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Abstract

As a new paradigm for 6G communications, reconfigurable intelligent surface (RIS) has
admirable properties that enable the dynamic control of electromagnetic waves, thereby
attracting significant attention from both industry and academia. Moreover, the user-centric
network highlights the personalized allocation of network resources to meet the requirements
of each individual mobile device, which sheds light on future mobile transmission and the
corresponding service delivery. Due to this characteristic, RIS is expected to play a crucial
role in the evolution of user-centric 6G network systems. However, tailoring RIS into these
systems to meet user requirements is still an open challenge. Therefore, this dissertation
aims to provide a vision of realizing user-centric 6G network with RIS, specifically focusing
on how to provide customizable and sustainable communication for a user-centric 6G.

In this dissertation, three major tasks are proposed on the various RIS-assisted wireless
communication scenarios. The first task focuses on optimizing RIS deployment to maximize
network coverage and ensure a consistent user experience across various environments. By
strategically placing RISs, we can enhance coverage rate and provide seamless connectivity
to users regardless of their locations. The second task aims at optimizing RIS beamforming
directions based on user demands to enhance resource utilization efficiency. By leveraging
real-time traffic prediction, RIS units can dynamically adjust their configurations to match
user needs, providing efficient and targeted communication for users in static and mobile
scenarios. Finally, the third task addresses the challenge of user mobility by optimizing
Quality of Experience (QoE) for mobile users through adaptive RIS beamforming. This task
is divided into two parts. The first part focuses on virtual reality (VR) scenarios, where RIS is
used to dynamically adjust beamforming to maintain high QoE for users moving within VR
environments. The second part focuses on the Internet of Robotic Things (IoRT) scenarios,
where RIS is employed to ensure reliable communication and effective control of robotic
devices as they navigate through complex environments.
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Chapter 1

Introduction

1.1 Background

Reconfigurable Intelligent Surface (RIS) technology is emerging as a promising solution for
enhancing 6G communications, offering the potential for dynamic control over electromag-
netic waves. The advantages of RIS are manifold. RIS units are easy to deploy, consisting of
passive elements controlled by a digital microcontroller, which can be conveniently placed
on various structures, including building facades, indoor walls, and even vehicles. This
versatility makes RIS deployment cost-effective compared to traditional solutions such as
adding more base stations or relays. RIS also improves spectral efficiency by adjusting signal
transmission paths and beamforming through multipath propagation, thereby enabling more
users and higher data transmission within the same spectrum resources. Moreover, RIS can
enhance signal strength and extend network coverage by establishing virtual line-of-sight
links, especially useful in environments where physical obstacles block direct communication
paths. Additionally, RIS optimizes power consumption by managing signal propagation paths
more efficiently, thereby reducing overall system energy use and communication expenses.
These attributes make RIS not only an effective solution for boosting network performance
but also a sustainable one.

However, traditional RIS-assisted networks are not inherently user-centric, leading to
several limitations. In a traditional setup, RIS configurations are often static or predetermined,
which means they cannot adapt in real time to specific user needs or environmental changes.
This lack of adaptability results in inconsistent service quality, as the network cannot adjust
to the varying locations or demands of users. Resource utilization also tends to be inefficient
because the allocation is not tailored to individual user needs, which may lead to over-
provisioning in some areas and under-provisioning in others. Moreover, traditional RIS-



2 Introduction

assisted systems have limited ability to handle dynamic scenarios, such as user mobility,
which further degrades the Quality of Experience (QoE) for mobile users.

To address these shortcomings, user-centric RIS-assisted networks have been proposed.
In a user-centric design, the focus shifts from a generalized, one-size-fits-all approach to a
personalized allocation of network resources, ensuring that each user’s unique requirements
are met. User-centric RIS systems dynamically adjust their beamforming and resource
allocation based on real-time data, providing a more efficient and responsive network experi-
ence. This approach significantly enhances the consistency of user experience, optimizes
resource utilization by dynamically adapting to user demand, and improves adaptability to
user mobility by maintaining beam alignment in response to changes in user location. These
benefits position user-centric RIS as a pivotal technology for achieving the high performance
and flexibility required in future 6G networks.

Despite the clear advantages of user-centric RIS-assisted networks, their implementation
involves addressing several key challenges that necessitate adjustments in three major areas.
To overcome these challenges, we introduce a user-centric RIS-assisted network with three
main adjustments: First, optimization of RIS deployment is crucial to increase network
coverage, ensuring that users can receive consistent service quality regardless of their location.
This involves strategically placing RIS units to maximize coverage and provide a consistent
user experience in all areas of the network. Second, resource utilization efficiency must be
enhanced by optimizing RIS beamforming based on user behaviors for high-efficiency service.
The network needs to allocate resources dynamically based on user demand, maximizing
efficiency while effectively coordinating multiple RIS units to prevent interference and ensure
seamless communication, especially in dense urban environments. Third, adaptability to user
movements is essential for maintaining Quality of Experience (QoE) for mobile users. This
involves optimizing network configurations in real-time by adapting beamforming to changes
in user location, which helps address the increased computational complexity associated
with serving highly dynamic scenarios such as virtual reality (VR) or robotic communication
networks.

1.2 System Outline and Challenges

In this section, three major challenges in the dissertation are briefly introduced, and the
following chapters will discuss these research problems in detail.

In the first research task, we focused on optimizing RIS deployment to provide a consis-
tent user experience by jointly optimizing the placement and cooperative beamforming of
large-scale RISs. We proposed a multiscale spatial search (MSS) algorithm for optimal RIS
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placement and developed a hierarchical near-field codebook with a corresponding beam train-
ing methodology to maximize received signal strength. Our simulation results demonstrated
substantial improvements in system coverage and received signal strength compared to exist-
ing benchmarks, showcasing the efficiency of the proposed joint optimization framework.
Future work will explore extending this framework to handle dynamic user distributions and
complex indoor environments.

The second task aimed to optimize RIS beamforming for high-efficiency service by
leveraging user behaviors and predicted network demands. By employing an online LSTM
network for traffic prediction and the DDPG algorithm for phase adjustment, we enhanced
the Quality of Experience (QoE) for users based on their diverse requirements. Our approach
resulted in significant QoE improvements, nearly doubling compared to randomly adjusted
RIS phase shifts. Additionally, a 20% QoE improvement was achieved compared to non-
predictive methods. Future research will consider incorporating real-time user behavior
feedback to further enhance adaptability and responsiveness of the RIS configurations.

In the third task, we tackled the QoE optimization for mobile VR users by proposing a
multi-RIS-assisted mmWave wireless VR system. Our work focused on leveraging RIS for
both mitigating mmWave path loss and enabling precise user positioning. We introduced
a two-phase framework involving localization through maximum likelihood estimation
and subsequent beamforming optimization based on user locations. This approach led to
improved QoE without requiring full channel state information, as validated by numerical
simulations. Future work will extend this approach to cover dynamic environments with
rapidly moving users and explore robust beamforming methods to handle unpredictable
motion.

The fourth task addressed QoE optimization for the Internet of Robotic Things (IoRT)
using a RIS-enabled integrated sensing, computing, and communication (ISCC) system. We
formulated a complex optimization problem to enhance computational speed, communication
rate, and sensing accuracy. Our solution utilized a block coordinate descent (BCD) approach
with alternating optimization (AO) to effectively maximize the overall system performance.
Extensive simulations showed that our approach notably improved the quality of service
(QoS) and reduced system latency, emphasizing the practicality of our method for extreme
IoRT environments. Future work will focus on enhancing the system’s scalability and
developing more adaptive algorithms to respond to rapidly changing scenarios in IoRT
deployments.





Chapter 2

The Optimization of RIS Deployment to
Provide Consistent User Experience

2.1 Motivation

With the successful deployment of fifth-generation (5G) networks, researchers are now
shifting their focus toward the development of sixth-generation (6G) networks. Designed to
support emerging applications such as virtual reality (VR) [15], augmented reality (AR) [54],
and autonomous driving (AD) [39], 6G aims to deliver faster transmission speeds, lower
latency, and increased spectral efficiency [63]. These improvements are achieved through
higher frequency bands, wider bandwidths, and massive antenna arrays.

However, the shift to higher frequency bands reduces the ability of electromagnetic waves
to bypass obstacles, increasing their susceptibility to obstacles such as furniture and walls in
indoor environments [90, 48]. This challenge necessitates innovative solutions to maintain
and enhance system performance. One promising solution is RIS technology, which consists
of numerous passive elements capable of independently controlling the phase and amplitude
of incident signals [80]. An RIS can establish indirect links to increase the received signal
strength for users when obstacles impede the line-of-sight (LoS) link between the transmitter
and the receiver [69, 94].

In contrast to alternative solutions such as active relays, the RIS offers lower cost, higher
energy efficiency, and easier deployment [14], making it a promising technology for future
6G networks [55, 49]. However, implementing an RIS presents challenges, notably the
multiplicative fading effect, which exacerbates path loss in the transmitter–RIS–receiver link
[18]. To address this issue, both the academic and industrial sectors advocate deploying
large-scale RISs to increase channel gain and reduce path loss [3]. Here, a large-scale RIS
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refers to an RIS with a significantly large physical size (aperture) and a large number of
elements, providing higher channel gain and improved signal reflection capabilities [73].

To fully leverage the benefits of large-scale RISs in improving wireless communication,
two key challenges need to be addressed:

(i) Large-scale RIS Placement Strategy: RIS placement significantly influences signal
coverage. Transitioning from traditional to large-scale RIS deployment requires coop-
erative reflection among multiple RISs, which should be considered in the placement
strategy.

(ii) Beamforming Direction Adjustment: Once optimally placed, the beamforming
direction of a large-scale RIS must be tuned according to the user locations to maximize
the received power. However, obtaining reliable channel state information (CSI) for
reflective beamforming is challenging due to the increased complexity of the numerous
elements in large-scale RISs [8].

Significant efforts have aimed to address the aforementioned challenges by optimizing the
placement of the RIS and the beamforming direction. In [97] and [96], the authors optimized
the deployment of multiple RISs in an indoor environment to enhance the coverage of the
communication network. The authors of [5] enhance the received signal strength for users
by optimizing the beamforming direction of the RIS. However, existing works have focused
mainly on single reflections of the RIS to increase coverage and increase signal strength, with
limited attention given to cooperative reflections among multiple RISs, which is a crucial
factor in large-scale RIS deployment.

Cooperative beamforming in network systems can significantly enhance system perfor-
mance. Recently, some studies have focused on cooperative reflections among multiple RISs
to further improve system performance. For example, in [100], the performance of a double-
RIS-assisted multiuser communication system with cooperative passive beamforming was
analyzed. The authors of [46] introduced a cooperative beamforming design for multi-RIS
assisted networks. Additionally, a unified framework was proposed to optimize the coopera-
tive reflection between multiple RISs [99]. However, these studies do not comprehensively
consider the placement and cooperative beamforming of multiple RISs while also neglecting
the impact of near-field effects.

Motivated by the above analysis, this paper attempts to fill this gap by proposing a
novel framework that offers a comprehensive solution for large-scale RIS deployment and
cooperative beamforming in multiobstacle indoor scenarios. The proposed framework jointly
optimizes the deployment and cooperative beamforming of multiple large-scale RISs to
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effectively enhance coverage and received signal strength, with the consideration of near-
field effects. Specifically, the proposed framework consists of two core strategies. First, a
multiscale spatial search (MSS) algorithm is introduced, which incorporates greedy strategies
to determine the optimal RIS locations and ensure maximal coverage by avoiding local
optima. Second, upon determining the optimal RIS locations, a near-field codebook is
designed, and a corresponding RIS beam training method is implemented to optimize the
cooperative beamforming direction. Extensive simulations are conducted to evaluate the
effectiveness of the proposed framework, and the results clearly demonstrate its superiority
over other benchmark methods. The main contributions of this paper can be summarized as
follows:

• Proposed a novel framework for jointly optimizing multiple RIS deployments and
cooperative beamforming for multiple large-scale RISs in a multiobstacle indoor
scenario. The proposed framework can enhance both the network coverage and the
received signal strength for users in large-scale RIS environments.

• Development of an efficient MSS algorithm to identify the optimal locations for RIS
deployment. The algorithm first divides the 3D space into large-resolution regions to
identify potential deployment areas. These potential areas are further partitioned into
smaller resolution regions to locate the precise RIS placement. In addition, a greedy
strategy is introduced to avoid local optima and ensure maximal coverage.

• Design of a hierarchical near-field codebook and a corresponding RIS beam training
method to optimize cooperative beamforming. This approach specifically addresses the
near-field effects often neglected in current studies, thereby maximizing the received
signal strength by users.

• Comprehensive performance evaluation and validation of the proposed methods
through simulations. The results highlight the efficacy of the proposed approach,
demonstrating improvements in coverage and received signal strength compared with
existing methodologies.

2.2 Related Work

As a new paradigm for 6G communications, the RIS has admirable properties that enable the
dynamic control of electromagnetic waves, thereby attracting significant attention from both
industry and academia. Recently, the performance of RIS-assisted wireless networks has
been widely studied. In [56], the RIS was applied to establish a virtual link when the LoS
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link from the transmitter to the receiver was blocked. The authors proposed an alternating
optimization algorithm to optimize the phase shift of the RIS, thereby maximizing the
achievable rate of the multi-input multioutput (MIMO) system. In [3], a self-configuring RIS
was applied to increase users’ received signal strength. In [98], a simultaneously transmitting
and reflecting RIS (STAR-RIS) was utilized to maximize the sum rate of unmanned aerial
vehicles (UAVs), which was achieved by jointly optimizing the UAV trajectory and STAR-
RIS passive beamforming. However, the above works focused on optimizing the phase shift
of the RIS to enhance the performance of the network, ignoring multi-RIS deployment and
placement locations of the RIS.

Some works have explored the impact of RIS placement on network performance [80, 42,
97]. In [80], the authors explore the influence of a single RIS location on the performance of
wireless communication systems. The simulation results show optimal system performance
when the RIS is positioned near the users or the BS. The authors of [42] introduced a
deep reinforcement learning (DRL)-based algorithm for concurrently optimizing the RIS’s
position and phase shift to enhance the performance of the network. In [97], A gradient
descent-based algorithm is applied to pinpoint the optimal deployment strategy for multiple
RISs. The proposed methodologies significantly increased the coverage of millimeter-wave
communication systems, especially in environments dense with obstacles. However, existing
works have focused primarily on single reflections of the RIS to improve coverage and signal
strength, paying little attention to cooperative reflections among multiple RISs, which is
crucial for large-scale RIS deployment.

Some works have explored the potential for cooperative beamforming between RISs
to enhance the performance of wireless communication systems. The authors of [100]
evaluate the performance of cooperative passive beamforming involving two RISs, and
the simulation results demonstrate that, given sufficiently large RIS gains, a double-RIS
cooperative beamforming system could yield a higher signal–to–noise ratio (SNR) than
traditional single-RIS systems. [26] presented a novel hybrid beamforming scheme for a
multihop RIS-assisted system, employing a DRL-based approach for designing collaborative
digital and analog beamforming matrices. The numerical results corroborate the effectiveness
of multihop RISs in extending the coverage of terahertz (THz) networks. In [52], the authors
propose a novel multipath beam routing scheme for environments densely populated with
an RIS, which services multiple antenna BSs and single-antenna users. However, the near-
field effects caused by large-scale RISs have also not been adequately considered in the
above works. To our knowledge, how to jointly optimize the deployment and cooperative
beamforming of multiple large-scale RISs in a multiobstacle indoor environment to increase
the coverage and received signal strength has not been addressed previously.
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2.3 Preliminaries, System Model, and Assumptions

2.3.1 Far-field or Near-field

22D



Rayleigh 

distance

Spherical wave Planar wave

Near-field Far-field

Fig. 2.1 Illustration of the near-field and far-field regions.

Fig. 5.1 shows the classification of the electromagnetic field around an antenna into near-
field and far-field regions. The distance from the antenna or transmitter to the receiver, which
significantly influences the choice of channel model, differentiates these regions. When the
distance exceeds the threshold, defined by L = 2D2

λ
(D denotes the maximum dimension of

the array aperture and λ is the wavelength), the spherical waves can be approximated as
planar waves [71]. The far-field assumption is prevalent in prior research because traditional
RIS-assisted systems have relatively limited use in the near-field region. However, with the
transition toward large-scale RIS deployment, the near-field region proportionally expands
[21]. For example, in a scenario with a carrier frequency of f = 60 GHz (λ = 0.005 m)
and an array aperture of D = 0.25 m, the resulting Rayleigh distance L is 25 m. Thus, in a
large-scale RIS-assisted system, the receiver is likely in the near-field region, necessitating a
spherical wave assumption for accurate channel modeling.

