. For each neighbor, create a new
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Algorithm 2 K-Cost Minimizing Path (K-CMP) Algorithm

Input: G= {N,L}, the model of the network,
r = {λr;nr,in,nr,out ;Gr;Ψmax

r ;Pr}, a SFC request,
K, the size of shortest path set.

Output: shortest_path, a set of K shortest paths.
1: Construct a weighted undirected graph P based on G
2: P′← Prune P
3: shortest_paths←{}
4: candidate_paths←{}
5: while candidate_paths ̸= /0 and length(shortest_paths) == K do
6: (cost, path) = pop the path with the smallest cost from candidate_paths
7: last_node = the last node in path
8: if last_node == nr,out then
9: add path to shortest_paths

10: end if
11: if last_node ̸= nr,out then
12: for (neighbor, edge_cost) ∈ P′[last_node] do
13: new_path = path+[neighbor]
14: new_cost = cost + edge_cost
15: add (new_cost,new_path) to candidate_paths
16: end for
17: end if
18: end while
19: return shortest_paths
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path by appending the neighbor to the current path and calculate the new cost by adding the
edge cost. Then store the path and its corresponding cost, to the set of candidate paths.

3.4.4 Delay-Aware VNF Embedding (DAVE) Algorithm

The Delay-Aware VNF Embedding (DAVE) Algorithm, as detailed in Algorithm 2, is
designed to embed Virtual Network Function (VNF) requests into the most appropriate path
from a pool of candidate paths, under constraints of the VNF order in SFC request, resource
capacity of nodes/links and maximum tolerable delay. The algorithm takes as inputs the
path set, shortest_path, and an SFC request, r. The SFC request is represented by a tuple
that includes the SFC request’s date rate, input node, output node, the graph representing
the SFC request, the maximum processing capacity of a node, and the VNF request. The
algorithm starts by initializing V NF_requests to be the VNF request set in the SFC request
and V NF_placements to be an empty set. The length of the SFC request SFC_length,
the length of the path sets path_length and the length of VNF requests SFC_length are
determined. The algorithm then iterates over each path in shorest_paths. If path_length is
greater than or equal to the SFC_length, the algorithm tries to embed the VNF request set
on the nodes along the path. This is done by iterating over nodes of the path and attempting
to embed the corresponding slice of VNF requests on it. If the number of successful VNF
embeddings equals SFC_length, the algorithm returns. If the path_length is less than the
SFC_length, the algorithm calculates how many VNF requests can be embedded on each
node of the path (a) and how many VNF requests remain to be embedded (b). The algorithm
then attempts to embed a VNF request on each node of the path and the remaining b VNF
requests on the last node of the path. The algorithm will return if the total number of
successful VNF embeddings equals the SFC_length.

3.4.5 Algorithm Analysis

Our approach consists of three heuristic algorithms: CEF-PS, K-CMP, and DAVE. The
CEF-PS algorithm uses a bubble sort technique to prioritize SFC requests based on their CEF
values. The time complexity of CEF-PS is O(|R|2).

The K-CMP algorithm leverages Yen’s K-shortest path algorithm to obtain K paths with
the lowest cost. K-CMP’s complexity depends on the number of nodes and links, denoted as
|N| and |L| respectively. The time complexity in best-case is O(|L|+ |N| log |N|), while that
in worst-case is O(K · |N| · (|L|+ |N| log |N|)).

The DAVE algorithm is specifically designed for efficient VNF embedding with time
complexity of O(K · |Vr|).
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Algorithm 3 Delay-Aware VNF Embedding (DAVE) Algorithm
Input: shortest_paths, a set of K shortest paths,

r = {λr;nr,in,nr,out ;Vr;Er;Ψ
Delay
r ;Pr}, a SFC request

1: V NF_requests = Vr, V NF_placements = {}
2: SFC_length = length(Vr)
3: for path ∈ shortest_paths do
4: path_length = length(path), result == False
5: if path_length≥ SFC_length then
6: i = 0,result = 0,sum = 0
7: for i < (path_length−SFC_length); i++ do
8: result← Embed V NF_requests[i : i+ path_length] on path[i : i+ path_length]

9: sum = sum+ result
10: end for
11: If sum == SFC_length then return
12: end if
13: if path_length < SFC_length then
14: result == False
15: a = SFC_length/path_length, i = 0
16: b = SFC_length−a× path_length
17: for i < path_length; i++ do
18: result1← Embed V NF_requests[i×a, i×a+1] on path[i]
19: result2← Embed V NF_requests[SFC_length −1] on path[path_length−1]
20: sum = result1+ result2
21: If sum == SFC_length then return
22: end for
23: end if
24: end for
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Considering the experiment parameters described in Section 3.5, the total time complexity
of our approach depends on the K-CMP algorithm. Therefore, the upper bound complexity
of the approach is O(|R| · (|L|+ |N| log |N|)) while lower bound is O(|R| ·K · |N| · (|L|+
|N| log |N|)).

3.5 Simulation

3.5.1 Simulation Setup

We implement our INLP with ILOG CPLEX v12.6 [27] and heuristic algorithms using
Python 3.7 in an Intel® NUC with an i7-1260P CPU, 32 GB RAM and 64-bit Windows 11
Pro Education. All the experiments will be executed 10 times and the result represents the
average values obtained from these trials. The parameter configurations for the simulation
are presented in TABLE 3.3.

Table 3.3 Simluation setting

Parameters Value Description

|N| 51 Number of nodes in G.
|L| 68 Number of Links in G.
|R| 20−120 Number of SFC requests.
|Vr| 5 Numver of VNF request of r.

Cn,cpu U (500,1000) MIPS Capacity of CPU resource in n.
Cr,vi

n,cpu U (50,100) MIPS CPU usage of i-th VNF of r.
Cln,n′ ,BW 10 Gb Bandwidth of link (n,n′).

Pr U (50,100) Revenue of request r.
Pcpu U (6,13) Price of CPU resource per unit.
Pln,n′ N (0.8,0.02) Price of bandwidth per Gb/s.

s 3×108 m/s Speed of light.
K 5 Length of the shortest path set.
R 6378 km Earth radius.