2.3.2 Power Radiation Pattern and Gain

Within RIS-assisted systems, the power radiation pattern characterizes how the power of
the received or reflected signal varies with direction and distance from the RIS. This paper
introduces a normalized power radiation pattern, F(θ ,ϕ), where θ and ϕ denote the elevation
and azimuth angles relative to the RIS plane, respectively. The normalized power radiation
pattern is a dimensionless function scaled such that its maximum value is 1, representing the
relative strength of radiation in different directions. A typical normalized power radiation
pattern, as suggested in [97], is as follows:

F(θ ,ϕ) =

cosθ θ ∈
[
0, π

2

]
,ϕ ∈ [0,2π]

0 θ ∈
(

π

2 ,π
]
,ϕ ∈ [0,2π]

. (2.1)
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Equation (5.1) shows that antenna gain, an essential performance indicator encompassing
antenna directivity and radiation efficiency, depends on the elevation angle θ , peaking when
θ = 0. The term antenna gain describes how much power is transmitted or received in the
direction of peak radiation relative to that of an isotropic antenna, which, by assuming 100%
antenna efficiency, can be written as:

G =
4π∫ 2π

ϕ=0
∫

π

θ=0 F(θ ,ϕ)sinθdθdϕ
. (2.2)

Using a power radiation pattern as defined in Eq. (5.2), an antenna with 100% radiation
efficiency would have a gain of 4. Accordingly, the power radiation pattern of the RIS
elements is as follows:

G(θ ,ϕ) =

4cosθ θ ∈
[
0, π

2

]
,ϕ ∈ [0,2π] ,

0 θ ∈
(

π

2 ,π
]
,ϕ ∈ [0,2π] .

(2.3)

Eq. (5.3) denotes the power radiation pattern of the RIS elements in the following section.

2.3.3 System Model

This paper considers multiple large-scale RIS-assisted wireless communications in an indoor
environment, as illustrated in Fig. 2, where an AP with L antennas assisted by QQQ RISs
simultaneously serves UUU single-antenna users. An indirect link via the RIS can be established
when obstacles obstruct the LoS link between the AP and users. The index sets of users and
RISs can be represented as UUU = {uuu1,uuu2, · · · ,uuuR} and QQQ = {qqq1,qqq2, · · · ,qqqK}, respectively. For
simplicity, both the AP and the users’ antennae are assumed to be omnidirectional, offering
uniform gain in all directions in the proposed model. The locations of the AP, the center of the
k-th RIS, and the r-th user are represented as qqqAP ∈ R3, qqqk ∈ R3, and uuur ∈ R3, respectively,
where R3 denotes the 3-dimensional Cartesian coordinate space.

Each RIS comprises a uniform planar array (UPA) of N×M passive elements, where N
and M represent the number of rows and columns on the RIS, respectively. RISs are typically
installed on flat surfaces, such as walls or ceilings, making the UPA configuration both
practical and effective for these environments. Each element spans an area of size dx×dy,
with dx and dy denoting the lengths along the row and column directions, respectively. As
per [5], dx and dy are equivalent to half of λ , i.e., dx = dy = λ/2.

The power radiation pattern of each element is characterized by G(θ ,ϕ), as defined in
Eq. (5.3), which allows each element to adjust the reflection coefficient τk

n,m = Aeφ k
n,m to

control the incident signal, where φ k
n,m is the phase shift, A is the amplitude, and Nk

n,m is a
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Fig. 2.2 Multiple large-scale RIS-assisted wireless communication systems in an indoor
scenario. The green line represents the LoS link between the AP and users, the yellow line
denotes the indirect link after one RIS reflection, and the blue line indicates the indirect link
following two RIS reflections.

general element on the k-th RIS. In this paper, it is assumed that all the elements have the
same amplitude, A = 1.

A free-space path loss model is employed to represent path loss, as it offers a suitable
approximation when high-frequency signal reflection from obstacles and walls is notably
weaker than that of LoS- or RIS-reflected paths. This model forms the basis of the proposed
system model and guides the subsequent sections of this study.

2.3.4 Path loss model

The power received by uuur through the LoS path from the AP can be expressed as a function
of multiple parameters, which includes the transmit power of the AP Pt , the antenna gain of
the AP Gt , and the antenna gain of the user Gr. In the absence of obstacles in the LoS link,
as illustrated in Fig. 2.2, the received power Pr

los is given by:

Pr
los =

(
PtGt

4πd2
A,r

)(
λ 2Gr

4π

)
. (2.4)

Here, dA,r signifies the distance from qqqAP to uuur. Given an arbitrary element, Nk
n,m on qqqk, and

defining θ
k,t
n,m, ϕ

k,t
n,m, and dk,t

n,m as the elevation angle, azimuth angle, and distance from the AP
to Nk

n,m, respectively, the received signal power at Nk
n,m can be modeled as follows:

Pk,t
n,m =

PtGtG(θ k,t
n,m,ϕ

k,t
n,m)λ

2

(4πdk,t
n,m)2

. (2.5)
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From Eq. (5.5), the power that reflects off Nk
n,m to user uuur is as follows:

Pk,r
n,m =

PtGtGrGk
n,mλ 4

∥∥τk
n,m
∥∥2

(4π)4(dk,t
n,m)2(dk,r

n,m)2
. (2.6)

In this equation, Gk
n,m = G(θ k,t

n,m,ϕ
k,t
n,m)G(θ k,r

n,m,ϕ
k,r
n,m) and θ

k,r
n,m, ϕ

k,r
n,m, and dk,r

n,m represent the
elevation angle, the azimuth angle and the distance from Nk

n,m to uuur, respectively.
The user’s received signal power via qqqk reflection is as follows:

Pr
nlos = Pt

GtGrλ
4

(4π)4

×

∣∣∣∣∣∣
N

∑
n=1

M

∑
m=1

√
Gk

n,m

dk,t
n,mdk,r

n,m
e
− j2π

(
dk,t
n,m+dk,r

n,m
)

λ

∣∣∣∣∣∣
2

.

(2.7)

Importantly, the received power, Pr
nlos, depends on the number of elements. The channel

gain provided by the RIS can offset path loss when the number of elements on the RIS is
sufficiently large, thus enabling joint reflection among multiple RISs.

This paper extends this analysis to consider the received signal power via two RIS joint
reflections. Let qqq j denote the second RIS and let N j

p,q be an arbitrary element on qqq j; the
received power Pr

coop is as follows:

Pr
coop = Pt

GtGrλ
6

(4π)6

×

∣∣∣∣∣∣
N

∑
n=1

M

∑
m=1

N

∑
p=1

M

∑
q=1

√
Gk

n,mG j
p,q

dk,t
n,mdp,q

n,md j,r
p,q

e
− j2π

(
dk,t
n,m+d p,q

n,m+d j,r
p,q
)

λ

∣∣∣∣∣∣
2

,

(2.8)

where G j
p,q denotes the product of the incident and reflective gains of qqq j, dp,q

n,m represents the
distance from Nk

n,m to N j
p,q, and d j,r

p,q indicates the distance from N j
p,q to uuur.

While Eq. (2.8) provides a comprehensive representation of the received power in relation
to various system parameters, its complexity renders direct inference challenging. For a more
intuitive understanding of the impact of these parameters on the received power, this paper
subsequently discusses the free-space loss models in both far-field and near-field scenarios.
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Far-field Beamforming

Under the conditions of far-field beamforming, both the transmitter and receiver are situated
within the RIS’s far-field region. Given that the variance in distances and angles from each
element on the RIS to the transmitter or receiver is minute, we can simplify the proposed
model by assuming that all the elements share the same coordinates. Consequently, dt and dr

are used to denote the distances from the transmitter and receiver to the RIS, respectively.
Similarly, θt , ϕt , θr, and ϕr denote the elevation and azimuth angles from the transmitter to
the RIS and from the RIS to the receiver, respectively.

Using these simplifications, the received signal power (as per Eq. (5.7)) can be translated
into the following form:

Pr
nlos = Pt

GtGrM2N2λ 4G(θt ,ϕt)G(θr,ϕr)

256π4d2
r d2

t
. (2.9)

When the combined antenna gain G(θt ,ϕt)G(θr,ϕr) equals G2, the maximum received
power can be achieved as follows:

Pr
max = Pt

GtGrG2M2N2λ 4

256π4d2
r d2

t
. (2.10)

Hence, the path loss can be calculated according to Eq. (5.9) as:

PL f ar =
256π4d2

r d2
t

GtGrG2M2N2λ 4 . (2.11)

Similarly, the received signal power for two RIS joint reflections (as per Eq. (2.8)) can be
expressed in the following manner:

Pr
coop =

PtGtGrλ
6M4N4Gk

n,mG j
p,q

(4π)6d2
r d2

t d2
ris

. (2.12)

Here, dris represents the distance between the first and second RSIs. Thus, the maximum
value of Eq. (5.12) becomes:

Pr
max =

PtGtGrλ
6M4N4G4

(4π)6d2
r d2

t d2
ris

. (2.13)
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Near-field Beamforming

When the transmitter, the receiver, or both are situated within the near-field region of the RIS,
we refer to this as the near-field beamforming case. Given this condition, it is essential to
consider that each element within the RIS possesses precise coordinates and incident angles.

For a desired direction (θdes,ϕdes), the maximum received power can be approximately
formulated as [73]:

Pr
max ≈

PtGtGrλ
2

16π2 (dr +dt)
2 , (2.14)

when

φ
k
n,m = mod

(
2π(dk,t

n,m−dk,t ′
n,m)

λ
,2π

)
, (2.15)

where dk,t ′
n,m is the distance from Nk

n,m to a virtual transmitter, whose location can be expressed
as qqqk +(−dt sinθdes cosϕdes,−dt sinθdes sinϕdes,dt cosθdes). The path loss corresponding
to Eq. (5.15) can be written as:

PLnear =
16π2 (dr +dt)

2

GtGrλ 2 . (2.16)

The critical notations and definitions of this paper are consolidated in Table 2.1 for easy
reference.

2.4 Problem formulation

2.4.1 Communication Region and Visible Region

The deployment of RISs plays a key role in enhancing the received signal power of users.
By strategically positioning RISs, the coverage of wireless communication systems can be
significantly improved. The coverage region is the area where the received signal power
exceeds a certain threshold, denoted by Pth. This threshold is closely related to environmental
noise. For RIS placement optimization, this paper considers that the distance between the
AP and RIS greatly exceeds the size of the RIS. In this context, the received power of users
aligns with Eq. (2.8). The coverage range of the AP manifests as a sphere with a radius of
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Fig. 2.3 Illustration of the communication region of the RIS

Ra =
√

PtGtGrλ 2

16π2Pth
. The coverage range of qqqk can subsequently be described as:

Rk
r(θt ,θr,dt) =

√
Pt

GtGrM2N2λ 4Gk
n,m

256π4d2
t Pth

= Hs×

√
G(θt ,ϕt)G(θr,ϕr)

d2
t

,

(2.17)

where Hs =
√

Pt
GtGrM2N2λ 4

256π4Pth
denotes the value of hyperparameters relevant to the system’s

configuration. Therefore, the communication distance of the RIS depends on its position,
denoted as Rk

r(θt ,θr,dt).
Fig. 5.3 illustrates the communication region of an RIS. The red contour outlines the

region boundaries where the received power surpasses Pth. The yellow hemispherical surface,
with its radius indicated by Rk

r(θt ,0,dt), marks the upper limit of the RIS communication
range. Owing to the beamforming capability of the RIS, the yellow region is selected as the
RIS communication coverage area to optimize the RIS position.

In complex indoor environments, covering certain areas could pose challenges if we
consider only single reflections. Therefore, for enhanced user power reception, this paper
considers cooperative reflections between two RISs. According to Eq. (5.12), the approximate
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Fig. 2.4 (a) Top view of the visible region of the RIS. (b) Side view of the visible region of
the RIS.

Table 2.1 Notation and Definitions

Notation Definition Notation Definition
N Number of rows of elements in

RIS
M Number of columns elements in

RIS
Pt Transmit power of AP Gt Antenna gain of AP
Gr Antenna gain of users G Gain of each element
Pth The threshold of received power λ The wavelength of carrier

frequency
Nk

n,m Element in the n rows and m
columns in k-th RIS

τk
n,m Reflection coefficient of Nk

n,m

dk,t
n,m The distance between Nk

n,m and
transmitter

dk,r
n,m The distance between Nk

n,m and
receiver

dt The distance from the AP to RIS
center

dr The distance from RIS center to
receiver

dris The distance from the first to
second RIS

Rk
r(θt ,0,dt) The maximum coverage range of

k-th RIS
G(θ ,ϕ) The power radiation pattern of

elements
φ k

n,m The phase shift of Nk
n,m

(θr,ϕr) The elevation and azimuth
angles from AP to center of RIS

(θt ,ϕt) The elevation and azimuth
angles from the center of RIS to

receivers
(θ k,t

n,m,ϕ
k,t
n,m) The elevation and azimuth

angles from Nk
n,m to transmitter

(θ k,r
n,m,ϕ

k,r
n,m) The elevation and azimuth

angles from Nk
n,m to receiver
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communication distance of the cooperative reflection can be written as:

Rk
c =

M2N2G2λ 3

(4π)3drdtdris

√
PtGtGr

Pth
. (2.18)

Then, we focus on defining the visible area, which refers to the region where communica-
tion with the AP or RISs through an LoS channel is feasible. Fig. 2.4 provides top and side
views of the visible region. Let θ(qqqk, ppp) denote the elevation angle from qqqk to point ppp, QQQ
denote the set of all nonobstructed points in a given scenario, and OOO denote the set of points
constituting obstacles. The communication region of qqqk can be expressed as:

CCCk =
{

ppp ∈ QQQ | θ (ppp,qqqk)≤
π

2
,

∥ppp−qqqk∥ ≤ Rk
r (θt ,0,dt)

}
.

(2.19)

However, the existence of obstacles in the scenario implies that certain points in CCCk cannot
receive signals from qqqk. Thus, the visible regionVVV k can be defined as the set of points in CCCk

maintaining LoS links with qqqk:

VVV k = {ppp ∈CCCk | ∀λ ∈ [0,1],λ ppp+(1−λ )qqqk /∈ OOO} . (2.20)

Finally, the blind region of the AP is defined as

BBBAP = {ppp ∈ QQQ | ∥qqqAP− ppp∥> Ra}∪
{ppp ∈ QQQ | ∃λ ∈ [0,1],λ ppp+(1−λ )qqqAP ∈ OOO} .

(2.21)

2.4.2 Coverage Optimization

To highlight the role of the k-th RIS in enhancing system coverage, we devise the performance
function F(qqqk, ppp). NNNk is defined as the index set of all RISs whose visible region intersects
with the visible region of qqqk. At a specified point ppp, the performance function f (qqqk, ppp) is
expressed as follows:

f (qqqk, ppp) =


1, if ppp ∈VVV k and ∀ j ∈ NNNk, ppp /∈VVV j,

0, if ppp ∈VVV k and ∃ j ∈ NNNk, ppp ∈VVV j,

0, if ppp /∈VVV k.

(2.22)

In Eq. (5.23), f (qqqk, ppp) is evaluated as 1 if the point ppp is in the visible region of qqqk and not in
the visible region of any other intersecting RIS. For all other conditions, it is evaluated as 0.
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This paper then defines the overall performance function F(qqqk, ppp) of qqqk as follows:

F(qqqk, ppp) = Ψ+
1
P

∫
VVV kkk

f (qqqk, ppp) (2.23)

where Ψ corresponds to the cost of deploying qqqk. The total coverage across all RISs is given
by:

H(QQQ) =
K

∑
kkk=1

F(qqqk, ppp) (2.24)

The primary objective of the proposed coverage optimization problem is to pinpoint the
optimal locations for the RISs to maximize the coverage performance function; this allows us
to cover as many blind regions as possible efficiently. The optimization problem is modeled
as follows.
Problem 1: Coverage Maximization through a Single Reflecting RIS.

(P1) max
QQQ

H(QQQ)

s.t. ∀k ∈ KKK, ∥θ (qqqk,qqqAP)∥ ≤
π

2
and

λqqqAP +(1−λ )qqqk ∈ QQQ\BBBAP,λ ∈ [0,1].

(2.25)

To illustrate the NP-hardness of Problem (P1), we draw upon a known NP-hard problem—
the set cover problem (SCP)—to perform a polynomial-time reduction. In the SCP, we have
a finite set X and a collection S of its subsets. The goal is to find a minimal-cost subset cover
such that each element in X is included in at least one selected subset.

This paper makes an analogy between Problem (P1) and the SCP by considering the
regions within a room as set X and the reachable coverage area of each RIS as a subset in
collection S.

• A subset cover for the SCP corresponds to a set of RIS configurations that maximizes
coverage in Problem (P1).

• Conversely, a solution to Problem (P1) would provide a subset cover for the SCP,
covering all regions.

This equivalence demonstrates that Problem (P1) shares the NP-hard nature of SCP.
When the coverage rate H(QQQ) falls below a predetermined threshold C even after a single
reflection from the RIS, this paper strategically deploys an additional RIS within the visible
region VVV kkk of the existing RISs. This approach exploits the cumulative reflection capabilities
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of multiple RISs to increase the overall system coverage rate. Let qqqI = {qqq1,qqq2, · · · ,qqqi} be
the RIS location determined by solving Problem (P1).
Problem 2: Coverage Maximization through the Cooperative Reflection of Multiple RISs.

(P2) max
QQQ

H(QQQ)

s.t. ∀k ∈ KKK,∀i ∈ III, ∥θ (qqqk,qqqi)∥ ≤
π

2
λqqqi +(1−λ )qqqk ∈ QQQ\BBBAP,λ ∈ [0,1].

(2.26)

2.4.3 Beamforming Optimization

When the optimal locations for RISs are established, adapting the direction of RIS beam-
forming to account for user mobility becomes critical. The sheer number of elements on a
large-scale RIS makes real-time beamforming direction adjustment a challenging task. Given
the potential proximity of the user to the RIS, the assumption of identical positions for all
RIS elements does not hold. Consequently, this paper designs a near-field codebook, which
is then used to adjust the beamforming direction based on the user’s position. We divide the
total space into L regions, [φl,φl+1], with φl+1−φl = π/L,∀l. To extract the codewords, this
paper proposes the following optimization problem:
Problem 3: Near-Field Codebook Design.

(P3) max
www

E
(
|wwwHhhh(φ)|2

)
s.t. φ ∈ (φl,φl+1)

wwwHwww = 1

|wwwHhhh(φ ′)|2 ≤ ε, for all φ
′ /∈ (φl,φl+1)

(2.27)

Here, www signifies the phase configuration on the RIS, E(.) denotes the expectation
operation, ∠hhh signifies the channel response vector, and ε indicates a threshold for received
signal power. The above optimization problems and the corresponding solutions provide a
comprehensive strategy for improving the coverage and user experience of indoor wireless
communication systems with an RIS.
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2.5 Proposed Coverage Optimization and Codebook-Based
Optimization

This section unfolds in two segments. First, this paper discusses the proposed novel optimiza-
tion algorithm—the multiscale spatial search (MSS)—tailored to optimize the placement
of the RIS to achieve maximum coverage. Subsequently, we delve into a beamforming
optimization method based on the near-field codebook.

2.5.1 Multiscale Spatial Search Algorithm

The core aim of this newly developed optimization algorithm, multiscale spatial search
(MSS), is to expand the coverage of the wireless communication system. We breakdown
this algorithm into three distinct stages: system initialization, single reflection RIS location
optimization, and cooperative reflection RIS location optimization.

Stage I: System Initialization In a given indoor scenario, the set of obstacles OOO, the
points outside of obstacles QQQ and the locations of the APs qqqAP are generated, as shown in
Step 1. Based on the spatial relationship between qqqAP and OOO, this paper further divides QQQ
into two subsets: QQQlos /∈ BBBAP and QQQnlos ∈ BBBAP. By applying Eq. (4), the received power from
the AP at each point in QQQlos is calculated, enabling us to determine the initial coverage rate
Cinit against the critical power Pcritic. Cinit is calculated as follows:

Cinit =
∑r∈QQQlos

1
(
Pr

los ≥ Pcritic
)

|QQQ|
, (2.28)

where 1(·) denotes the indicator function, which equals 1 if the condition inside the paren-
theses is true and 0 otherwise. We subsequently initialize various parameters used in the
algorithm. The process of stage I is shown in steps 1–3 in Algorithm 1.

Stage II: Single Reflection RIS Location Optimization In Stage II, this paper evaluates
the initial system coverage rate, Cinit , against a predefined threshold, C. If Cinit ≥C, this
negates the necessity for RIS placement. Conversely, if Cinit <C, we proceed by sampling
the set QQQlos at a relatively high resolution, µ , to identify all potential RIS placements within
QQQ. For each proposed RIS location, qqqk, we determine the corresponding visible region, VVV k.
We then scan each point within QQQ to identify the optimal RIS position, qqqmax, which results in
the maximization of the performance function F(qqqk,VVV k), as defined by Eq. (5.24). Given
that each RIS incurs a cost, ΨΨΨ, this paper considers only those RIS placements that yield a
positive performance function, F(qqqk, ppp)> 0.
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Algorithm 1 Multiscale Spatial Search Algorithm
1: Input: OOO, QQQ, qqqAP ▷ Stage I
2: Divide QQQ into QQQlos, QQQnlos
3: Calculate Cinit via Eq. (28)
4: while Cinit ≤C do ▷ Stage II
5: QQQ← sample(QQQlos,µ), generate qqqk ∈ QQQ
6: procedure OPTIMIZE(QQQ)
7: for qqqk ∈ QQQ do
8: Cmax← 0, qqqmax← /0
9: Generate VVV k, calculate Ck via Eq. (5.24)

10: if Ck ≥Cmax then
11: Cmax←Ck, qqqmax← qqqk
12: end if
13: end for
14: if Cmax > 0 then
15: Add qqqmax to the indoor scenario and calculate the coverage rate of the system

C′.
16: end if
17: return C′, qqqmax
18: end procedure
19: for n = 1 to N do
20: QQQn← sample(qqqn−1

max ,µ/σn)+ξ nQQQlos
21: Generate qqqn ∈ QQQn

22: Cn
max, qqqn

max← OPTIMIZE(QQQn)
23: if Cn

max−Cn−1
max > η then

24: Continue
25: end if
26: end for
27: Repeat Stage II to find the set of all single-reflection RIS locations qqqI = {qqq1, · · · ,qqqi}.
28: end while ▷ Stage II
29: CI ← calculate_coverage for qqqI
30: if CI <C then ▷ Stage III
31: Search for cooperative reflection RISs
32: for qqqi ∈ qqqIII do
33: Generate visible_area (VVV i)
34: Generate qqqiii← Repeat Stage II to generate all RIS locations in VVV i
35: end for
36: end if ▷ Stage III
37: Output: All RIS locations QQQk and the maximum coverage Cbest .
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As such, the optimal position qqqmax for RIS placement within QQQ is identified. The corre-
sponding process is outlined in steps 5–16 of Algorithm 1. However, owing to computational
limitations, the initial sampling resolution, µ , may be too coarse to pinpoint the optimal RIS
position accurately. Therefore, after identifying an approximate optimal position, qqqmax, we
refine this search by dividing the surrounding space at a higher resolution of µ/σ k, with
σ > 1 as a hyperparameter. Concurrently, to circumvent the placement of the RIS at a local
optimum, this paper incorporates a greedy strategy. This strategy allows the RIS to investigate
other points within the space based on a decaying probability, ξ , where ξ < 1. Once the
incremental improvement in coverage rate falls below a prespecified threshold, η , we deem
the current resolution optimal, yielding the optimal RIS location qqqn

max and corresponding
coverage rate Cn

max. This process is iteratively repeated until all RIS locations, denoted by
qqqI = {qqq1, · · · ,qqqi}, that satisfy the requirements have been established.

Stage III: Cooperative Reflection RIS Location Optimization Upon completion
of Stage II, all the established RISs, qqqI , are positioned within the room, and the resulting
coverage rate, denoted as CI , is computed. If CI < C, the situation calls for cooperative
reflection involving multiple RISs. By employing Eq. (5.22), the visible area for each qqqi is
defined as VVV i. Each Ni is then treated as an AP for the points within VVV iii. Following this, the
steps in Stage II are replicated to ascertain the optimal locations for the qqqJ RISs, denoted as
qqqJ =

{
qqq1,qqq2, · · · ,qqq j

}
. As a result, the MSS algorithm yields the combined set of optimal

RIS locations, QQQk, along with the maximum coverage rate, Cmax.
Complexity Analysis: The complexity of the proposed MSS algorithm primarily

arises from two stages. More specifically, the complexity of Stage II, which involves single
reflection RIS location optimization, is proportional to the product of the number of sampling
points and the number of iterations in the optimization process. This complexity can be
approximated as O(N ·n). In Stage III, which involves cooperative reflection RIS location
optimization, the complexity is dependent on the number of RISs determined in Stage
II and the number of potential RIS locations, resulting in a complexity of approximately
O(M ·N). Consequently, the overall complexity of the algorithm is approximately O(N ·
n+M ·N), which makes it suitable for practical applications, especially in scenarios with a
reasonable number of obstacles and RISs. The process of the MSS algorithm is summarized
in Algorithm 1.

2.5.2 Near-field Codebook Design

After determining the placement of the RISs, hierarchical near-field codebook-based op-
timization is proposed to optimize the cooperative beamforming of RIs. The codebook,
denoted by WWW L = {www1,www2, ...,wwwl}, comprises unit-norm vectors wwwl ∈WN×M. Each vector
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Algorithm 2 Near-field Codebook Design
1: Initialize WWW L← /0
2: Randomly generate wwwl
3: Partition the 3D space into regions L = {1, ..., l}
4: for each region ∈ L do
5: while not achieving |wwwHhhh(φ ′)|2 ≤ ε do
6: for each row of RIS do
7: Adjust the phase configuration in row based on Eq. (5.16)
8: Maximize EEE

(
|wwwHhhh|2

)
in target region subject to ∠hhh ∈ (φl,φl+1) and wwwHwww =

1
9: end for

10: end while
11: Append the optimized configuration of RIS as a wwwl to WWW L
12: end for
13: return WWW L

represents the phase of a corresponding element. In practice, every element is subject to a
limited phase shift. The constraint is defined as:

N=
{

π

1
,
π

2
, · · · , π

2n ,n ∈ N
}
. (2.29)

Here, n represents the number of feasible phase shifts. The proposed codebook design
procedure is detailed in Algorithm 2, which commences with initializing an empty RIS
codebook, WWW L, and randomly generating the codeword wwwl (Steps 1–2). The algorithm then
partitions the 3D space into l regions, symbolized by L = {1, ..., l} (Step 3). Each region
corresponds to a specific interval of phase constraints, denoted as (φl,φl+1), where φ indicates
the phase. Following this division, the algorithm proceeds to optimize the RIS configuration
for each region (Step 4). The iterative optimization continues until the squared absolute value
of the received signal, |wwwHhhh(φ ′)|2, reaches the predefined threshold ε (Step 5). Each iteration
within a region evaluates every row of the RIS (Step 6). The phase configuration of a row
is then adjusted via Eq. (5.16) (Step 7). Simultaneously, the algorithm aims to maximize
the expected value of the squared absolute value of the received signal, E

(
|wwwHhhh|2

)
, in the

target region (Step 8). This maximization is subject to the power constraint wwwHwww = 1 and
the phase constraint ∠hhh ∈ (φl,φl+1) for the current region. After the optimization process
converges, the resulting optimal RIS configuration for the current region is appended to the
RIS codebook as a codeword, wwwl (Step 9). This procedure is repeated until all the regions in
L have been optimized. The algorithm ultimately produces a comprehensive RIS codebook,
WWW L, featuring region-specific codewords encapsulating optimal RIS configurations (Step 10).
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2.5.3 Hierarchical Codebook-Based Optimization

A hierarchical codebook-based beamforming optimization algorithm is proposed to reduce
the beam training overhead. The hierarchical codebook approach aims to reduce the overall
computational complexity by performing optimizations in progressively smaller search
spaces. The proposed algorithm operates in two primary phases: the probe phase, in which
an optimal codeword from the hierarchical codebook is selected for each user location, and
the communication phase, in which the chosen codeword is used to maximize the signal
strength.

Algorithm 3 Maximizing Signal Strength with the Hierarchical Near-field Codebook
(HNCB)

1: Initialize the user locations← PPP, Pmax← 0
2: The number of codebook levels is K, the sampling area is R1, and the division step length

is ∆1.
3: sk = 0, wwwk,best = 0 and sk,best = 0 ▷ Probe Phase
4: for each ppp ∈ PPP do
5: for k = 1,2, . . . ,K do
6: Divide the entire space Rk using the divide step length ∆k, generating Lk regions
7: Generate WWW k

L via Algorithm 2
8: for each wwwk

l in WWW k
L do

9: sk = sk +1
10: Set RIS with wwwk

l
11: AP sends a pilot signal SSS
12: RIS uses wwwk

l to reflect SSS
13: Users collect received_signal_strength pppk

l
14: if pppk

l > Pk
max then

15: Pk
max← pppk

l , wwwk,best ← wwwk
l , sk,best ← sk

16: end if
17: end for
18: Choose Rk+1 based on sk,best , ∆k+1 = δ∆k

19: end for
20: The optimal codeword index sK,best for the user.
21: end for
22: Output: A dictionary QQQ, where each user location ppp corresponds to an optimal index

sK,best
23: ▷ Communication Phase
24: Set the RIS with sK,best in the codebook to maximize the received signal strength for

user ppp
25: Repeat the probe phase periodically to accommodate changes in the environment or user

locations
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During the probe phase, the algorithm first determines the number of codebook levels K,
the initial sampling area R1, and the initial division step length ∆1. For each user location
ppp ∈ PPP, the algorithm iterates over K hierarchical levels:

1. At the first level k = 1, the algorithm divides the entire space R1 using the large step
length ∆1, generating L1 regions. Since the initial step length is large, the size of the
codebook at this level is relatively small, allowing for quick traversal and identification
of the best region.

2. Based on the best region from the first level, the algorithm proceeds to the next level
k = 2, using a smaller step length ∆2 to further divide the best region into L2 smaller
regions. This process continues, with each subsequent level refining the search space
further until the K-th level is reached.

At each level k, for each generated region wwwk
l , the algorithm calculates the received

signal strength pppk
l and compares it with the current maximum signal strength Pk

max. If
pppk

l > Pk
max, it updates Pk

max, the best codeword wwwk,best, and the best codeword index sk,best.
After all the codewords at the current level are evaluated, the algorithm selects the next
level’s region Rk+1 based on sk,best and updates the divide step length to ∆k+1 = δ∆k. This
hierarchical search method allows the algorithm to find the optimal codeword effectively
within a smaller search space, significantly reducing computational complexity. During the
subsequent communication phase, the RIS is set according to the best codeword associated
with a given user location ppp. This setting guarantees the maximization of the received signal
strength for each user. To account for any changes in the environment or user locations, the
probe phase is periodically repeated, enabling the system to adapt dynamically.

By leveraging this two-phase optimization algorithm, an adaptive communication protocol
can be established. The proposed protocol not only maximizes the received signal strength at
each user location but also accommodates changes in the environment and user movements,
making it a potential approach for optimizing RIS-aided communication networks.

2.6 Simulation Results

In this section, extensive simulation experiments are conducted to demonstrate the perfor-
mance of the proposed optimization algorithm. First, three distinct scenarios are established
to validate the performance of the proposed MSS algorithm while exploring the impact of
different experimental parameter settings on the performance of the MSS. The optimization
performance of the proposed HNCB method is subsequently verified under various scenarios.
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2.6.1 Validation of the proposed MSS algorithm

To validate the effectiveness of the proposed MSS algorithm comprehensively, three diverse
simulation scenarios are established. Each scenario represents a distinct configuration,
including a single RIS, two cooperative RISs, and multiple RISs, as displayed in Fig. 2.5.
The key parameters common to all the simulation scenarios are summarized in Table II.