1) Network Topology: we conduct our simulation on a 5G real-work network topology
extracted from the Internet Zoo Topology [35]: Surfnet (51 nodes and 68 links). Surfnet’s
network topology is as depicted in Fig. 3.3. Unless specific illustration, all simulation settings
are consistent with the aforementioned parameters as shown in TABLE 3.3 and conducted
on Surfnet topology. Moreover, Internet Zoo Topology also provides the longitude ρn and
latitude σn of nodes, which enables us to get the physical distance between any two nodes in
the network, denoted by Kln,n′ . We use the widely used coordinate algorithm to calculate the
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Fig. 3.3 Network topology of Surfnet.

physical distance Kln,n′ between two nodes n and n′ based on their geographical coordinates.
The calculation is expressed below,

Iln,n′ = 2R · arcsin
√

sin2(
ρn−ρn′

2 )+ cosρn · cosρn′ · sin2(
σn−σn′

2 ), (3.24)

where R is the earth’s radius. This additional information makes our simulation closer to the
practical network and achieves a better understanding of the real-world implications of our
proposed approach.

Table 3.4 SFC example of 5G services.

service SFC Request λr Delaymax
r

Web Service NAT→FW→TM→WOC→IDPS 100kbps 500ms
Voice over IP NAT→FW→TM→FW→NAT 64kbps 100ms

Video Streaming NAT→FW→TM→VOC→IDPS 4096kbps 100ms
Online Gaming NAT→FW→VOC→WOC→IDPS 50kbps 60ms

2) SFC Request: While there are no specific SFC workloads or datasets publicly available,
we use general network traffic datasets or cloud workload datasets as a basis for generating
SFC requests. The selection of ingress and egress nodes of an SFC request is done randomly
within the network. We choose four kinds of popular 5G services (i.e., Web Service, VoIP,
Video Streaming and Online Gaming) as a basic to generate SFC requests (see TABLE 3.4),
where each of the 5G services has different QoS requirements in terms of E2E delay Delaymax

r

and data rate λr. This is because End-to-end delay and bandwidth are foundational QoS
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requirements for 5G services. For example, video streaming is characterized by the highest
bandwidth requirement while video streaming has the strictest E2E delay requirement.

3) Comparison Approaches:

• CPLEX: CPLEX [27] is a set of software APIs developed by IBM that is often used
for solving complex mathematical problems.

• Ours: to solve the SFCE problem in the 5G network, we proposed three heuristic algo-
rithms: CEF-PS, K-CMP, and DAVE in Section 3.4. This approach is a combination of
these three algorithms.

• CEF-PS + K-CMP + FF: this approach adopts a First Fit (FF) principle for its third
step, which guides the selection of nodes for SFC embedding. That is, embedding the
SFC request on the node first fits the requirement of the SFC request.

• Adaptive Interference-Aware (AIA): this approach represents the state-of-the-art
SFCE approach from [80] that merely captures intra-machine resource contention but
ignores intra-link resource contention.

• Contention-Unaware (CU): this approach represents the state-of-the-art SFCE algo-
rithm from [29] with the aim to minimize the E2E delay. However, it does not consider
any resource contention, which is a key point of our proposed approach.

3.5.2 Offline Embedding

1) End-to-end (E2E) SFC Delay. The author first compare the E2E delay among three
kinds of approaches as listed in Section 3.5.1. The results are shown in Fig. 3.4. As the
amount of SFC requests increases, the E2E delay also increases for all the approaches.
This trend can be attributed to the higher contention for network resources, such as link
bandwidth and node capacities when more and more SFC requests are deployed in the
network. As a result, the network becomes more congested, leading to longer waiting times
for requests in queues and increased transmission delays. Consequently, the E2E delay of
the SFC requests grows as the system is required to handle more simultaneous requests.
This observation highlights the significance of implementing efficient resource allocation to
maintain satisfactory performance levels, especially when dealing with a larger number of
SFC requests.

When handling the same amount of SFC requests, the E2E delay of CPLEX is always
the smallest one because it can get the optimal solution. In contrast, CU nearly keeps the
highest delay among all approaches, this is because its contention-unaware nature makes
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Fig. 3.4 E2E Delay vs number of SFC.
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VNF instances highly concentrated in a few nodes, thereby increasing the load of the nodes
and increasing the E2E delay. Meanwhile, our proposed approaches show slightly higher
E2E delays in comparison with CPLEX. This difference can be attributed to the fact that
the proposed algorithms are heuristic in nature, which means they aim to provide a good
approximate solution rather than the exact optimal one.
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Fig. 3.5 Bandwidth of different services.

2) Bandwidth. Since resource contention also impacts the bandwidth received by the
destination of the SFC request. This influence is demonstrated in Fig. 3.5, which illustrates
the achieved bandwidth for different types of 5G services. As expected, CPLEX achieves the
highest bandwidth for all 5G services and our approach achieves sub-optimal performance.
The rationale behind this is that our approach is resource contention-aware which greatly
alleviates the resource contention in the nodes/links. Our approach, being resource contention-
aware, attains sub-optimal but commendable 80% performance, as it actively manages and
mitigates resource contention within nodes and links. Conversely, AIA exhibits the second-
lowest bandwidth allocation for all 5G services. This low bandwidth allocation might lead to
a mismatch with service requirements, resulting in a reduced success rate Low bandwidth
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may lead to a violation of QoS requirements, resulting in a low success rate. This aligns with
the results shown in Fig. 3.5.
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Fig. 3.6 Success rate vs number of SFC.

3) Success rate. The success rate is defined as the proportion of SFCs embedded that
satisfy the following QoS requirements: i) the E2E delay not exceed the maximum acceptable
delay requirement Delaymax

r , and ii) the bandwidth exceed or equal 75% of the input data
rate λr. Therefore, the success rate can be expressed as,

success_rate =
∑

r∈R
[I(Delayr≤Delaymax

r )·I(Bandwidthr≥λr·75%)]

|R| , (3.25)

where I is indicator function. Fig. 3.6 shows the success rate against the different numbers
of SFC requests. As opposed to the CPLEX-based approach that has always been able to
find an optimal placement solution, our approach accepted around 87 percent of the SFC
requests due to sub-optimal SFC placements. CU gains the lowest success rate as compared
with other approaches. This is because CU is completely unaware of resource contention,
leading to severe resource contention arising from high node/link utilization, as shown in Fig.
3.9 and Fig. 3.10.
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4) Profit. Fig. 3.7 presents the comparison of total profits when these approaches handle
varying amounts of SFC requests. We find there is a corresponding increase in the total
profit when the amount of SFC requests increases. This is consistent with the expectation
that an increase in the amount of SFC requests implies a greater amount of opportunities for
the successful embedding and execution of service function chains. Each SFC embedding
leads to increased revenue, contributing to the overall profit. When comparing the total
profit among different approaches for the same amount of SFC requests, it is notable that
the CPLEX solver consistently achieves the highest profit. This superior performance can
be attributed to CPLEX’s ability to find the optimal solution for our formulated problem,
allowing it to utilize network resources in the most efficient manner with high possibility.
As a result, CPLEX is able to successfully embed a higher amount of SFC requests, which
in turn leads to a greater profit. It should be noted that CU shows inferior performance in
total profit than other approaches, even worse than AIA. This is because it does not prioritize
serving requests with high CEF, thus potentially missing out on more profitable opportunities.