Table 2.2 Simulation Parameters

Parameter Value Description

GtPt 30 dBm EIRP for AP
Pth −70 dBm Received Power Threshold
λ 5×10−3 m Wavelength
f 60 GHz Communication Frequency

M 120 Number of Rows
N 120 Number of Columns
Gr 0 dB User Gain
C 0.9 Desired Coverage Threshold
η 0.01 Improvement Threshold for Coverage
µ 4 Initial Sampling Resolution
σ 3 Resolution Refinement Factor
ξ 0.1 Greedy Exploration Decay Factor

Table 2.3 Performance Metrics in Various Simulation Scenarios W/ and W/O RIS

Room_size AP_location OBs_center_location OBs_size RIS_location w/o_RIS w/_RIS

Scenario A [30,30,10] [ 0,15,6 ] [14.5,18.0,5.0] [ 1,24,10 ] [ 15.4,0.0,5.4 ] 51.51% 98.50%

Scenario B [30,30,10] [ 0,15,6 ]
[10.5,20.0,5.0]
[ 15.0,9.5,5.0 ]

[ 1,20,10 ]
[ 10,1,10 ]

[ 20.1, 0.0,5.4 ]
[30.0,11.0,5.0 ] 42.66% 97.82%

Scenario C [50,50,10] [25,25,10]

[ 5.5,15.0,4.0 ]
[35.5,40.0,5.0]
[17.5,35.5,5.0]
[35.5,15.0,4.0]
[20.5,10.5,4.0]
[17.5,42.5,1.0]
[17.5,22.5,2.5]

[ 1, 10, 8 ]
[ 1,10,10 ]
[ 35,1,10 ]
[ 1 ,10, 8 ]
[ 11, 1, 8 ]
[ 5, 5, 2 ]
[ 5, 5, 5 ]

[ 31.1,0.0,5.8 ]

[50.0,46.0,7.0]

[ 7.0,0.0, 5.0 ]

[46.0,50.0,7.0 ]

59.77% 92.95%

This paper conducted a comprehensive analysis of three distinct scenarios—Scenarios A,
B, and C. Each scenario is characterized by unique variations in room size, AP location, OB
position and dimensions. The detailed configurations and outcomes for each scenario are
provided in Table III and are visually represented in Fig. 2.5.

In Scenario A, the room is 30 m long, 30 m wide, and 10 m high. The AP is located
at [0,15,6]. The obstacle is centered at [14.5, 18, 5], with dimensions of 1 m in length,
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Fig. 2.5 Coverage rate optimization via the MSS for three different scenarios. The first
column of Fig. 2.5 shows three different simulation scenarios, the second column shows the
signal power map with random RISs, and the third column shows the signal power map with
MSS RISs.
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24 m in width, and 10 m in height. The RIS is positioned at [15.4, 0, 5.4]. With the
random deployed RIS, the performance was 59.51%, which increased to 98.50% upon RIS
implementation, indicating a significant improvement. Scenario B, with the same room
dimensions as Scenario A, introduces increased complexity with multiple OBs and RIS
locations. This scenario confirms the effectiveness of cooperative reflection between RISs,
showing coverage of 60.12% with the random RISs and enhancing performance to 97.82%
with RIS deployment. Scenario C, which is designed to emulate an extensive environment,
underscores the scalability and adaptability of the proposed algorithm. In a room of size
[50, 50, 10] with seven OBs and four RIS locations, the performance with random RISs was
69.74%, whereas the incorporation of an RIS yielded a substantial coverage of 92.95%.

The experimental analysis underscores the efficacy and adaptiveness of the MSS algo-
rithm, particularly in complex and larger environments. Strategic RIS deployment signifi-
cantly improves wireless signal coverage, thereby optimizing network performance.

2.6.2 Benchmarking Algorithms
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(c) Scenario C

Fig. 2.6 Comparative analysis of coverage performance. This figure presents three subplots
depicting the coverage performance of the MSS and other comparison algorithms in three
distinct scenarios. Fig. 2.6(a) shows the comparison in Scenario A, Fig. 2.6(b) presents
the performance in Scenario B, and Fig. 2.6(c) shows the results in Scenario C. Across
all the scenarios, MSS consistently achieves superior coverage, underscoring its effective
deployment strategies and adaptive nature

.

This section compares the performance of the proposed MSS algorithm with that of the
following baseline methods.

• Gradient descent (GD) [97]: GD is an iterative coverage expansion algorithm based
on gradient descent to optimize the locations and orientations of multiple RISs to
maximize network coverage.
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• Coverage maximization algorithm (CMA) [96]: CMA is the optimization algorithm in
[96], which optimizes the coverage of the network by optimizing the RIS orientation
and horizontal distance.

• MSS w/o greedy: MSS w/o greedy method means the proposed MSS algorithm without
a greedy component.

• Brute force traversal: This legend corresponds to sequentially traversing all possible
points, generating points at a constant step length of 1.

• Random: The random algorithm means that RISs are randomly placed in the region
with an existing LoS link with the AP.

Fig. 2.6 shows a comparison of the coverage rate results of the different methods in
three distinct scenarios. For simplicity, this paper assumes that the number of elements
in a row, represented by N and M, is equal to the size of the RIS. All six methods show
a consistent trend of increasing coverage rates with increasing RIS size due to the greater
path gain provided by the increased number of RIS elements. Compared with the other
baselines, the proposed MSS method achieves a higher coverage rate across all three scenarios,
demonstrating its efficient utilization of the RIS in various complex environments. The GD
and CMA methods improve coverage with increasing RIS size but fall short of the MSS
algorithm. This is because the MSS method employs a multiscale spatial search strategy,
which iteratively divides the space at higher resolutions to pinpoint more precise locations for
RIS placement. The MSS w/o greedy method performs similarly to the MSS in Scenario A
but underperforms in the more complex Scenarios B and C. As the complexity of the scenario
increases, the MSS w/o greedy method is more prone to becoming trapped in local optima,
highlighting the importance of the greedy strategy. Furthermore, the brute force traversal
method outperforms only the random method, as it struggles to effectively handle the RIS
placement problem in scenarios involving cooperative reflections among multiple RISs.

Fig. 5.7 presents the coverage performance against the number of obstacles. In this
simulation, each obstacle has a fixed size of 8m×8m×8m, and the positions of the obstacles
are randomly generated in each experiment to simulate various real-world scenarios. The AP
is fixed at the position [25, 25, 10] in a room of size 50 m× 50 m× 10 m. To ensure reliability,
100 experiments were conducted for each number of obstacles, and the coverage rates were
averaged. As shown in Fig. 5.7, the coverage rates for all methods generally decrease as the
number of obstacles increases. This decline is attributed to the increased signal blockage
caused by more obstacles. Moreover, the proposed MSS consistently outperforms other
methods in terms of coverage across all obstacle scenarios, maintaining approximately 76%
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Fig. 2.7 Coverage rates of various methods versus the number of obstacles.

coverage even in the presence of ten obstacles. This finding demonstrates the effectiveness
and adaptiveness of the proposed MSS method.

Furthermore, the results of Figs. 2.6 and 5.7 indicate that the proposed MSS method
achieves the highest coverage rates across various indoor scenarios and RIS sizes compared
with other algorithms, demonstrating the effectiveness and adaptiveness of the proposed
approach.

2.6.3 Validation of Proposed HNCB Algorithm

Fig. 5.8 provides a visual representation of the optimized beamforming technique applied
following the optimized placement of the RIS, as achieved through the proposed proposed
HNCB method. This figure demonstrates how the beamforming strategy specifically targets
a region defined by ϕr = π/4,θr = π/4 when the receiver distance is dr = 1 m and the trans-
mitter distance is dt = 30 m. The proposed HNCB method optimizes system performance by
intelligently focusing signal power where it is most beneficial, thereby maximizing resource
utilization efficiency.

Fig. 5.9 compares the performance of five beamforming methods across varying RIS
sizes, including perfect CSI beamforming, HNCB, MARISA [3], the Far-field Codebook
[62], and a random phase configuration strategy. The perfect CSI beamforming method,
which has perfect CSI allowing for precise adjustment of the beamforming direction, is
chosen as the upper bound for performance comparison. The results show that, in addition
to the perfect CSI beamforming method, the proposed HNCB consistently delivers higher
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Fig. 2.8 Visualization of optimized beamforming via HNCB targeting a specific region in the
near-field case where dr = 1 m and dt = 30 m.
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Fig. 2.9 Comparison of the average received power across different RIS sizes for various
beamforming methods.
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Fig. 2.10 Average received power variation with increasing user number for different beam-
forming methods

average received power than other algorithms across all RIS sizes. The superior performance
is attributed to the ability to customize the phase adjustment according to the unique position
of each RIS, effectively concentrating the signal power toward the user. MARISA, which
adjusts the phase of RIS elements based solely on the angle, performs worse than HNCB
does, highlighting the advantage of HNCB’s position-based phase adjustment. However, it
still outperforms the far-field codebook and random methods, indicating relative effectiveness
when position information is not readily available. Despite the theoretical advantage in large-
scale scenarios, the Far-field Codebook method performs less than HNCB and MARISA do,
suggesting that near-field codebook methods such as HNCB might be more advantageous in
practical applications with moderate RIS sizes. As expected, the random phase configuration
yields the lowest average received power across all RIS sizes. These observations underscore
the value of phase adjustment strategies such as HNCB, which utilize intelligent beamforming
techniques to maximize user-end power reception. The results indicate that the proposed
HNCB method achieves performance close to the upper bound, effectively adjusting the
beamforming direction and enhancing the received signal strength for users.

As depicted in Fig. 4.8, the average received power tends to decrease with an increase
in the number of users due to the shared nature of wireless communication resources. The
results show that, in addition to the perfect CSI beamforming method, HNCB maintains a
higher average received power than the other methods do, even with increasing users. By
focusing the power on each user, HNCB ensures that each user can still experience relatively
high received power, improving the overall system performance.
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2.7 Conclusion

A novel framework for optimizing large-scale RIS deployment and cooperative beamform-
ing in complex indoor environments is presented. The proposed approach incorporates an
efficient MSS algorithm for RIS placement and an HNCB method for beamforming opti-
mization. The proposed framework has demonstrated superior performance in maintaining
high coverage and maximizing signal strength across various scenarios. The simulation
results underscore the potential of the proposed approach in enhancing the performance of
RIS-assisted wireless communication systems, especially in indoor settings. Future research
could delve into more intricate scenarios and varied user mobility patterns, further broadening
the applicability of the proposed approach.





Chapter 3

Optimization of RIS Beamforming Based
on User Behaviors for High-Efficiency
Service

3.1 Motivation

The successful deployment of 5G has paved the way for numerous emerging technologies,
including virtual reality, the metaverse, and automated driving. These innovative applications
necessitate elevated transmission rates and enhanced stability in communication systems be-
yond the capabilities of traditional technologies. The conventional communication paradigm,
influenced by the propagation environment, struggles to ensure consistent transmission rates,
thus diminishing the user’s QoE. In response, we aspire to devise an intelligent wireless
communication system that tailors the user’s transmission rate according to their specific
requirements [89].

The attainment of this goal calls for a groundbreaking technology capable of continual
environmental sensing and direction control of signal propagation. Capitalizing on advance-
ments in synthetic materials, a metasurface known as "Reconfigurable Intelligent Surface
(RIS)" has emerged to create an intelligent propagation environment capable of reflecting
incident signals in the desired direction. Specifically, RIS comprises a multitude of nearly
passive and cost-effective reflecting elements, each capable of independently modifying
the phase shift of the incident signals. When the downlink transmission rate from the Base
Station (BS) to users falls short of user requirements, the flexible configuration of the signal
phase via RIS can enhance signal strength. Because RIS can be seamlessly integrated into
existing network architectures without significant hardware modifications, it is deemed a
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promising technology for future networks [47]. Nevertheless, RIS-assisted MIMO smart
communication systems present several challenges: (i) High computational complexity:
Optimizing the received signal strength for all users simultaneously in RIS-assisted multiple
users wireless communication systems introduces significant computation. (ii) Dynami-
cally changing environment: Environmental dynamics lead to variations in the channel,
necessitating real-time Channel State Information (CSI) acquisition for the RIS-assisted
communication system. (iii) Differentiation of user demands: As user transmission rate
demands fluctuate over time, RISs must adjust the beamforming direction accordingly.

The immense potential of RIS has motivated extensive research to optimize the per-
formance of RIS-assisted wireless communication systems [6, 11]. Fu et al. investigated
RIS-assisted MIMO non-orthogonal multiple access (NOMA) systems and proposed an
alternating difference-of-convex (DC) method to minimize the transmitter’s power [17]. In
another work, the author introduced a fractional programming method to maximize the sum
rate of the communication system, employing three distinct iterative algorithms to optimize
the reflection coefficient based on the different types of RIS reflective elements [27]. A
ranking algorithm based on combined channel strength was proposed to ensure user fairness,
achieving performance close to the theoretical upper limit [87]. However, most existing
research concentrates on exploring the optimal configuration of RIS under specific CSI,
neglecting the dynamic changes in the environment over time.

Artificial Intelligence (AI) advancements have seen Deep Reinforcement Learning (DRL)
emerge as an excellent technique for handling vast amounts of data and mathematically
intractable non-linear non-convex problems. Unlike traditional optimization approaches,
DRL-based algorithms can learn features directly from data without depending on predefined
mathematical models, making them more adaptive to environmental changes. A DDPG-based
algorithm was proposed to maximize the sum rate by jointly designing continuous transmit
beamforming and RIS phase shifts [25]. Zhang et al. introduced a DRL-based algorithm
to maximize throughput under imperfect CSI by modeling the return distribution for each
state-action pair using a quantile regression method.

In another work, Liu et al. considered a RIS-assisted terahertz VR network. Initially, the
authors implemented a recurrent neural network (RNN) to predict each user’s Line-of-Sight
(LoS) or Non-Line-of-Sight (NLoS) status, then employed DRL to select the appropriate
reflection coefficient matrix for users in NLoS areas [40]. However, existing research has
largely overlooked the diversity of users’ demands [92].

In light of the previous analysis, we introduce a RIS-assisted MU-MIMO smart wireless
communication system in this paper. The RIS is optimally configured based on user traffic
prediction results. An online LSTM module is proficient in capturing temporal correlations
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between historical network traffic data and is implemented to predict users’ network traffic at
the subsequent time step. Following this, the RIS reflecting elements are reconfigured based
on network traffic predictions to optimize users’ QoE. Specifically, we propose a DRL-based
algorithm to select the optimal phase shifts of RIS elements. The primary contributions of
this paper are summarized as follows:

• We introduce an online LSTM algorithm to predict users’ future network traffic by
leveraging the temporal correlation of users’ historical network traffic. The predicted
traffic is then utilized to determine if a user requires an increased transmission rate
through RIS beamforming.

• For the first time, we propose a DRL-based algorithm that considers demand differenti-
ation to explore the optimal joint design of RIS phase shifts and transmit beamforming.

• Extensive experiments demonstrate that the proposed optimization methods based on
users’ network traffic predictions significantly enhance their QoE. Furthermore, our
proposed optimization algorithm achieves approximately twice the QoE of a solution
with random RIS phase shifts.

The structure of the remainder of this paper is as follows: In Section II, we present the
system model and formulate the optimization problem. The proposed L-DRL approach,
including its design and implementation, is detailed in Section III. In Section IV, we validate
the effectiveness of our proposed methodology through simulation experiments, while Section
V presents conclusions.

3.2 System Model & Problem Formulation

This section introduces the Hybrid Reconfigurable Intelligent Surface (HRIS) concept and its
application to a communication system scenario. The problem of network traffic prediction
is then presented as a means of enhancing communication performance. Based on these
analyses, the optimization problem is formulated.

3.2.1 System Model

As depicted in Fig. 3.1a, we contemplate a scenario including one Base Station (BS) with
M antennas, K User Equipments (UEs), each with a single antenna, and an HRIS with N
reflecting elements. We consider two links: a direct LoS link from BS to users and an
indirect link where the HRIS reflects user signals. Both links serve to provide communication
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services for users. The HRIS, employed in our communication system, aids in obtaining the
CSI of the indirect link more effectively. An HRIS is an array of hybrid elements capable
of reflecting and sensing incident signals simultaneously [86]. As shown in Fig. 3.1b, in
the HRIS architecture, each element is combined with a directional coupler that transmits
the absorbed power of the incident signals toward radio frequency (RF) hardware, which
estimates the CSI of the incident channel. The percentage of the incident signal reflected for
communication is denoted by µ ∈ [0,1]. A detailed description of HRIS can be found in [4].

We use hhhr,k ∈ C(1×M), GGG ∈ C(N×M), and hhhk ∈ C(1×N) to denote the BS-UEk channels,
BS-HRIS channels, and HRIS-UEk channels, respectively.