Table 3.5 Running time (s)

.

No. of SFC request 20 40 60 80 100 120

CPLEX 150.2 320.1 734.5 1534.7 3232.2 11866.4
Ours 25.7 47.9 71.4 95.2 118.3 147.5
CEF-PS + K-CMP + FF 24.6 46.5 69 93.9 112.3 140.6
AIA 23.1 43.1 65.3 90 105.4 132.7
CU 22.2 45 62.5 85.8 102.3 129.2
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Fig. 3.8 Total profit against different SFC lengths.
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5) SFC length. Regarding SFC length, we set it as five, which is consistent with the
fact that all 5G SFC requests listed in Table III consist of five VNFs. To further enhance
the persuasiveness of our approach, we conducted an experiment exploring the total probit
against different SFC lengths. The experiment parameters are the same as TABLE 3.3 except
for the SFC length, which ranges from 3 to 7, and the number of SFC requests, which is
set as 60. The results are depicted in Fig. 3.8. When the SFC length is 3, the total profit of
all approaches shows similar results because the number of VNFs can not incur significant
influence of resource contention and reduce success rate. Correspondingly, the total profit
of all the approaches, tends to decrease, as the SFC length increases. This is because as the
SFC length increases, deploying an SFC request will consume more resources of nodes and
links, aggravating the level of resource contention. More severe resource contention, in turn,
results in longer SFC latency and less throughput, ultimately reducing the success rate in
satisfying user requirements. As mentioned earlier, CU doesn’t consider resource contention,
making its total profit always the least. Our approach is close to the optimal solution in all
cases. As compared with CEF-PS+K-CMP+FF, our approach shows superior performance.
This is because the third step of our approach helps it escape from the local optimum and get
a higher-quality solution.

6) Running Time. We also measured the total running time of the approaches to evaluate
their scalability in large-scale networks. Although CPLEX can achieve optimal results,
it’s important to understand the trade-off involved. TABLE 3.5 shows the time required
to execute the approaches. The results show that CPLEX incurs very high computational
complexity. Therefore, when running in a large-scale network and with an increased amount
of SFC requests, finding the optimal solution via CPLEX becomes computationally infeasible.
Compared with CPLEX, our proposed approach demonstrates a trade–off between the
optimality and the scalability of the solution.

3.5.3 Online Embedding

To conduct a more realistic 5G evaluation, we evaluate our approach in an online manner,
where UEs have high mobility and the ingress node of SFC request will change from time to
time. As the SFC embedding decisions are made without a priori knowledge, the CEF-PS
algorithm can not be used due to its requirement of having all SFC request patterns in advance.
Furthermore, CPLEX is not applicable to a dynamic network environment as it incurs high
time complexity. First, the system time should be divided into discrete time slots set, donated
by T= {t1, t2, ..., t j, ..., t|T|}. We set |T|= 100 and |R|= 40. Similar to the offline scenario,
we assume that SFC requests sequentially enter into the network and we embed it at the
beginning of each time slot. Then, to simulate the high mobility of UEs, we assume that the
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ingress node of each embedded SFC request will change after a fixed interval. We set the
interval as 5-time slots in this simulation.
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Fig. 3.9 Node utilization over time.

In addition, we assume that once the ingress node of the SFC request r is changed at
time slot t j, the system doesn’t immediately reset the placement of r because there is a new
SFC request arriving at the network at t j. The reconfiguration of the placement of r won’t
occur until the subsequent time slot t j+1, which means the placement of r remains unchanged
during the period between t j and t j+1. This setting would help us observe the aftermath
of employing static SFC embedding in a dynamic network environment. We introduce an
additional benchmark objective for comparative evaluation:

• Static. This represents the conventional static embedding approach. The initial SFC
embedding is using our approach. Once the placement of every single embedded SFC
request is determined, the placement remains unchanged despite the high mobility of
UEs.

1) Node/link utilization. The definition of node/link utilization is the same as the load
of node/link (see Eq. (3.9) and (3.7)), which can reflect the level of resource contention
within the node/link. Fig. 3.9 and 3.10 show the average node and link utilization against
the time slots. The results show that before the 40 time slot, all four approaches increase
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Fig. 3.10 Link utilization over time.

node/link utilization with time because a new SFC request arrives at every time slot and
embedding it will occupy the resources of nodes and links. After 40 time slots, all approaches
except for the static one fluctuate because the high mobility of UEs changes the placements
of SFC requests dynamically. Note that the static remains node utilization unchanged and
keeps increasing link utilization. This is because it keeps the placement of SFC requests
unchanged but the ingress node of SFC requests is changing, which uses more links to keep
the connection between the new ingress node and the origin SFC.

2) Success rate and profit. Fig. 3.11 and 3.12 show the success rate and profit, respectively,
against different mobility intervals of UE. It is clear our approach and AIA can maintain a
certain success rate/profit, despite the change of interval. This is because they are resource
contention-aware and can adapt to different network environments. On the other hand, CU
and static keep the momentum of growth in success rate and profit as the mobility interval
increases. This is attributed to the fact that CU and static are unaware of resource contention
and therefore their adaptability to the environment is weak. A longer mobility interval implies
fewer changes in the network environment, which is beneficial to the performance of these
approaches. Take a global view, even though CU and static increase, they are still inferior
to our approach. In summary, our proposed approach performs better than the other three
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approaches, which strongly validates its superiority and effectiveness in a dynamic network
environment.