The received signal strength by user k can thus be expressed as:

yk =
(√

µhhhkΘΘΘGGG+hhhr,k
)

WWWxxx+nk (3.1)

where = diag
[
β1e jθ1, · · · ,βNe jθN

]
, with θi ∈ [0,2π] and |βi|2 ≤ 1, ∀i = 1,2, · · · ,N repre-

sents the phase shifts and the amplitude ratio by the HRIS. The transmit precoding matrix of
the BS denoted as WWW ∈ CM×K , has its k-th column wk representing the transmit precoder for
UEk. Moreover, xxx ∈CK×1 represents the transmitted data from the BS to all users that satisfy
the conditions E

[
|xk|2

]
= 1. Assuming that the maximum transmit power of the BS is Pt , the

constraint E
[
|WWWxxx|2

]
≤ Pt is satisfied. In addition, nk ∼CCCNNN(0,δ 2) denotes Gaussian white

noise with variance δ 2.
From (5.1), the received signal of UEk can be further expressed as:

yk =
(√

µhhhkΘΘΘGGG+hhhr,k
)

wkxk +
K

∑
n,n̸=k

(
√

µhhhnΘΘΘGGG+hhhr,n)wnxn +nk

(3.2)

Here, ∑
K
n,n̸=k (hhhnΘΘΘGGG+hhhr,n)ωnxn represents the interference of other users’ signals on UEk.

From (5.2), the Signal-to-Interference-plus-Noise Ratio (SINR) at UEk is given as:

γk =

∣∣(√µhhhkΘΘΘGGG+hhhr,k
)

wk
∣∣2

∑
K
n=1,n̸=k

∣∣(√µhhhnΘΘΘGGG+hhhr,n
)

wn
∣∣2 +σ2

n

(3.3)

Therefore, the transmission rate of UEk can be expressed as:

Rk = log2 (1+ γk). (3.4)
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3.2.2 Network Traffic Prediction

In a multi-user communication system, transmission speed demand varies among users at any
given time. Precise traffic prediction allows the HRIS to direct beamforming toward users
experiencing high network traffic in advance, enhancing user QoE. Consequently, accurate
traffic prediction facilitates a more effective intelligent wireless propagation environment.

Due to its temporal correlation with users’ network traffic, historical data can be leveraged
to predict future traffic. These predictive results are then compared against the transmission
rate provided by the LoS channel, denoted by hhhr,kWWWxxx, to identify which users require
improved QoE through HRIS. This approach prioritizes users demanding higher transmission
rates during the joint beamforming process of both BS and HRIS, thereby enhancing the
communication system’s overall performance. The traffic prediction problem can be formally
modeled follows:

yt+1
k = f (yt−P+1

k , · · · ,yt
k) (3.5)

where yt+1
k denotes the network traffic of UEk at the time slot t +1, and yt−P+1

k , · · · ,yt
k

represents the historical wireless traffic demands for UEk. The prediction accuracy is defined
as:

β (t) = 1− 1
K

K

∑
k=1

∣∣∣∣yt
k− ŷt

k
yt

k

∣∣∣∣ (3.6)

Here, ŷt
k signifies the predicted value for user k at time t, while β (t) represents the

prediction accuracy at the same time.

3.2.3 Problem Formulation

The QoE is contingent upon the wireless system’s ability to fulfill the transmission rate
requirements of users. Consequently, we propose the following definition for users’ QoE:

QoEk(t) = β (t) tanh
(

10log
Rk(t)
R′k(t)

)
(3.7)

Where R′k(t) represents the user-requested transmission rate derived from our prediction,
while Rk(t) denotes the actual transmission rate at time t. This meticulously engineered
function optimizes the user experience while efficiently managing resources.
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This study introduces a communication system design optimizing ΘΘΘ and WWW to maximize
users’ long-term QoE, formally expressed as

max
∞

∑
i=t

K

∑
k=1

QoEk(i)

s.t. ∥WWW∥2 ⩽ Pt

0 ⩽ θn ⩽ 2π,∀n = 1, . . . ,N

(3.8)

Given that the complexity of the problem presented in Equation (5.6) escalates exponentially
with the number of HRIS elements, it is classified as an NP-hard problem. To address this
complex optimization issue, we employ a DRL-based algorithm as a solution.

3.3 Learning Algorithm for MIMO System
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Fig. 3.2 L-DRL algorithm for HRIS-assisted wireless communication system.



42Optimization of RIS Beamforming Based on User Behaviors for High-Efficiency Service

This section presents a novel L-DRL algorithm that addresses the optimization problem
outlined in Equation (5.6). The L-DRL algorithm incorporates online LSTM and DDPG
components, as depicted in Fig.5.2.

Utilizing network traffic as an input, the L-DRL algorithm selects the optimal joint design
of the HRIS configuration and BS precoding matrix via continuous interaction with the radio
propagation environment.

3.3.1 The Algorithm for Network Traffic Prediction

This study employs an online LSTM network for predicting user wireless traffic. Recognizing
the temporal correlation inherent in user data traffic, we utilize network traffic data from the
preceding P time steps to forecast user traffic demand at the following time step t +1.

The LSTM unit, with its ability to capture long-term dependencies in time series data,
is crucial to our approach. This capability stems from its intricately designed structure,
rendering it an ideal choice for various sequence-related tasks. Our LSTM network comprises
multiple layers, each comprising P LSTM units.

For each time step, the online LSTM receives current network traffic from users through
uplink transmission. A softmax layer, connected following the LSTM layer, outputs the
prediction results, facilitating the forecast for time slot t +1.

The proposed LSTM network employs backpropagation for parameter updates. Using
Mean Absolute Error (MAE) as the loss function, the update process within the LSTM
network can be represented as:

LLL(θ) =
1
K

K

∑
k=1

∣∣yt+1
k (θ)− ŷt+1

k

∣∣ (3.9)

where θ represents all parameters in the LSTM network, ŷt+1
k denotes the ground truth,

and yt+1
k signifies the prediction for user k at time slot t +1.

3.3.2 DDPG Algorithm

Since the problem in Equation 5.6 is a nonconvex optimization problem, we employ DDPG to
find the optimal configuration for HRIS. DDPG can learn the optimal policy π by interacting
with the environment to maximize the long-term QoE of users.

We model the BS and the HRIS as an agent and use a three-tuple ⟨SSS,AAA,RRR⟩ to represent
the fundamental elements in DDPG, which are specifically defined as follows:



3.3 Learning Algorithm for MIMO System 43

• State SSSt: The state St consists of three parts: YYY t ,CCCt ,QoEt−1. Thus, the state of the t-th
time slot can be defined as

SSSt = [YYY t ,CCCt ,QoEt−1] (3.10)

where YYY t = [yt
1,y

t
2, · · · ,yt

k] is the predicted network traffic at the t-th time slot, CCCt =

[ht
r,k,G

t ,ht
k] is the specific CSI in the t-th time slot, and QoEt−1 is the QoE of all users

in the t-th time slot.

• Action AAAt: The action at the t-th time slot consists of two parts: WWW and ΘΘΘ, which can
be expressed as

AAAt = (WWW ,ΘΘΘ) (3.11)

where WWW = [w1,w2, · · · ,wk] is the transmit precoding matrix, and ΘΘΘ is the configuration
of the HRIS.

• Reward RRRt: The reward at the t-th time slot is defined as the QoE of all users, which
is expressed as

RRRt =
K

∑
k=1

QoEk(t) (3.12)

The DDPG algorithm, structured on an actor-critic architecture, is outlined in Algorithm
1, which comprises the following steps:

1) Initialization: Before beginning to train the neural network, we initialize the critic
and actor-network parameters, and the action AAAt = (WWW ,ΘΘΘ). We also initialize the experience
replay memory MMM.

2) Training: At the commencement of training, the agent receives the current state St as
input and selects an action St based on the policy π , which can be represented as

At = π (θa | St) (3.13)

where θ signifies the parameter of the actor-network.
Post the execution of action At , the environment provides a new observation and instant

reward Rt+1. The transition composed of (st ,at ,rt ,st+1) is collected and stored in the
experience pool MMM. The Q value function signifies the return for adhering to a deterministic
policy π , denoted as

Qπ (st ,at) = E
[
Rt | st ,at

]
Rt =

∞

∑
ε=0

γ
εrt+1+ε

(3.14)

where γ ∈ (0,1] is a discounting factor.
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Algorithm 4 DDPG Algorithm
1: Input: YYY t ,CCCt ,QoEt−1
2: Output: Action AAAt = (WWW ,ΘΘΘ), QoE QoEt
3: Initialization: Replay buffer MMM, actor network parameters θa, target actor network

parameters θ ′a, critic network parameters θc, target critic network parameters θ ′c, transmit
precoding matrix WWW t , phase shift matrix ΘΘΘt

4: Set initial state s0
5: while t < T +1 do
6: for i = 1 to N do
7: Select action at based on current policy using Eq. (5.13)
8: Apply action at , receive next state st+1 and reward rt
9: Store transition (st ,at ,rt ,st+1) in MMM

10: Compute target Q-value using Eq. (5.14)
11: Sample a mini-batch W from MMM
12: Construct the loss function L(θc) using Eq. (5.16)
13: Update critic network parameters θc using Eq. (5.15)
14: Update actor network parameters θa using Eq. (5.17)
15: Update target networks θ ′a and θ ′c using Eq. (5.18)
16: Set st+1 as the input of the DDPG agent
17: end for
18: end while

3) Update: The agent extracts a random mini-batch of experiences W from the experience
replay buffer MMM. Utilizing collected experiences W , we update the parameters of the critic
networks in the direction of ∆θcL(θc) by minimizing the loss L(θc), which can be expressed
as

θ
t+1
c = θ

t
c−µc∆θcL(θc) (3.15)

L(θc) =
(
Rt + γQπ

(
θ
′
c | st+1,π

(
θ
′
a | st+1

))
−Qπ (θc | st ,at))

2 (3.16)

where θc is the parameter of the target network, µc represents the rate of updating the critic
network parameters, and π (θ ′a | st+1) denotes the target actor-network with input st+1.

The agent updates θa in the direction of ∆aQπ (θc | st ,at), expressed as

θ
t+1
a = θ

t
a−µa∆aQπ (θc | st ,at)∆θaπ (θa | st) (3.17)

where µa represents the rate of updating the actor network parameters and ∆aQπ (θc | st ,at)

is the gradient of the actor network. The actor-network aims to identify an optimal action a
for maximizing the long-term QoE.



3.4 simulation results 45

The DDPG network implements a soft update method to ensure the parameters of DDPG
are updated in each iteration. The formula is as follows:

θ
′
c← τθc +(1− τ)θ

′
c

θ
′
a← τθa +(1− τ)θ

′
a

(3.18)

where τ controls the rate of updating the target network parameters, θ ′c and θ ′a are parameters
of the target network.

3.4 simulation results

In this section, we undertake an extensive series of experiments in a simulated environment
to authenticate the efficacy of the proposed L-DRL algorithm, as illustrated in Fig. 5.2.
We configure the LSTM with a time step of 20, a hidden layer of 5, and a learning rate of
0.0001. Within the DDPG, we assign a learning rate of 0.001, a mini-batch size of 24 for
experience replay, and a buffer size 1000000. We generate the LoS channel hhhr,k using a
Rayleigh distribution and obtain hhhk and GGG for HRIS.

3.4.1 Network Traffic Prediction
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We collect data from 100 unique users over a week in 1-hour intervals to construct a
real-world user network traffic dataset. As depicted in Fig. 3.3a, we present a five-day
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Fig. 3.4 Average QoE of the HRIS-assisted communication network.

user network traffic pattern. From Fig. 3.3a, it is clear that network traffic varies widely.
Moreover, peak user traffic appears to coincide with specific times of the day, indicating a
recurring pattern in the dynamics of network traffic. Given these patterns, it is plausible to
forecast future user traffic.

Fig. 3.3b displays the loss for network traffic prediction, which stabilizes after 30 epochs,
demonstrating the superior predictive capabilities of LSTM. By accurately predicting user
traffic trends, we can pre-determine the beamforming direction, enhancing the configuration
of HRIS elements.

3.4.2 Average QoE of Users

In the HRIS-assisted communication network, the average QoE signifies transmission quality.
To validate the impact of the network traffic prediction module, we design a variant of L-DRL,
designated as "w/L-DRL," which lacks a prediction module. As illustrated in Fig. 5.4, it is
evident that our proposed L-DRL method outperforms the others.

Compared to random HRIS phase configurations, L-DRL ensures superior QoE by contin-
uously optimizing the configuration through interaction with the environment. Furthermore,
L-DRL outperforms w/L-DRL, confirming that accurate network traffic prediction can en-
hance the transmission quality of communication systems. Based on these findings, it is
reasonable to conclude that the proposed L-DRL method can enhance communication quality
and guarantee user QoE.
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3.4.3 Average Transmission Rate Comparisons

-20 -15 -10 -5 0 5 10 15 20 25 30
Pt (dB)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Av
er

ag
e 

tra
ns

m
iss

io
n 

ra
te

 (b
ps

/H
z)

WMMSE
SDR
L-DRL
WMMSE
SDR
L-DRL

Fig. 3.5 Average transmission rate of L-DRL algorithm and the benchmarks.

To thoroughly investigate the performance of L-DRL, we compare it with two state-of-
the-art methods, Semi-Definite Relaxation (SDR) and Weighted Minimum Mean Square
Error (MMSE). We utilize the average transmission rate for users as the evaluation metric,
providing an intuitive comparison of algorithm performance.

As shown in Fig. 5.5, the performance of our proposed L-DRL aligns with the two
benchmarks. Hence, it is reasonable to conclude that our proposed algorithm effectively
improves the transmission quality. We further examine the performance of the proposed
algorithm and two benchmarks with increasing transmission power Pt under two system
settings, M = 8,N = 32,K = 8 and M = 32,N = 32,K = 32. An increase in the number of
users leads to a decrease in the average transmission rate due to channel interference. This
indirectly suggests that reducing the number of optimized users of HRIS helps guarantee
QoE for users with high transmission rate requirements.

3.4.4 Impact of system settings

To delve deeper into the performance of the proposed L-DRL, we examine the impact of
the learning rate on this algorithm. An optimal learning rate aids the proposed algorithm
in identifying the most suitable joint design of BS and HRIS. As depicted in Fig. 5.6, the
proposed algorithm garners the highest average reward when the learning rate is 0.001. Proper
hyperparameters enable the algorithm to interact more effectively with the environment and
to update parameters more efficiently.



48Optimization of RIS Beamforming Based on User Behaviors for High-Efficiency Service

0 2000 4000 6000 8000 10000
Steps

1

2

3

4

5

6

7

8

Av
er

ag
e 

re
wa

rd
s

Learning rate = 0.01
Learning rate = 0.001
Learning rate = 0.0001
Learning rate = 1e-05

Fig. 3.6 Rewards at different learning rates.

Lastly, we delve into the influence of other hyperparameters, such as episode length, on the
performance of L-DRL. Our analysis reveals that meticulous tuning of these hyperparameters
can enhance the L-DRL’s performance. Following parameter adjustments, the L-DRL
model can adeptly manage the phase of elements in HRIS, guaranteeing a high-quality user
experience.

3.5 Conclusion

This paper introduced a novel optimization algorithm, predicated on network traffic prediction,
for HRIS configuration. To enhance user QoE, we initially employed an online LSTM
network to predict future user network traffic, thereby assisting the communication system in
executing superior beamforming. Subsequently, we utilized a DDPG algorithm to select the
optimal HRIS configuration to maximize users’ long-term QoE. Comprehensive simulation
results demonstrated that the proposed L-DRL enhanced the average user transmission rate.
Concurrently, the experimental results confirmed that appropriate parameter selection could
facilitate improved system performance.



Chapter 4

QoE Optimization for Mobile Users
Based on User Movements In VR
Scenario

4.1 Motivation

Wireless virtual reality (VR) has emerged as a pivotal technology, revolutionizing how
we interact with the digital world through immersive experiences that surpass traditional
boundaries and impacting industries such as entertainment, gaming, healthcare, and education
[83, 91]. Due to the wide range of potential applications, VR is considered as one of the
most promising technologies in the consumer electronics field [65].

To fully realize VR’s potential, three critical challenges must be addressed: ensuring high
transmission rates for quality streaming, achieving low latency for real-time interaction, and
maintaining stable connectivity in dynamic environments [15]. Existing wireless communi-
cation technologies, such as 5G and Wi-Fi 6, while offering a peak rate of Gbps, still need to
be improved to meet the demanding requirements of VR [66].