3.6 Conclusion

This paper formulated the SFC embedding problem within the context of a Network Functions
Virtualization (NFV)-based 5G core network by proposing an Integer Non-Linear Program
(INLP) with stringent constraints. Due to the high difficulty and hardness of the problem,
solving the problem is computationally intensive and thus isn’t feasible for real-time applica-
tions in large-scale networks. Therefore, we have proposed a low-complexity approach that
incorporates three heuristic algorithms: CEF-PS, K-CMP, and DAVE. Finally, we employed
the well-established solver CPLEX to solve the proposed INLP as a baseline to compare
our approach. The numerical results validate its performance in reducing computational
complexity while achieving near-optimal solutions for the SFC embedding problem. In the
future, we will focus on distributed and decentralized SFC embedding problems. We plan to
use a game theory to formulate the problem. Different from the previous work [51, 42, 37],
our future work will consider both intra-link and intra-machine resource contention.



Chapter 4

User Traffic Routing for 6G User
Experience

This chapter introduces our research at the traffic level for routing 6G traffic to ensure the
QoE of users.

4.1 Motivation

The rapid development of the Internet of Things (IoT), fifth-generation (6G) communication
and edge computing greatly carry out the prosperity of real-time applications, such as
autonomous vehicles, virtual reality, and intelligent traffic. As their names suggest, the
operation of real-time applications depends on real-time information, and quickly responds
and acts on this information. Outdated information in these applications is valueless and may
result in erroneous situations if decision-making is involved. Therefore, it is imperative to
keep the data at the destination as fresh as possible for accurate data analysis and correct
decision-making.

Fig. 4.1 An example of a user watching video online.
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Fig. 4.2 two cases of arrival patterns of two adjacent video data.

Here I give an example to explain why delay is not enough to measure QoE. In Fig. 4.1,
a user watching a video where the device is receiving video data continuously. Figure 4.2
shows two cases of arrival patterns of two adjacent video data.

• Case 1: Low Delay with Long Intervals. Two video data with smaller delays arrive
at the device at a long interval. Despite the low delay, the screen experiences lag the
infrequent updates, leading to a poor QoE.

• Case 2: Higher Delay with Short Intervals. Two video data with longer delays arrive
at the device at a short interval. The screen updates more frequently, ensuring smooth
playback and a better QoE than case 1.

Through this example, we can learn a lower delay doesn’t result in better QoE. Data
arrival interval plays a crucial role in ensuring timely updates on the device. Therefore, we
use a new metric, AoI, which captures both delay and data arrival interval, providing a more
comprehensive metric to measure QoE.

Recently, the notion of Age of Information (AoI) [34] has been introduced as a novel
performance metric to evaluate how fresh the information is when it reaches the destination.
For a packet/information received by the destination, the AoI can be simply defined as the
elapsed time between the present and the generation time of the latest useful information at
the destination. Then, the AoI associated with destination d can be given by a function of
time t, that is ∆d(t) = t−Vd(t), where Vd(t) is the generation time of the latest information
that the destination d has received at time t.
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For ease of understanding, here is a simple example: a user watching a video where the
device is receiving video data continuously, as shown in Fig. 4.1 and data arrival pattern is
shown in Fig. 4.7. The first and second data arrive at the destination at time-steps 5 and 8.
According to the definition of AoI, the AoI at destination will drop at time steps 5 and 8.
Giving an example that the second data arrives at the destination at time-step 15 instead of 8.
The AoI will keep increasing until time-step 15, and the AoI at time-step 15 will be a large
value. Therefore, a high AoI can represent that data has not been updated for a long time and
the regularity of data arrival is poor. Through this example, I explain that delay is not enough
to measure QoE as a lower delay doesn’t mean better QoE. Data arrival interval is also an
important factor that worth to be considered. Therefore, we use a new metric, AoI, which can
reflect both delay and data arrival interval. Compared to delay, AoI is a more comprehensive
metric to measure QoE.

Using AoI for QoE is of great significance in the B5G/6G area because it provides a
more comprehensive understanding of user experience by accounting for both delay and the
timeliness of data arrival. Unlike traditional metrics such as delay, AoI captures the freshness
of information, which is critical for real-time applications like autonomous driving, remote
surgery, and immersive VR/AR experiences. For example, in autonomous driving, optimizing
AoI for QoE can enhance passenger safety and can make driving behavior decisions timely
and accurately. Autonomous vehicles rely on real-time data from sensors, cameras, LiDAR,
and communication systems to navigate, detect obstacles, and respond to changing road
conditions. Minimizing AoI ensures that the data being processed is fresh and up-to-date,
allowing the vehicle to make accurate and timely decisions.

As a result, many efforts have been paid to proposed approaches to solve this problem
with goals of optimizing various performance metrics, such as end-to-end packet delay
[71, 7, 59], resource utilization [5, 8], expense [13, 19, 50], energy consumption [5, 59, 39],
etc. However, it’s important to emphasize that these approaches are not sufficient to optimize
AoI and obtain a good AoI performance, because a good AoI performance is achieved when
packets with low delay are delivered regularly [32]. Existing approaches focus only on
minimizing end-to-end packet delay but have never taken the regularity of packet delivery
into consideration.

To this end, we are motivated to propose an AoI-aware VNF Placement approach (named
VNF_AoI), to automatically and efficiently place VNFs in the system. Then we model the
VNF placement problem as a Markov Decision Process (MDP) and solve it by a Deep Rein-
forcement Learning (DRL)-based algorithm, Deep Deterministic Policy Gradient (DDPG).
Our objective is to provide optimal online VNF placement policies to minimize the long-term
average AoI at the destination.
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Our main contributions of this paper are as follows:

• We formalize the VNF placement problem as a MDP and model it as a mathematical
optimization problem aiming at minimizing the average AoI at the destination.

• Since the VNF problem is NP-hard and difficult to find a globally optimal solution,
we propose an efficient DRL-based approach to provide an optimal VNF placement
policy in the system.

• We conduct extensive simulation experiments to prove the effectiveness of our approach.
The results reveal that our proposed approach outperforms the other two baseline
approaches in term of acceptance ratio and average AoI at destination d.

4.2 Related Work

Our proposed VNF-AoI is built upon VNF placement and AoI optimization. In this section,
we review recent studies on these two topics. Table 4.1 summarizes recent studies on AoI
and NFV.

Table 4.1 Summary of recent studies on AoI and NFV.