Due to its capacity to provide high transmission speeds and low latency, the mmWave
network is one of the most promising technologies for wireless VR [50]. However, integrating
mmWave technology into VR systems presents several unique challenges [1]. Firstly, the
high frequency of mmWave signals results in significant attenuation and path loss, requiring
a direct line-of-sight (LoS) channel for communication between transmitter and receiver
[43, 58]. Then, the directional nature of mmWave signals demands precise beam alignment
to ensure high-performance communication [29]. In wireless VR, user mobility and obstacles
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like walls and furniture complicate maintaining stable LoS and accurate beam alignment
[24].

To overcome the challenges in mmWave VR systems, several solutions like enhanced
beamforming [70], rapid path search and alignment [51], and prediction of mobility trajecto-
ries [88] have been investigated. Notably, reconfigurable intelligent surface (RIS) emerges
as an up-and-coming solution due to its energy efficiency, cost-effectiveness, and ease of
integration [68]. RIS, a meta-surface with numerous passive, programmable elements, can
dynamically control electromagnetic waves, enhancing signal propagation [22, 35]. It pro-
vides a solution for when direct LoS channels between transmitter and receiver are obstructed
by creating an indirect path that ensures uninterrupted signal transmission despite obstacles
[64, 44].

RIS technology is expected to play a vital role not only in enhancing communication
but also in enabling precise localization within mmWave VR systems [93]. Accurate user
positioning is essential for the beam alignment of the highly directional mmWave beams.
However, the challenge of effectively achieving user localization and beam alignment in
environments assisted by multiple RISs to improve VR user experience and reduce interactive
latency is still a critical unresolved issue.

This paper introduces a novel framework in multi-RIS-assisted mmWave VR systems
to solve the above challenges. As shown in Fig. 4.1, the algorithm initiates as the VR
device detects user movement through embedded inertial measurement units (IMUs). Upon
detecting movement, the VR user signals its change of location to the access point (AP)
via the uplink channel. The AP then sends a probing signal for the VR device to estimate
its current position through a localization procedure. After estimating its position, the user
equipment (UE) relays this information to the AP, laying the groundwork for location-based
beamforming. With accurate VR user location information, we can jointly optimize the AP,
VR users, and RISs beamforming directions, thereby enhancing data transmission rates and
VR user QoE. The proposed localization-based beamforming algorithm can dynamically
adjust beam direction in response to VR user movements, ensuring seamless, high-speed
communication within the RIS coverage area. The main contributions of our paper are
summarized as follows:

• We investigate the optimization of QoE for multiple moving VR users in multi-RIS-
assisted scenarios, where RIS plays a crucial role in both localization and commu-
nication. The proposed framework considers several key performances, including
transmission rate, latency, and QoE.

• We developed an AoD-based positioning algorithm that leverages reflective paths from
multiple RIS, significantly improving localization accuracy. Specifically, a maximum
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Fig. 4.1 An overview of our proposed framework in a multi-RIS-assisted mmWave VR
network, where the LoS link from AP to VR users is blocked. The AP sends a probing
signal when the VR user’s location changes. Then, the UE estimates its position based on
the received signal and uploads the estimated location to the AP. Finally, the location-based
beamforming is conducted based on the estimated location.

likelihood (ML) estimation method is first applied to estimate the AoDs of each RIS
to VR users. Then, an AoD-based localization algorithm is proposed to obtain the
estimated location for each VR user.

• A location-based beamforming method is proposed to optimize the QoE of VR users,
utilizing VR users’ locations to select optimal beamforming directions. Compared
to the benchmark algorithm, our proposed method can guarantee users’ QoE with
reduced computational requirements.

• Comprehensive simulations validate the feasibility and effectiveness of our multi-RIS-
assisted VR mmWave network, demonstrating our method’s ability to improve QoE
and reduce latency. Furthermore, we analyze the impact of critical parameters on QoE
and interaction latency, including the number of RIS, reflecting elements, and total
transmission power.
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4.2 Related Work

This section provides an overview of the current literature on mmWave VR systems, RIS
deployment in integrated sensing and communication (ISAC) systems, and RIS-assisted VR
systems.

1) Wireless VR in the mmWave Frequency Band: mmWave is widely recognized as the op-
timal communication frequency band for achieving rapid and seamless wireless transmission,
with aspects like transmission rate, reliability, delay, quality of service, energy efficiency, and
resource consumption receiving substantial investigation [72, 70, 88, 10, 12].

In [70], the proposed CoVRage solution focuses on the receiving side for VR headset
users, using built-in sensor orientation data to predict user movement and adjust the phased
array accordingly, ensuring high, stable gain. In [88], research on coordinated multipoint
transmission (CoMP) with mmWave communication has shown improvements in VR system
dependability and power efficiency, utilizing parallel echo state networks (ESN) for move-
ment prediction and deep reinforcement learning (DRL) for power control optimization. The
authors of [72] introduce a resource control mechanism for IoT-based consumer electronics,
enhancing network efficiency and energy sustainability using RIS. In [10], a dual-link design
combining sub-6 GHz and mmWave networks has been proposed to enhance wireless VR
transmission consistency. In [12], an innovative transmission scheme has been introduced
to balance quality of service (QoS) with minimal resource consumption for wireless VR.
However, these studies mainly focus on scenarios with direct LoS links, not fully exploring
RISs’ potential to provide high communication performance when LoS is obstructed.

2) RIS in ISAC systems: The integration of RIS into ISAC systems has been extensively
studied for its potential to enhance detection and communication. Notably, research has
shown RIS’s capability to improve the Cramér-Rao lower bound for signal detection [78], as
well as its role in augmenting the signal-to-noise ratio (SNR) through the combination of
active and passive beamforming strategies [31]. In [38], a memorization method has been
applied to simplify the RIS beamforming algorithm, optimizing RIS parameter matrices.
Furthermore, simultaneously transmitting and reflecting surfaces (STARS) have been pro-
posed to boost ISAC system performance, demonstrating enhanced sensing accuracy and
reliability over traditional RIS [79]. RIS has also significantly elevated the communication
and sensing performance of mmWave orthogonal frequency division multiplexing (OFDM)
ISAC systems [76]. Despite these advancements, exploring RIS within VR environments,
particularly in enhancing VR system sensing and transmission, still needs to be explored.

3) RIS-assisted VR system: As detailed in [45], researchers have explored the integration
of RIS in ISAC systems to enhance channel throughput by simultaneously fine-tuning
UE beamformers and adjusting RIS phases. In [9], an innovative framework to improve
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transmission speed and reliability was proposed, employing risk considerations. This involved
transforming the optimization challenge into a linear weighted equation using Lyapunov
optimization techniques, followed by applying a recurrent neural network (RNN) with
reinforcement learning to solve this equation. However, while focusing on transmission rate
optimization, these studies have not fully leveraged RIS’s capabilities in ISAC environments.

The reviewed literature highlights the potential and challenges of utilizing mmWave and
RIS technologies in VR systems. Building on these insights, our research aims to overcome
current limitations by proposing a framework that utilizes multiple RISs to improve mmWave
VR environments, especially on NLoS and dynamic scenarios.

4.3 System Model

In the considered indoor scenario depicted in Fig. 4.1, we consider an AP serving UUU VR
users, with the assistance of KKK RISs. The indices of RISs and VR users are given by
KKK = [1,2, . . . ,K] and UUU = [1,2, . . . ,U ], respectively. The AP, equipped with a uniform linear
array (ULA) of Np antennas, is strategically positioned within the indoor space SSS, at a location
specified by the position vector qqqp ∈ R3. Each RIS, configured as a uniform planar array
(UPA) with Nk = Nk,x×Nk,y elements, occupies a distinct position qqqk ∈ R3. These RISs play
a pivotal role in the data transmission and localization of VR users, which are modeled as a
ULA with Nu antennas and located at qqqu ∈R3. The system operates at a carrier frequency fo,
corresponding to a wavelength λ = c/ fo, where c denotes the speed of light. The spacing
between the elements and arrays is set to λ/2. Due to the significant path loss of mmWave
signals, this study focuses on signals reflected once by the RIS, excluding scenarios involving
multiple reflections.

4.3.1 RIS Model

Without loss of generality, we assume that the RIS is located within the far-field region of the
AP and UE. Therefore, we can represent the local reflection coefficient for each element in
RIS as

√
F(θθθ)F(φφφ)GkΓk. Herein, θθθ = (θaz,θel) denotes the angle-of-arrive (AoA) in RIS

local coordinate, where θaz and θel indicates azimuth and the elevation angle, φφφ = (φaz,φel)

denotes the angle-of-departure (AoD) in RIS local coordinate, F(θθθ) denotes the standardized
radiation pattern for every element, which can be expressed as:

F(θθθ) =

 cosq θel θel ∈
[
0, π

2

]
,θaz ∈ [0,2π]

0 θel ∈
[

π

2 ,π
]
,θaz ∈ [0,2π]

(4.1)
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Fig. 4.2 Illustration of the channel model depicting the spatial relationship between the AP,
RIS, and the VR user.

where q is a tunable parameter. Furthermore, Gk is the element’s boresight gain, and Γk =

αke jvk represents the load reflection coefficient for each element. Here, αk and vk represent
the amplitude and phase of the elements within the RIS. In our analysis of RIS configuration
optimization, we concentrate on the amplitude and phase adjustments for each RIS element.
We simplify our discussion by fixing the amplitude αk at 1. The focus then shifts to the phase
shifts vk, which are set to discrete values following a bit-quantization method. Specifically,
the phase shifts vk are selected from a predefined set VVV b =

{
0, 2π

2b , . . . ,
2π

2b

(
2b−1

)}
. Here, b

represents the bit-quantization level, and N = 2b is the number of discrete phase states. This
quantization approach is chosen for its practicality and computational efficiency, streamlining
the implementation of the RIS configuration.

4.3.2 Channel Model

We establish the channel model after detailing the RIS model and its reflection characteristics.
As illustrated in Fig. 4.2, the direct channel from AP to VR users is blocked, requiring RIS
to create the indirect channel between AP and VR users. The array response vector from the
AP towards a specific location qqq is defined as follows:

aAP(qqq) =
Np

∑
n=1

e j⟨kkkpq,(qqqn
p−qqqp)⟩ (4.2)
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where aAP(qqq) ∈ CNp×1 represents the AP’s array response vector, qqqn
p indicates the position

of n-th antenna at the AP, and kkkpq is the wave vector pointing towards qqq, given by:

kkkpq =
2π

λ

qqqp−qqq∥∥qqqp−qqq
∥∥ (4.3)

Likewise, the array response vector of k-th RIS towards point qqq is formulated as:

ak
R(qqq) =

Nk

∑
m=1

e j⟨kkkkq,(qqqm
k −qqqk)⟩ (4.4)

Here, ak
R(qqq) ∈ CNk×1 represents the array response vector of the k-th RIS, qqqm

k denotes the
position of m-th element on the k-th RIS, and the wave vector kkkkq is defined as:

kkkkq =
2π

λ

qqqk−qqq
∥qqqk−qqq∥

(4.5)

The overall channel gain from AP to k-th RIS is expressed as:

αp,k =
√

F(θθθ p,k)GkGp

λ

4π
∥∥qqqp,k

∥∥ exp

(
− j2π

∥∥qqqp,k
∥∥

λ

)
(4.6)

Here, Gp and Gk denote the boresight gain of AP and RIS antennas, respectively. qqqp,k = qqqp−
qqqk is the vector from AP to k-th RIS, the corresponding angle θθθ p,k = [θ el

p,k,θ
az
p,k] is the AoA

from AP to k-th RIS, where θ
az
p,k = arccos(qqqp,k[3]/

∥∥qqqp,k
∥∥) and θ el

p,k = arctan2(qqqp,k[2],qqqp,k[1]).
Thus, the channel from AP to k-th RIS can be written as:

GGGk = αp,kak
R(qqqp)a

H
AP(qqqk) (4.7)

Likewise, the channel from the k-th RIS to VR user qqqu can be represented as:

hhhk,u = αk,uak
R(qqqu)a

H
u (qqqk) (4.8)
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Where hhhk ∈ CNk×Nu , aH
u (qqqk) denotes the array response vector of VR users, and the overall

channel gain αk,u can be denoted as:

αk,u =
√

F(φφφ k,u)GkGu

λ

4π
∥∥qqqk,u

∥∥ exp

(
− j2π

∥∥qqqk,u
∥∥

λ

)
(4.9)

where Gu is the boresight gain of antennas of VR users, φφφ k,u and qqqk,u = qqqk−qqqu represent the
AoD and vector from k-th RIS to u-th VR user.

Therefore, the received signal of u-th VR user can be expressed as:

yu =
K

∑
k=1

mmmuhhhH
k,uΦΦΦkGGGkWWWsss+ηu (4.10)

where mmmu = [ 1√
Nu
(e jπθ1, . . . ,e jπθNn )] ∈C1×Nu represents the beamforming matrix of u-th VR

user, ΦΦΦk = diag[e jv1 , . . . ,e jvNk ] ∈ CNk×Nk denotes the phase shift of k-th RIS, WWW ∈ CNp×Nu

denotes the transmit precoding matrix for AP where each column wwwu corresponds to the
precoding vector for u-th VR users, sss = [s1,s2, . . . ,sU ] ∈ CNu×1 is the transmit data where
E
[
|sk|2

]
= 1 ∀k, and ηu ∼CCCNNN(0,σ2

u ) is the gaussian white noise of u-th VR users.
Thus, the signal-to-interference-plus-noise (SINR) of u-th VR user can expressed as:

SINRu =

∣∣∣∑K
k=1 mmmuhhhH

k,uΦΦΦkGGGkwwwu

∣∣∣2
σ2 +∑ j ̸=u

∣∣∣∑K
k=1 mmmuhhhH

k,uΦΦΦkGGGkwww j

∣∣∣2 (4.11)

where σ2 represents the noise of the system. Furthermore, the achievable rate of u-th VR
user can be defined as:

Ru = log2 (1+SINRu) (4.12)

4.3.3 Codebook

To enhance the average achievement rate of the multi-RIS-assisted multi-user mmWave VR
system, accurate CSI is crucial, according to Eq. (4.12). However, the passive nature of RIS
and the dynamic environment pose challenges in acquiring precise, real-time CSI. Moreover,
given the extensive number of elements, real-time optimization of RIS configurations can
lead to delays, adversely impacting VR users’ QoE. A codebook approach is utilized for QoE
optimization to address latency issues.
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Fig. 4.3 The direction of beam alignment changes with the movement of the VR user.

A codebook comprises a set of predefined RIS element configurations in RIS-assisted
systems. Each configuration (or codeword) corresponds to a specific phase shift pattern,
directing or shaping the beam towards a desired direction [2, 75].

Considering a codebook CCC = {ccc1,ccc2, . . . ,cccL}, with each cccl ∈ CNk×1 representing a RIS
configuration ΦΦΦ. Specifically, the codewords are defined as cccl = cccv

l ⊗ ccch
l , where

cccv
l =

1√
Nk,x

[
1,e

j2πv
ϖNv , . . . ,e

j2π(Nk,x−1)v
ϖNv

]
(4.13)

ccch
l =

1√
Nk,y

[
1,e

j2πh
ϖNh , . . . ,e

j2π(Nk,x−1)h
ϖNh

]
(4.14)

cccv
l and ccch

l are the codewords for vertical and horizontal dimensions, respectively, Nv and Nh

indicating the number of codewords, and ϖ adjusting based on the RIS’s scan range.
Each codeword cccl represents a specific beam pattern. Selecting the optimal beam for

each user ensures beam alignment, maximizing transmission rates.

4.3.4 The Mobility Model of VR Users

As illustrated in Fig. 4.3, the movement of the VR user disrupts the existing beam alignment
between the RIS and VR users. We employ a virtual reality mobility model (VRMM) to
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simulate the movement path of VR users, which is mainly determined by the following
four key variables: the initial position, movement velocity, the end position, and movement
direction. At each discrete time interval, VR users can move in one of four directions:
upward, downward, leftward, or rightward. Users determine their speed, endpoint, and travel
direction starting from the initial location. It’s essential to note that the VR user’s location
for the next time slot depends on their present location, not on previous positions, thus
maintaining the Markovian nature of the mobility model. Upon reaching their destination,
users select a new endpoint and continue at the same speed.

4.3.5 Problem Formulation

Several factors, including video frame resolution, delay in VR interactions, and connection
stability, impact wireless VR users’ QoE. According to [41], the QoE for the u-th VR user at
the t-th time slot is given by:

QoEu(t) = ρ̂u(t)(q(Ru(t))−|∆Ru(t)|) (4.15)

where q(Ru(t)) = Ru(t)/Rth is the metrics for data transmission, Rth is the threshold of the
transmission rate, ∆Ru(t) = q(Ru(t))− q(Ru(t− 1)) is the changes in signal transmission
quality for t−1 time slot to t time slot. Furthermore, ρ̂u(t) represents the accuracy of beam
alignment.