Literatures Delay AoI NFV Online Summary

Dalgkitsis et al. [8] ✓ ✓ ✓
Minimize the energy consumption while

keep low delay of service chain

Chen et al. [7] ✓
Minimize the energy consumption of

service chain deployment
Gao et al. [19] ✓ ✓ ✓ Reduce deployment cost for service chain

Zhang et al. [79] ✓ ✓ Reduce delay of VNF in NFV
Houze et al. [49] ✓ Optimize AoI in UAV networks
Chen et al. [5] ✓ Optimize AoI in edge networks
Li et al. [39] ✓ Optimize AoI in wireless netoworks

Ours ✓ ✓ ✓ Optimize AoI in NFV

4.2.1 VNF Placement

Over the past decade, the VNF placement problem has been widely studied in various
scenarios and accordingly solved toward different objectives. For example, Soualah et al.
[59] formulate the VNF placement problem as a Binary Integer Linear Programming (BILP)
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problem and proposed a heuristic algorithm named aiming at minimizing the total power
consumption of VNF instances. Gao et al. [19] studied the VNF placement problem in
large could data centers, which is formulated as a Mixed Integer Linear Programing (MILP)
problem. Meeting the latency requirement of all SFCs, an efficient heuristic algorithm named
as CE-VPS, was designed to address the problem to minimize OpEx and CapEx paid by the
network operator. However, heuristics-based algorithms are not flexible to solve real-time
VNF placement problems with dynamic changing workloads. Recently, DRL, as an important
branch of Machine Learning (ML), is considered as a viable way to combat the limitations
in heuristic. In [57], [39] and [50], the VNF placement problem is considered as a part
of the MDP-defined VNF Forward Graph Embedding (VNF-GNE) problem. With Deep
Q-Network (DQN), Li et al. [39] proposed an adaptive SFC mapping algorithm called ADAP
to solve the VNF-GNE problem in 5G Mobile Edge Computing (MEC). Since traditional
DRL-based algorithms, e.g., DQN, may encounter slow convergence problems due to the
curse of dimensionality, Pham et al. [50] design a Deep Deterministic Policy Gradient
(DDPG)-based algorithm to approach VNF-GNE problem. However, the above-mentioned
works tend to optimize traditional metrics like packet delay and resource utilization, etc., but
instead of AoI.

4.2.2 Age of Information Optimization

The problem of optimizing the AoI has been studied in different network scenarios. Kaul et
al. [34] first introduce the concept of AoI and studies AoI in the context of Unmanned Aerial
Vehicle (UAV) networks. Ma et al. [49] maintain fresh information at the edge network and
propose a channel allocation algorithm to minimize long-term average AoI. Srivastava et al.
[60] derive an exactly optimal scheduling policy minimizing the maximum AoI in wireless
erasure channels. Besides, many of other works are designed based on an abstracting network
model, such as M/M/1, M/G/1, and M/D/1 queueing model, which is not applicable to the
VNF placement problem. In summary, existing works either do not optimize AoI in the VNF
placement problem, or optimize AoI but not in an NFV-enabled environment. Unlike prior
works, in this paper, we study and investigate AoI in an NFV-enabled network.

4.3 System Model and problem formulation

4.3.1 System Model

We consider a system, where status updates are randomly generated by multiple sources, and
then delivered to a common destination node over an NFV-enabled network with different
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Fig. 4.3 A NFV-enabled multiple sources updating system. Three SFCs (labeled in three
different colors) are embedded in the network.

delays, as shown in Fig. 4.3. For such system, we model it as an undirected graph G = (N,E).
The N represents the set of all physical nodes in the system including three types of nodes,
the set of source nodes S, the set of the computing nodes in the NFV-enabled network M,
and a destination node d, i.e., N = S∪M∪{d}. The E represents the set of all physical
links between the nodes of N. For each node m ∈ M and each link e ∈ E, they provide
resource capacities for VNFs and to transmit update packets, respectively. So we use Ccore

m

and Cmem
m to denote the number of CPU cores and the memory capacity of each NFV node

m ∈M, respectively. Similarly, we use Cbw
e to represent the bandwidth capacity of link e ∈ E.

Assume the system supports a set of VNFs F. Moreover, we assume that other types of
resources are totally sufficient in each node and link.

The system time is divided into a set of discrete time steps T = (1,2,3, .., t, ...), where
t ∈ T represents t-th time-step. In the system, we assume every update is generated at the
beginning of time-steps and the lifetime of each update spans multiple time-steps. Let Ut

denote the set of update requests preparing to enter and already active in the network at
time-step t. We define each update u ∈ Ut as u = (s, f1, f2, ..., fn,d), where s ∈ S is the
ingress node of update u, d is the egress node of the update u, and f1, f2, ..., fn is a SFC
including a set of VNFs that update u requires to sequentially steered over.

Notice that each VNF f ∈ u should be placed on a NFV node m ∈M and require a certain
amount of resources on NFV node m to support update u.

Let Ccore
f and Cmem

f denote the number of CPU cores and memory capacity required by
VNF f of update u, respectively. Similarly, let Cbw

u denote the bandwidth consumption of
an update u. Therefore, the availability ratio of CPU core, memory of NFV node m and the
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bandwidth of link e, respectively, at time-step t, are denoted by

ω
core
m,t = 1−

∑
u∈Ut

∑
f∈u

x f
m,tCcore

f

Ccore
m

, (4.1)

ω
mem
m,t = 1−

∑
u∈Ut

∑
f∈u

x f
m,tCmem

f

Cmem
m

, (4.2)

ω
bw
e,t = 1−

∑
u∈Ut

yu
e,tC

bw
u

Cbw
e

, (4.3)

where x f
m,t and yu

e,t are two binary variables to indicate whether VNF f is deployed in node m
and whether update u passes through physical link e at time-step t, respectively.

4.3.2 Age of Information

Prior to introducing problem formulation, we characterize the AoI of the destination d in the
context of our system model. The concept of AoI is first defined as the elapsed time since the
latest received status update packet at a destination node [34]. We follow the definition in
[34] and formulate the AoI at the destination d as

∆d(t) = t−Vd(t),∀t ∈ T, (4.4)

where Vd(t) is the generation time of the latest update that the destination node d has received
at time-step t. Over the time-step interval [0, t), let ∆d,t be the average AoI of destination d,
defined as

∆d,t =
1
t

∫ t

0
∆d(x)dx. (4.5)

For ease of understanding, we take an example of the evolution of AoI at the destination d,
as shown in Fig. 4.4. Without loss of generality, our observation begins at time-step 0 when
the AoI is ∆d(0) = 0. In the time-step interval [0, 8), the destination d does not receive any
new packets from sources, so the value of ∆d(t) will grow linearly with t, which means the
current update is getting older. Upon the destination d sees an update which is timestamped
3, at time-step 5, the AoI of the destination d is reset to ∆d(5) = 5−3 = 2. Then the AoI
continues to grow until the next update arrives. Thus, the AoI function ∆d(t) is shown in the
pattern of saw tooth waveform and ∆d,t is the normalized area under the saw tooth waveform.
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Fig. 4.4 An example of the evolution of AoI at the destination d, ∆d(t).

4.3.3 Problem Formulation

VNF Placement Constraint. Each update requests u ∈ Ut consists of a set of VNFs
f1, f2, ..., fn that needs to be placed over the NFV-enabled network. The following constraint
in Eq. (4.6) ensures each VNF f ∈ u is only placed on an NFV node m at time-step t.

∑
m∈M

∑
f∈u

x f
m,t = 1,∀u ∈ Ut (4.6)

Node and Link Resource Capacities Constraints. The following two constraints in Eq.
(4.7) and (4.8) illustrate that the aggregated CPU core and memory resource demand of all
VNFs placed on NFV node m should not exceed the resource capacity of NFV node m at
any time-step. Similarly, the third constraint, i.e., Eq. (4.9) illustrates that the aggregated
bandwidth demand of all updates passing through link e should not exceed the bandwidth
capacity of link e at any time step.

∑
u∈Ut

∑
f∈u

x f
m,tC

core
f ≤Ccore

m ,∀m ∈M, t (4.7)

∑
u∈Ut

∑
f∈u

x f
m,tC

mem
f ≤Cmem

m ,∀m ∈M, t (4.8)

∑
u∈Ut

yu
e,tC

bw
u ≤Cbw

e ,∀e ∈ E, t (4.9)

End-to-End Delay Constraint. The following constraint in Eq. (4.10) ensures the QoS
guarantee of each update request u ∈ Ut . Here, we mainly focus on a SLA requirement of
transmission delay. Let Le and L f be the transmission delay of link e and the processing
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delay of VNF f , respectively. For each update request u, its end-to-end delay through the
system should not exceed its maximum tolerated delay φr.

∑
f∈u

∑
m∈M

x f
m,tL f + ∑

e∈E
yu

e,tLe ≤ φu,∀u ∈ Ut (4.10)

In this paper, our objective is to minimize the long-term average AoI at the destination,
∆d,, under the constraints of Eq. (4.6)-(4.10), i.e.,

min lim
t→+∞

∆d,t

s.t. Eq. (4.6), (4.7), (4.8), (4.9), (4.10).
(4.11)

4.4 Algorithm Design

In this section, we introduce the design of our proposed VNF-AoI approach. First, we
formulate the problem as Markov Decision Process (MDP) model. Then, we describe the
design of DDPG.

4.4.1 Setup

We propose an intelligent approach, VNF-AoI, to optimize the VNF placement with dynamic
network input. In this section, we start by following a standard DRL-based framework setup
to describe our design of VNF-AoI, where a learning agent interacts with an environment
at discrete time steps and consequently provides an optimal VNF placement based on the
experience it has learned. The interaction process is a decision-making process that can be
formulated as a MDP model. In particular, the MDP model is illustrated as follows. At each
time-step t ∈ T, the agent observes a state ot from the environment E and identifies an action
at based on a policy π(ot). The action at , then, is performed in the environment E and the
agent consequently obtains a new state ot+1 with the corresponding reward rt , which is used
to evaluate the quality of the action at . The essential parameters used for the interaction
process in MDP are described by a three-tuple (O,A ,R), referring to the state space, action
space and reward, respectively.

State Space O . The state space can be described by O = {ot ,∀t}, where each ot ∈ O

includes the information of all network resources of all NFV nodes and links and incoming
VNF profile. To reduce the dimension of the state space and computational complexity, we
normalize the state of each NFV node m and incoming VNF f at time-step t into a small
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range (from 0 to 1), denoted by,

ωm,t =
1
2

ω
core
m,t +

1
2

ω
mem
m,t , (4.12)

ω f ,t =
1
2

Ccore
f

Ccore
f ,max

+
1
2

Cmem
f

Cmem
f ,max

, (4.13)

where Ccore
f ,max = max(Ccore

f ),∀ f ∈ F and Cmem
f ,max = max(Cmem

f ),∀ f ∈ F. Next, the ot can be
formulated as

ot = {ωm,t ,ω
bw
e,t ,ω f ,t ,∀m ∈M,e ∈ E,}. (4.14)

Action Space A . The action space shall include all possible placements for each
incoming VNF f at time-step t. Thus the size of A is equal to the number of NFV nodes,
and each action at ∈A at time-step t can be defined as at = m, where m ∈M represents the
NFV node where the incoming VNF f should be placed.

Reward R. The reward is used to reflect the influence of action at conducting in the state
ot , denoted by a function r(st ,at). Recall our objective is to minimize the long-term average
AoI of the destination d. Thus, if action at can get good performance in the reduction of Eq.
(4.11), the reward rt should be associated with a higher value. On the contrary, we set rt to a
small value. Based on the above discussion, we define the reward of action at as follows,

rt = r(st ,at) =

−∆d,t+1, if action at is feasible

−∞, otherwise.
(4.15)

4.4.2 Deep Reinforcement Learning Algorithm

Overview. The constraints of the problem and Eq. (4.14) indicate that the state space S is
high-dimension. The traditional DRL algorithm, DQN, has been proved in poor performance
while coping with complex problems having high-dimension state space. Thus, we apply
the Deep Deterministic Policy Gradient (DDPG) algorithm to solve the VNF placement
problem. DDPG, as a novel DRL approach that combines the advantages of policy gradient
and DQN, is to establish an optimal strategy policy π in providing VNF placement decision
at runtime, i.e., π : S → A . In DDPG, the agent is based on an Actor-Critic framework
containing two Deep Neural Networks (DNN)-based networks, an actor and a critic. For an
input environment state st , the actor makes an action decision according to a policy π and
the critic uses a Q function to value each pair of state actions.