While maximizing transmission speed is crucial, reducing latency in user interactions
to below a specific threshold is equally important for enhancing user QoE. VR latency is
composed of three main components: uplink transmission latency, downlink transmission
latency, and rendering latency, as shown below:

TVR = Tup +Tdown +Trender (4.16)

The uplink transmission latency Tup is minimal due to the small size of data transmitted
and thus can be considered negligible. Furthermore, as the size of the rendered data is the
same at any given time, it is appropriate to consider the rendering time Trender as a constant.
Therefore, our objective is to maximize the QoE of users within the constraints of the latency,
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which can be formulated as:

(P0) max
www,cccl ,mmm

∞

∑
i=t

U

∑
u=1

QoEu(i) (17)

s.t. Tr

[
K

∑
k=1

(
g+k P

(
g+k
)H
)]
≤ Pt (4.17a)

cccl ∈ {ccc1,ccc2, . . . ,cccL} ,∀l (4.17b)

Tup +Tdown +Trender ≤ Tth (4.17c)

where P represents the power allocation for users, Pt is the transmission power for AP,
g+k = hhhH

k,uΦΦΦkGGGk, and Tth is the threshold of latency.
However, solving (P0) directly is computationally challenging due to its complexity and

the necessity for real-time processing. The solution requires high-dimensional optimization,
which is computationally demanding and impractical for real-time scenarios. To address this,
we propose a localization-based beam selection algorithm as a more efficient alternative. This
method utilizes users’ spatial information to simplify the optimization problem, significantly
reducing computational requirements while ensuring precise beam alignment, thus improving
system performance within latency limits.

4.4 Localization-based Beamforming

In this section, we detail our proposed localization-based beam selection algorithm. Initially,
we outline the framework, followed by an in-depth explanation of our multi-user localization
algorithm. Next, we present a location-based beam selection strategy to enhance user QoE.

4.4.1 Framework of the Localization-based Beamforming

To address the demands for low latency and high transmission rates in VR applications,
we introduce a new transmission frame structure designed to enhance user experience. As
depicted in Fig. 4.4, our proposed framework segments one location coherence interval, TL,
into three successive phases, ensuring a smooth and high-quality VR experience.

Stage I - Localization: This stage aims to determine the positions of VR users. Upon a
user’s location changes, the AP transmits a probing signal sss = [s1,s2, . . . ,sN ] ∈ C1×N , where
N is the length of the probing signal. Then, a distinct AoD is deduced from the received
signal yyy for each RIS-assisted path. Estimations of user positions are then obtained by
identifying the intersections of M (M ≥ 3) lines, each representing an AoD.
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Fig. 4.4 Illustration of the framework for the proposed localization-based beamforming
method.

Stage II - Location-based beam selection: After estimating user locations, the system
begins the beam selection phase. Stage II involves identifying optimal reflection paths from
the RIS for each user and adjusting the RIS to align its beams with their current locations,
thus optimizing signal paths for enhanced reception quality.

Stage III - Service-data transmission: This final stage involves transmitting VR content
to users via the downlink, using the beam configurations established in the previous stage.
This stage continues until a user’s position changes, prompting a return to Stages I and II.

It is important to note that during Stage I, the system design ensures simultaneous
reception of probing signals from the AP by all users. Additionally, to eliminate interference
among multiple RIS, only one RIS is operational at any given time, while the others are
deactivated.

4.4.2 AoDs Estimation

In Stage I, the communication channel from AP to the u-th VR user through k-th RIS can be
written as:

HHHk,u = αkaAP(qqqk)a
k
R(qqqp)ΦΦΦkak

R(qqqu)a
H
u (qqqk) (4.18)
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where αk = αp,k × αk,u denotes the path loss. With the positions of the AP and RISs
predetermined, the received signal of u-th VR user via k-th RIS can be further written as:

yyyk,u = αFh(φφφ k,u,θθθ k,u)sss+ηηηk,u (4.19)

where yyyk,u denotes the received signal,α is the path gain, F denotes the precoding matrix of
AP and UE, ηηηk,u ∼CCCNNN(0,σ2III) is the gaussian white noise of u-th VR users, h(φφφ k,u,θθθ k,u)≜

vec(ak
R(φφφ k,u)au(θθθ k,u)), φφφ k,u and θθθ k,u denote the AoD of k-th RIS and AoA of u-th VR user,

respectively, as shown in Fig. 5.4. A maximum likelihood (ML) estimation method is utilized
for estimating the propagation parameters (α,φφφ k,u,θθθ k,u), which is described as follows:(

α̂, θ̂θθ k,u, φ̂φφ k,u

)
= argmax

α,φφφ k,u,θθθ k,u

LLL(α,φφφ k,u,θθθ k,u) (4.20)

where
LLL(α,φφφ k,u,θθθ k,u) = ln p

(
yyyk,u|(α,φφφ k,u,θθθ k,u)

)
=−N logπσ

2−
∥∥yyyk,u−αFhhh(φφφ k,u,θθθ k,u)

∥∥2

σ2

(4.21)

Therefore, when
∂LLL(α,φφφ k,u,θθθ k,u)

∂α
= 0, the optimal α̂ can be expressed as:

α̂ =
(Fhhh(φφφ k,u,θθθ k,u))

Hyyyk,u

∥Fhhh(φφφ k,u,θθθ k,u)∥2 (4.22)

Then, we can obtain the new expression of LLL(α,φφφ k,u,θθθ k,u) by substituting Eq. (4.22) in Eq.
(4.21), i.e.,

LLL(α,φφφ k,u,θθθ k,u) =−N logπσ
2

−

∥∥∥∥yyyk,u−
Fhhh(φφφ k,u,θθθ k,u)hhh

H(φφφ k,u,θθθ k,u)FH

∥Fhhh(φφφ k,u,θθθ k,u)∥2
2

yyyk

∥∥∥∥2

2
σ2

(4.23)

In Stage I, we mainly focus on AoD estimation. Therefore, we assume the user’s beamforming
matrix is random and provides uniform gain in all directions. To maximize the log-likelihood
function, we can obtain the following optimization problem:

(P1) max
φφφ k,u

∥∥∥∥∥ hhhH(φφφ k,u)FH

∥Fhhh(φφφ k,u)∥2
yyyk,u

∥∥∥∥∥
2

2

s.t. 0≤ φφφ k,u[1]< 2π

0≤ φφφ k,u[2]≤
π

2

(4.24)
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Fig. 4.5 The proposed AoDs-based localization approach, where qqq1, qqq2 and qqq3 represent the
location of RISs which are known in advance.

Due to (P1) being a non-convex problem, we propose an AoD parameter estimation

algorithm to solve this problem. Let f (φφφ k,u) =

∥∥∥∥ hhhH(φφφ k,u)FH

∥Fhhh(φφφ k,u)∥2
yyyk

∥∥∥∥2

2
, the optimal AoD can be

denoted as:
f (φφφ∗k,u) = max

φφφ k,u∈GGG
f (φφφ k,u) (4.25)

Where GGG is the search space, which is defined as:

GGG =
{

qqq ∈ R3 : ∥qqq−qqqu(t−1)∥2 ≤Vth×TL
}

(4.26)

where qqqu(t − 1) is the position of u-th VR user in the previous time instant, Vth is the
maximum velocity of user movement, and TL is the time interval between two successive
localization instances.

To obtain φφφ
∗
k,u, we propose a gradient descent-based approach to find a more precise

value, which can be expressed as:

φφφ
i+1
k,u = φφφ

i
k,u +λ∇ f (φφφ i

k,u) (4.27)

Where φφφ
1
k,u = φφφ k,u(t − 1) represents the AoD corresponding to the user’s position at the

previous time slot, ∇ f (φφφ i
k,u) =

∂ f
∂φ

is defined as the gradient and λ is the predefined learning
rate. When ∇ f (φφφ i

k,u) ≤ ε , the iteration stops. Note that for a VR user at time slot t, the
location qqqu(t− 1) is taken as a priori knowledge. Consequently, a comprehensive spatial
search is required only at the initial time t0. The entire process of the proposed AoD
estimation algorithm is shown in Algorithm 1.
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Algorithm 5 AoDs Estimation Algorithm
1: Input: yyyk,GGG
2: Output: Estimated AoD φφφ

∗
k,u

3: Initialization: GGG, f (φφφ k,u(t−1)),λ ,ε
4: Set φφφ

1
k,u = φφφ k,u(t−1)

5: for i = 0,1,. . . , K do
6: Calculate φφφ

i
k,u based on Eq. (4.27)

7: while ∇ f (φφφ i
k,u)> ε do

8: Update φφφ
∗
k,u = φφφ

i
k,u

9: end while
10: end for

4.4.3 AoD-based Localization

Following the estimation of AoDs, we propose an iterative algorithm based on AoDs to
estimate the position of each UE. Based on Section III, the geometric relationship of the UE
position and AoDs can be expressed as:

φφφ
∗
k,u = arccos

(
(qqqk−qqqu)OOOk

∥qqqk−qqqu∥2

)
+ηηηk,u (4.28)

where φφφ
∗
k,u is the estimated AoD from k-th RIS to u-th VR user, OOOk ∈ SO(3) is the orientation

matrix for k-th RIS, and ηηηk,u is the estimation error. With knowledge of the RIS locations,
the AP uses beamforming to communicate through a specific RIS in each time slot. As
shown in Fig. 5.4, since the position of the VR user qqqu is a three-dimensional coordinate, we
can estimate the location of the VR user when there are AoDs from three different RIS. By
iterating through NNN,(NNN = 3) selected RISs, the AP collects a set of estimated AoDs of u-th
VR user, denotes as

[
φφφ
∗
1,u,φφφ

∗
2,u, . . . ,φφφ

∗
NNN,u
]
.

To obtain an accurate estimation of qqqu, a least square criterion is applied, which can be
denoted as:

(P2) min
NNN

∑
n=1
∥φφφ∗n,u−φφφ n,u(qqqu)∥2

2

s.t. qqqu ∈ SSS

(4.29)

where φφφ n,u(qqqu) is the actual AoD from n-th RIS to u-th VR user. To solve the above
optimization problem (P2), we apply Taylor-series estimation method. Without loss of
generality, we assume that the actual positions for the UE are uniformly distributed around
the estimated location q̂qqu [82]. With an initial estimation location q̂qqu, we can iteratively
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obtain a more precise location for the UE based on the following formulation:

φφφ n,u(qqqu)≈ φφφ n,u(q̂qqu)+(qqqu− q̂qqu)
T

∇φφφ n,u(q̂qqu) (4.30)

where ∇φφφ n,u(q̂qqu) is the gradient at the estimation position φφφ n,u(q̂qqu). Therefore, the corre-
sponding mean squared error (MSE) can be expressed as:

∆(φφφ)≈ AAAT
∆(qqqu)+ηηηn (4.31)

where ηηηn = [η1, . . . ,ηn], ∆(qqqu) = q̂qqu−qqqu, and

∆(φφφ) = [φ∗1 −φ1(q̂qqu), . . . ,φ
∗
NNN−φNNN(q̂qqk)] (4.32a)

AAA = [∇(φ1(q̂qqu)),∇(φ2(q̂qqu)) . . . ,∇(φNNN(q̂qqu))] (4.32b)

Therefore, the MSE of the position can be expressed as:

LLL(∆(qqqu)) = (AAAAAAT )−1AAA∇(φφφ) (4.33)

Following Eq. (4.33), we update the estimated position of qqqu based on:

q̂qqu← q̂qqu +LLL(∆(qqqu)) (4.34)

Repeat this process until LLL(qqqu)< ζ , where ζ is the predefined threshold. The entire process
is summarized as Algorithm 2. Note that while the algorithm is described for positioning
a single user, it is designed to be run by the VR client. Algorithm 2 allows all users in the
system to perform the positioning process in parallel, enabling the simultaneous localization
of all users.

4.4.4 Boundary of Localization

Based on the system model introduced above, the unknown parameters of the UE location qqqu

can be represented as:
ξξξ u = [θθθ u,φφφ u,αααu]

T ∈ R6K (4.35)

where θθθ u =
[
θ1,u,θ2,u, . . . ,θk,u

]T ∈R2K and φφφ u =
[
φ1,u,φ2,u, . . . ,φk,u

]T ∈R2K are the AoAs
and AoDs from all RISs to u-th UE, and αααu = [ℜ(ᾱ1,i) ,ℑ(ᾱ1,u) , . . . ,ℜ(ᾱK,u) ,ℑ(ᾱK,u)]

T ∈
R2K is the path gain.
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Algorithm 6 AoD-based Localization Algorithm

1: Input: Positions of all RISs qqqk(k ∈ K), position of the AP qqqp, estimated AoDs φφφ n,u,(n ∈
NNN), threshold ζ

2: Initialization: The initial position q̂qqu
3: repeat
4: With the given q̂u, generate φφφ n,u(q̂u), for all n ∈ NNN according to Eq. (4.32a) and A

according to Eq. (4.32b).
5: Find the least square estimate of ∆(qu), i.e.,
6: LLL(∆(qu)) = (AT A)−1A∆φφφ

7: Update q̂u, i.e., q̂u← q̂u +LLL(∆(qqqu))
8: until ∥∆p∥2 < ζ

Let ξ̂ξξ u represents the unbiased estimate of ξξξ u, the MSE of ξ̂ξξ u is subject to the following:

E
{(

ξ̂ξξ u−ξξξ u

)(
ξ̂ξξ u−ξξξ u

)H
}
⪰ JJJ(ξξξ u) (4.36)

where JJJ(ξξξ u) ∈ R6K×6K is the FIM matrix of ξξξ k. The element (m,n) of JJJ(ξξξ u) is defined as:

[JJJ(ξξξ u)]m,n ≜ E
{
−∂ 2 ln p(yyy|ξξξ u)

∂ξm∂ξn

}
(4.37)

where ln p(yyyu|ξξξ u) is the likelihood function.
For a random vector yyyk ∼CCCNNN(µµµk,ΣΣΣk), the element at position (m,n) can be expressed

as:

[JJJ(ξξξ )]m,n = 2ℜ

{
∂ µµµH

k
∂ξm

ΣΣΣ
−1
k

∂ µµµk
∂ξn

}
+ℑ

{
ΣΣΣ
−1
k

∂ΣΣΣk

∂ξm
ΣΣΣ
−1
k

∂ΣΣΣk

∂ξn

} (4.38)

Based on Lemma 1, the JJJ(ξξξ u) is defined as:

JJJ(ξξξ u) =
2

σ2

N

∑
t̄=1

ℜ

{
∇ξξξ k

µµµk,t̄

(
∇ξξξ k

µµµk,t̄

)H
}

(4.39)

To estimate the position of UEs, we also defined the parameters of the UE position as
ρρρk = [qqqk,ψψψk,αααk]

T ∈ R3+4K . The corresponding FIM matrix can be indicated as JJJ(ρρρk) =

TTT kJJJ(ξξξ k)TTT
T
k , where TTT k ∈ R4K+3 is the Jacobian matrix, defined as [TTT k]m,n = ∂ [ξξξ k]m/∂ [ρρρk]n

which can be calculated using the geometric relationship described in Section III.
In summary, the CRLB to determine the positions of the k-th UE can be described as

the first 3×3 diagonal block for the trace of the inverse of the matrix, which is specified as
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follows:
CRLB = tr[JJJ−1 (ρρρk)]1:3,1:3 (4.40)

where CRLB corresponds to the upper limit of the system’s positioning accuracy.

4.4.5 Location-based Beamforming

Due to the interdependence of the AP beamforming matrix www, the codebook of RIS CCC, and
the users’ beamforming vector mmm, directly addressing problem (P0) presents a significant
challenge. A two-step approach is proposed to optimize QoE by determining the VR user’s
location. Initially, Step I involves selecting the optimal RIS for reflection based on geometric
relationships and optimizing the beamforming matrix of AP. Subsequently, Step II focuses
on establishing the beam alignment of RISs and VR users to enhance the VR user’s QoE.
The details of Step I and Step II are described as follows.