Actor-Critic Network. The actor π trains for a state-action policy function π(ot |θ π)

with parameters θ π . The function π(ot |θ π) is a deterministic policy, which receives as input
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Algorithm 4 DDPG Algorithm

1: Initialize critic network Q(ot ,at |θ Q) and actor network π(ot |θ π) with parameters θ Q

and θ π , respectively
2: Initialize target networks Q̄(ot ,at |θ Q̄) and π̄(ot |θ π̄) with parameters θ Q̄ ← θ Q and

θ π̄ ← θ π , respectively
3: Initialize replay buffer D
4: for episode from 1 to the number of episodes do
5: Initialize a random process N for action exploration
6: Receive initial observation state st
7: for cycle from 1 to the number of cycles do
8: Choose action at based on the current policy π , i.e.,

at = π(ot |θ π)+Nt

9: Execute the action at , observe a new state ot+1 and calculate Eq. (4.15) to get the
corresponding reward

rt = r(st ,at)

10: Store the transition (ot ,at ,rt ,ot+1)→D
11: Sample a minibatch of N transitions (oi,ai,ri,oi+1)←D

12: Set yi = ri + γπ̄(st+1|θ π̄)|θ Q̄

13: Update the critic by minimizing the loss:

L(θ Q) =
1
N

N

∑
i
(yi−Q(oi,ai|θ Q))2

14: Update the actor policy using the sampled policy gradient:

J(θ π) = E[Q(ot ,π(ot |θ π)|θ Q)]

15: Update target networks:

θ
Q̄ = αθ

Q +(1−α)θ Q̄,θ π̄ = αθ
π +(1−α)θ π̄

16: end for
17: end for
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of the current state ot and outputs an exact action at for the agent, denoted by at = π(ot).
The critic Q trains for an action-value Q function Q(ot ,at |θ Q), with parameters θ Q. The
function Q(ot ,at |θ Q) reflects the expected return if following a deterministic policy π and
taking an action at in state st , denoted by

Q(ot ,at |θ Q) = Ert ,st+1∼E [r(st ,at)+ γQ(st+1,π(st+1))], (4.16)

where γ ∈ [0,1) is a factor discounting future rewards.
To accelerate training process, both the critic Q and the actor π are established with a

replica: 1) actor target π̄ with parameter θ π̄ and 2) critic target Q̄ with parameter θ Q̄.
Training. DDPG trains the agent by iteratively updating the parameters of those networks

π, π̄,Q and Q̄ in episodes. There are multiple sequential time-steps in each episode. At each
time-step t, the agent first calculates an action at by adding the output of the policy π(st)

with a noise. After executing at , the agent obtains the next state st+1 from the environment
and immediate feedback rt by Eq. (4.15). The transition comprises (st ,at ,rt ,st+1) which
will be collected and stored in the experience pool D . Then, the agent samples a mini-batch
experiences M from D and updates the parameters of the critic networks in the direction of
∇θ QJ(θ Q) by minimizing the loss L(θ Q) using collected experiences from experience pool
D , where

L(θ Q) =
1
|M |∑i

(yi−Q(oi,ai|θ Q))2 (4.17)

and
yi = ri + γQ̄(ot+1, π̄(st+1|θ π̄)|θ Q̄). (4.18)

The agent updates the parameters of the actor based on policy gradient. The parameters of
actor’s network, π , is updated in the direction of ∇θ π J(θ π), where ∇θ π denotes the derivative
of θ π and J(θ π) denotes the policy objective function:

J(θ π) = E[Q(ot ,π(ot |θ π)|θ Q)] (4.19)

After updating π and Q by using Eq. (4.19) and (4.17), the agent finally applies a soft
update to the target network π̄ and Q̄, i.e.,

θ
Q̄ = τθ

Q +(1− τ)θ Q̄,θ π̄ = τθ
π +(1− τ)θ π̄ . (4.20)

where τ ≪ 1 controls the updating amplitude.
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Table 4.2 Parameter for training DRL agent

Hyper-parameter Value
Episodes 3000

Number of Time Steps, |T| 1000
Actor/Critic Network Learning Rate 0.001

Discount Factor, γ 0.9
Size of Mini-batch, |M | 36

Capacity of Experience Pool, |D | 10000
Soft Replacement Tau, τ 0.01

4.5 Evaluation

In this section, we conduct extensive simulation experiments to evaluate the effectiveness of
our proposed approach in several realistic network topologies.

4.5.1 Simulation Setup

Simulation Platform. We construct a Python-based simulation environment and implement
our proposed VNF-AoI approach using the PyTorch machine learning framework. All
simulations are conducted on the Google Colab platform1. The hyper-parameters selected
for this simulation are shown in Table 4.2.

Network Topology. Our experiments are conducted on several network topologies of
different scales from the Internet Topology Zoo2 [36], such as (a) Gridnet (9 nodes and 20
links), (b) Ans (18 nodes and 25 links), (c) BtEurope (24 nodes and 37 links) and (d) AttMpls
(25 nodes and 56 links). Each computing node m has a number of CPU cores, ranging from
10 to 15. The memory capacity of each computing node m ranges from 6 GB to 8 GB.

Status Update. As aforementioned in Sec. 4.3.1, the definition of a status update u
contains a source s, a SFC f1, f2, ..., fn, and a destination d. For each update u, the source s
is generated by randomly picking a node s ∈ S, and the destination d is set to a given node
m′ ∈M by default. We generate a SFC by randomly picking VNFs from ten VNF types
and each type of VNF has its own usage of CPU core ranging from 1 to 5, and usage of
bandwidth ranging from 0.5 to 1 GB.

Baseline Algorithms. We design two baseline algorithms for comparison. The details
are as follows. First-Fit Algorithm (FFA): for each incoming VNF, FFA first filters out all
available NFV nodes that satisfy resource capacities constraints in Eq. (4.7) and (4.8) as a set

1Google Colab: https://colab.research.google.com/
2Internet Topology Zoo: http://www.topology-zoo.org/

https://colab.research.google.com/
http://www.topology-zoo.org/
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Fig. 4.5 The total reward for our proposed VNF_AoI under different network topologies.

M′ ⊆M. The first node in M′ is always chosen by FFA to place VNF. Random Placement
Algorithm (RPA): by the same way as FFA, RPA gets a candidate node set M′ ⊆M. Then,
RFA randomly chooses one from M′ to allocate the VNF on it.

4.5.2 Performance Evaluation

Training Efficiency. To show the training efficiency, we train VNF_AoI in different network
topologies with a different number of nodes and links. Fig. 4.5 plots the average total reward
when training VNF_AoI under different network topologies. At the beginning of training,
our VNF_AoI shows poor performance on total reward. This happens due to the penalty
caused by a low update request acceptance rate. Then, with the increase in the number of
episodes, the reward increases until it reaches a relatively stable level. As a result, the reward
converges at about 700 episodes for Gridnet, and at about 1250 episodes for AttMpls. We can
also observe that VNF_AoI takes more episodes to converge for more complicated network
topology, e.g., 300 episodes for Gridnet and 750 episodes for AttMpls.

Acceptance Ratio. We compare the service acceptance ratio of all three algorithms for
different network topologies. Fig. 4.6 shows the results of the acceptance ratio in 1000 time
steps. Note that VNF_AoI has been trained in 3000 episodes while each episode contains
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Fig. 4.6 The average SFC acceptance ratio of different algorithm.

Table 4.3 Average AoI of different algorithms

VNF_AoI FFA RFA

Gridnet 24.3 27 (10%) 27 (10%)
Ans 32.5 39.7 (18.1%) 40.9 (20.5%)

BtEurope 24.4 31.2 (21.7%) 32.1 (23.9%)
AttMples 29.4 36.3 (19%) 37.3 (21.1%)

1000 time steps. As a result, our VNF_AoI is always above the baseline, which averagely
outperforms FFA and RPA by 12.8% and 14.7%, respectively. It indicates that our VNF_AoI
could make VNF placement decisions more intelligently and reasonably, thereby deploying
more update requests.

Long-term Average AoI.Finally, we explore the AoI evolution of VNF_AoI as compared
with other baseline algorithms in 1000 time steps. As shown in Fig. 4.7, at most time-steps,
our VNF_AoI can achieve lower AoI compared with FFA and RPA. Calculated by Eq. (4.5),
we can get the average AoI of three algorithms in Table 4.3, where improved percentage
is shown in brackets. In summary, our VNF_AoI can averagely outperform other baseline
algorithms by 20.3%.
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Fig. 4.7 The AoI evolution of three algorithms under four different network topologies.



4.6 Conclusion 71

4.6 Conclusion

In this research, we focus on the VNF placement problem aiming at optimizing the average
AoI of the destination in an NFV-enabled network. According to our survey, most of the
existing works solve VNF placement with the goal of optimizing traditional metrics, like
end-to-end packet delay, resource utilization, expense, energy consumption, etc., rather than
AoI. Therefore, an AoI-aware VNF Placement approach, called VNF_AoI, has been proposed
to provide optimal online VNF placement policies to minimize the long-term average AoI
at the destination. Finally, we conduct extensive simulations on four network topologies to
validate the effectiveness of our proposed VNF_AoI. Related results clearly demonstrate that
our VNF-AoI can significantly reduce average AoI by about 20.3%.





Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this dissertation, the author proposed three research to scale the NFV network at three
levels: server level, service chain level, and traffic level.

At the hardware level, the author presents HyScaler, a dynamic and hybrid VNF scaling
system that enables the construction of elastic SFCs. HyScaler leverages the benefits of VS,
HSC, and HSS to effectively scale VNF instances based on the changing network traffic
demands. The key features of HyScaler include: A monitoring module that detects overloaded
VNFIs and triggers the scaling process, A scaling module that makes local scaling decisions
(VS and HSC) or sends scaling requests to a global orchestrator, and A global orchestrator
that runs the proposed GVPC algorithm to make optimal scaling decisions, including scaling
VNFIs across multiple servers. The author implemented a prototype of HyScaler on the
OpenNetVM platform and conducted extensive experiments to validate its scalability and
the effectiveness of the GVPC algorithm. The results show that HyScaler can improve the
performance of VNFIs by about 1.02 times compared to the original NFV platform.

At the VNF level, the author formulated the SFC embedding problem within the context
of a Network Functions Virtualization (NFV)-based 5G core network. Due to the high
complexity of the problem, they proposed a low-complexity approach that incorporates
three heuristic algorithms: Cost Efficiency Factor Priority Sorting, K-Cost Minimizing Path,
and Delay-Aware VNF Embedding. The numerical results validate the performance of the
proposed approach in reducing computational complexity while achieving near-optimal
solutions for the SFC embedding problem.

At the traffic level, the author proposed a DRL-based approach called VNF-AoI to
address the VNF placement problem in an NFV-enabled multiple-source updating system.
The goal is to minimize the long-term average AoI at the destination, which is a crucial
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performance metric for real-time applications that rely on fresh data. The author formulated
the VNF placement problem as an MDP and solve it using the DDPG algorithm, a DRL-
based technique. This approach allows the system to learn an optimal VNF placement
policy through interaction with the environment, overcoming the limitations of heuristic-
based algorithms that struggle with dynamic workloads. The author conducted extensive
simulations to validate the effectiveness of their proposed VNF-AoI approach, demonstrating
that it outperforms other baseline algorithms in terms of acceptance ratio and average AoI at
the destination. The results show that VNF-AoI can significantly reduce the average AoI by
about 20.3% compared to other methods.

5.2 Future Works

This dissertation constructs an efficient network function scaling and placement in NFV for
beyond 5G and future 6G areas. While significant progress has been made, several areas for
future research require further exploration:

• Scale-in VNF: In the first research, a system was designed to scale out a VNF when
it becomes overloaded or "hot." However, the challenge of scaling in a VNF when
its load decreases or "cools down" remains unaddressed. Scaling in is crucial for
optimizing resource consumption and cost efficiency. Future work about scaling-in
should be explored.

• Diverse QoS requirement: In the second research, I optimize the QoS on terms
of delay and throughput. However, with the advent of B5G and 6G networks, the
spectrum of QoS requirements is expected to expand significantly, incorporating new
dimensions such as reliability, energy efficiency, and ultra-low latency. Exploring new
solutions to address these diverse QoS remains a critical challenge.

• Handling Multiple User Devices: In the third research, a strategy was developed
to route traffic to a single device while minimizing the Age of Information (AoI).
However, real-world networks involve multiple devices connecting simultaneously. In
such scenarios, the challenge lies in routing traffic for multiple devices while ensuring
their AoI remains optimized. Future research direction will be developing efficient
scheduling mechanisms to minimize the overall AoI for all devices.
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