Step I - Optimal RIS selection The mobility of VR users results in changing positions
over time, which complicates the selection of the appropriate RIS, as shown in Fig. 4.1. For
any given time block t, the path loss from the AP to the u-th VR user via the k-th RIS is
given by:

PLu
k(t) =

((
λ

4π

)4 GpGkGuF(θθθ p,k)F(φφφ k,u)∥∥qqqp,k
∥∥2

2

∥∥qqqk,u
∥∥2

2

)−1

(4.41)

Using the estimated VR user position q̂qqu(t), we can calculate the path loss PLu
k(t) through

the k-th RIS. Therefore, we acquire a set
{

PLu
1(t),PLu

2(t), . . . ,PLu
K(t)

}
, indicating the path

losses through different RIS for u-th VR user at t-th time block. Comparing these path losses
allows us to select the RIS qqq∗u(t) with the minimum loss as the optimal communication path
for the u-th VR user during that time block. Knowing which RISs are in use, we optimize
the AP’s beamforming matrix www. The positions of the selected RISs guide us in precisely
directing the AP’s beamforming, simplifying the optimization of www. This process ensures the
AP’s beamforming vectors are aligned with the directions of the chosen RISs, enhancing the
signal transmission path for improved signal strength and quality at the VR user’s end.

Step II - Fast beam selection Once the AP’s beamforming matrix www has been determined,
we can further optimize the beamforming direction of RISs and VR users. Utilizing the
VR user’s positional information allows us to narrow the search for suitable codewords in
the beam alignment process, effectively reducing latency. At t-th time block, the estimated
position of u-th VR user can be denoted as q̂qqu(t) = qqqu(t)+ΣΣΣt , where ΣΣΣt represents the
estimation error of t-th time block. According to [12], we assume that actual position of VR
user qqqu(t)∼ N(q̂qqu(t),ΣΣΣt), where N(·) represents the Gaussian distribution. Therefore, the
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Algorithm 7 Location-based Beamforming for VR Users

1: Input: t, q̂qqu(t), ΣΣΣt , CCC
2: Output: Optimized www, cccl , mmm

Step I: Optimal RIS Selection
3: for each VR user u at time block t do
4: Calculate path loss PLu

k(t) for each RIS k according to Eq. (4.41)
5: Determine qqq∗u(t) with minimum PLu

k(t)
6: end for
7: Optimize AP’s beamforming matrix www using selected RISs

Step II: Fast Beam Selection
8: for each selected RIS at time block t do
9: Estimate scan space SSS

′
(t) using q̂qqu(t) and ΣΣΣt

10: for each codeword cccl in SSS
′
(t) do

11: Scan the SSS
′
(t) for each VR user and corresponding RIS

12: end for
13: Select optimal cccl and mmm for RIS and VR user
14: end for

scan space for each selected RIS of t-th time block can be denoted as:

SSS
′
(t) = {cccl ∈CCC | l ∈ [lmin, lmax]} (4.42)

where

lmin = max
(
1,⌊L ·F(q̂qqu(t)−σangle)⌋

)
(4.43)

lmax = min
(
L,⌈L ·F(q̂qqu(t)+σangle)⌉

)
(4.44)

Where F(·) denotes the function that maps the estimated user position’s angular change to
the codeword indices in the codebook, σangle represents the standard deviation of the angular
variation caused by the positional estimation error ΣΣΣt . After defining the scan space SSS

′
(t) for

each time block, we achieve beam alignment for every VR user by scanning within SSS
′
(t).

This critical step ensures the QoE by aligning beams with the users’ current positions and
their chosen RIS. The system automatically repeats this process whenever there is a change
in user position, maintaining the quality of communication. The entire process is summarized
as Algorithm 3.

Complexity Analysis: The computational complexity of the proposed algorithm mainly
depends on the localization algorithm. Within the localization algorithm, the gradient
calculation determines the complexity, which can be expressed as OOO(KNpNkNuN), where K
is the iteration number. The beam selection complexity is OOO(1) based on the localization.
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Table 4.1 Simulation Parameters

Parameters Values
Communication frequency fo 30 GHz

Antenna gain of AP Gp 20 dbi
Antenna gain of UE Gu 4 dbi

The boresight gain of RIS Gk 6 dbi
Number of antennas in AP Np 4
Number of antennas in UE Nu 2
Number of antennas in RIS Nk 6×6

Location of AP qqqp [0,5,2]

Position of RISs qqqk
[3,10,1] ,[7,10,1]
[3,0,1], [7,0,1]

AP transmit power 30 dBm
Noise power σ2 -85 dbm

4.5 Simulation Results

In the multi-RIS-assisted mmWave VR scenario, the QoE for VR users is significantly
influenced by three main factors: the accuracy of position estimation, the latency of VR
interaction, and the downlink transmission rate. We conduct extensive and comprehensive
experiments in this section to demonstrate the efficacy of our proposed multi-RIS-assisted
mmWave VR system.

4.5.1 Simulation Scenario and Settings

In our simulation of a multi-RIS-assisted wireless VR system, we depict an indoor environ-
ment measuring 10m×10m×2m. A single AP, positioned at [0,5,2], caters to two VR users
with four RISs. These RISs are strategically placed at [3,10,1], [7,10,1], [3,0,1], and [7,0,1].
Each RIS features a 6×6 UPA of elements. The AP has four ULA antennas (Np = 4), while
each UE includes two antennas (Nu = 2). The VR users’ movements are confined to the x−y
plane, adhering to the VRMM. Initially, each UE is positioned at a distinct starting location
and moves randomly through the space. For comprehensive details, refer to Table I for the
simulation parameters.

4.5.2 Performance of AoD-based Positioning

In our experimental evaluation, we analyze the localization performance using the root mean
square error (RMSE) as a metric to quantify the accuracy of position estimation, which can
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be defined as:

RMSE = E

{√
1
U

U

∑
u=1
∥q̂u−qu∥2

}
(4.45)

Where U is the number of VR users, this formula calculates the average distance between
the estimated positions q̂u and the actual positions qu of the VR users, providing a precise
measure of the estimation accuracy.
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Fig. 4.6 The accuracy of the proposed AoD-based positioning algorithm versus transmit
power.

We evaluate the localization performance by comparing the two-dimensional multiple
signal classification (2D MUSIC) algorithms [84], which localizes users by analyzing the
spatial spectrum, with our proposed AoD-based positioning method.

Fig. 5.5 demonstrates how the RMSE of localization varies with transmit power for
different numbers of RISs used in positioning users. It is evident that the AoD-based
positioning method consistently surpasses the 2D MUSIC algorithm at all transmit power
levels and, with any number of RISs, closely approaches the CRLB at higher power values.
The AoD-based positioning method demonstrates superior accuracy over the 2D MUSIC
algorithm because it directly utilizes the geometric information of the AoD, which is less
susceptible to the noise and interference that typically affect spectral estimation methods.
The CRLB represents a theoretical minimum variance for any unbiased estimator, serving
as a benchmark for evaluating the RMSE. As transmit power increases, the SNR improves,
leading to more precise localization. Simultaneously, using more RISs for positioning
introduces additional reflective paths, thereby increasing the accuracy of the localization
process.
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Beam training 

with localization
Exhaustive beam 

sweeping 

Fig. 4.7 Alignment rate comparison between the proposed localization-based beamforming
and exhaustive beam sweeping.

Fig. 5.6 compares our proposed location-based beam selection method against the
exhaustive beam sweeping approach. Exhaustive beam sweeping involves iterating through
every codeword in the RIS codebook without user location information, with the codebook
size set at 256. Utilizing positional information, our method effectively reduces the search
space, markedly improving alignment rate efficiency. This improvement is highlighted by
the sharp initial slope, indicating rapid achievement of near-optimal alignment with shorter
training length. In contrast, exhaustive beam sweeping undertakes a complete search through
the codebook’s codewords, resulting in a slower incremental improvement in alignment rate.
The findings underscore our method’s advantage in speed and efficiency, which is crucial for
mmWave VR systems that demand quick and accurate beam alignment.

4.5.3 Performance of Our Proposed Algorithm
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(a) Random RIS phase shift
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(b) Fixed beamforming direction
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(c) Our proposed algorithm

Fig. 4.8 Comparison of VR user SNR under different RIS optimization algorithms.
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In this subsection, we detail the outcomes of numerical experiments conducted to validate
the efficacy of our proposed localization-based beam selection algorithm within a multi-RIS-
assisted wireless VR system. To benchmark our algorithm’s performance, we compare it
against a selection of algorithms, detailed as follows:

• AO with perfect CSI: adaptive optimization (AO) [19] with perfect CSI is considered
as the upper bound for performance comparison. It operates assuming complete and
accurate CSI, allowing for optimal beamforming and serving as an ideal benchmark.

• Exhaustive beam sweeping: The exhaustive beam sweeping method uses a discrete
Fourier transform (DFT) codebook to perform spatial scanning. Due to the lack of user
location information, it is constrained to a smaller codebook size, which reduces the
beamforming effectiveness.

• Single RIS: This approach involves the deployment of a single RIS in the environment,
which is designed to compare the performance of multi-RIS and single-RIS.

• Random RIS: The random RIS method serves as the performance lower bound in our
comparison, where the RIS elements are assigned random phase shifts.
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Fig. 4.9 The effect of the transmit power on the average QoE and average VR latency in the
proposed multi-RIS-assisted mmWave wireless VR network.

Initially, we evaluate our proposed algorithm’s performance in a scenario where VR
users randomly move within space SSS, utilizing a multi-RIS-assisted mmWave VR system.
This evaluation seeks to determine the algorithm’s adaptability to dynamic changes in user
positions. We introduce three distinct scenarios for this purpose: (1) Random RIS phase
shift, indicating that each RIS’s configuration is random, reflecting signals in all directions
with low gain; (2) Fixed beamforming direction, where the RISs’ beamforming direction is
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constant, unaffected by changes in users’ positions; and (3) Our proposed algorithm, which
dynamically adjusts the RIS beamforming direction based on VR users’ locations.

As shown in Fig. 4.8, we show the user’s SNR at 30 locations. According to [1], the
minimum SNR required to meet the needs of VR users is established at 20 dB. The results
show that the fixed RIS beamforming can improve the SNR of VR users compared with the
random RIS phase shift. However, due to the mobility of users, there are still some locations
where the SNR is below 20 dB. Our proposed method allows accurate beam alignment to be
maintained even during the user’s movement by localization. Fig. 4.8 shows the importance
of localization and highlights that our proposed algorithm can provide high SNR performance
in all locations, thereby enhancing the QoE of VR users.
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Fig. 4.10 The effect of the number of RIS element on the average QoE and average VR
latency in the proposed multi-RIS assisted mmWave wireless VR network.

Fig. 5.7 shows the impact of transmission power Pt on the average QoE and latency
in a multi-RIS-assisted mmWave VR system. Increasing transmit power enhances the
average QoE for all strategies, with our approach surpassing others and closely matching the
performance of AO with perfect CSI. This underscores the effectiveness of higher transmit
power in improving VR users’ QoE. The low QoE with the random RIS strategy underscores
the need for accurate beam alignment in mmWave VR systems. Additionally, the single RIS
strategy’s difficulty localizing and tracking users due to limited reflection paths results in
lower QoE. Fig. 9(b) examines how transmit power Pt affects average VR latency. Higher
transmit power reduces latency across all methods thanks to faster downlink transmission
rates that meet a VR interaction delay limit of 20ms. Our algorithm enhances beam alignment
speed in dynamic environments, reducing VR latency. In contrast, the Single RIS and Random
RIS strategies face challenges in beam alignment due to user movement, leading to higher
latency. Also, the exhaustive beam-sweeping strategy, which scans the entire environment,



4.5 Simulation Results 73

leads to more significant latency than our method. These findings highlight our algorithm’s
capability to maintain high QoE for VR users at different transmit power levels.

Fig. 5.8 demonstrates how increasing the number of RIS elements influences the average
QoE and latency in a multi-RIS-assisted mmWave VR system. As shown in Fig. 10(a),
a marked enhancement in average QoE is observed with a higher count of RIS elements.
Our method outperforms the benchmarks, closely emulating the outcomes achieved by
AO with perfect CSI. This improvement stems from the augmented path gains and more
focused beams provided by the additional RIS elements, facilitating the dynamic adaptation
of beam directions to users’ locations and, thus, elevating VR users’ QoE. Nonetheless, a
more significant number of RIS elements also escalates the complexity of the optimization
challenge, underscoring the importance of judiciously determining the optimal quantity of
RIS elements. Fig. 10(b) illustrates that average VR latency diminishes with increased RIS
elements. This latency reduction is attributed to our approach’s capacity for swift and precise
beam alignment, boosting downlink transmission rates and curtailing latency to adhere to
the VR interaction delay benchmark of 20ms. Conversely, strategies involving a Single RIS
or Random RIS configurations falter in beam alignment amid user movements, leading to
protracted latencies. Moreover, the exhaustive beam sweeping method, necessitating a scan
of the entire environment, incurs additional delays compared to our streamlined approach.
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Fig. 4.11 The effect of the number of VR users on the average QoE and average VR latency
in the proposed multi-RIS-assisted mmWave wireless VR network.

Fig. 5.9 illustrates the impact of the number of VR users on the average QoE and
latency within a multi-RIS-assisted mmWave VR system. As depicted in Fig. 11(a), there
is a noticeable decline in the average QoE as the user count increases due to the shared
wireless resources and escalating interference among users. Despite this challenge, our
proposed method consistently outperforms other strategies, offering a level of QoE that
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nearly parallels that of the AO with a perfect CSI approach. Fig. 11(b) reveals that average
latency for VR users increases with the number of users. This rise in latency is attributed
to the augmented interference stemming from a higher user density, which diminishes the
efficiency of downlink communication, thereby extending latency. Compared to competing
algorithms, excluding the AO with perfect CSI, our methodology exhibits the lowest latency,
affirming its efficacy in environments populated by multiple users.

4.6 Conclusion

This paper introduced a localization-based beamforming algorithm to optimize the QoE for
VR users in an indoor, multi-RIS-assisted mmWave VR system. The proposed algorithm
ensures a stable wireless connection with high transmission rates, addressing blockages
and user mobility effectively. Initially, an AoD-based localization algorithm was developed
to accurately estimate the real-time locations of VR users, facilitating dynamic movement
tracking. Leveraging this precise location data, our approach employs a novel, rapid beam
alignment technique to enhance VR users’ QoE under VR interaction latency constraints.
Simulation results show that our proposed beam selection strategy achieves a 95% beam
alignment success rate. Even with imperfect CSI, our localization-based beamforming
algorithm performs comparably to the benchmark set by perfect CSI. Additionally, it was
observed that increasing transmission power and the number of RIS elements improves QoE,
whereas a higher number of VR users tends to diminish it. Importantly, the RIS-assisted
network demonstrated here is particularly suited for consumer electronics applications,
offering significant potential for various mobile communication scenarios.



Chapter 5

QoE Optimization for Mobile Users
Based on User Movements for IoRT
Scenario

With the evolution of robotics and Internet of things (IoT) technologies, the Internet of robotic
things (IoRT) has emerged as novel technological paradigm, attracting widespread attention
from academic and industrial communities [60]. IoRT is considered as a potential solution for
improving human life quality, introducing more intelligent, autonomous systems that alleviate
the human burden of engaging in dangerous and monotonous tasks [61, 94]. To realize this
vision, we still face some unique challenges, including how to support intelligent AI models
on robots with limited resources such as computing and barriers, high transmission rate under
unstable wireless channels, high accuracy sensing even under dense obstacle environments,
and how to maintain the seamless connection for multiple robots in a dynamic environment
[32]. Unlike general IoT systems, IoRT requires real-time sensing and decision-making
capabilities in dynamic and often unpredictable environments, which necessitates a high
level of integration between sensing, computing, and communication. [33]

To tackle these challenges, integrated sensing, computing and communication (ISCC),
emerging as a breakthrough technology of 6G, can be a promising enabler for IoRT, enabling
low latency, high transmission rate and high reliability [23]. By integrating communications
and sensing capabilities and offloading computational tasks to mobile edge computing
(MEC), ISCC allows for real-time data processing and decision-making at the network’s
edge, reducing latency and improving spectral efficiency and power consumption for IoRT
systems [20]. However, the high frequency of 6G signals leads to severe propagation
attenuations and reduces their ability to bypass obstacles, which results in unstable wireless
links between IoRT devices and MEC [47]. In practical scenarios, obstacles like buildings
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and trees can block the line-of-sight (LoS) channel between IoRT devices and MEC, leading
to increased offloading delays in MEC and reduced sensing accuracy, thereby compromising
ISCC’s performance [59].

Fortunately, reconfigurable intelligent surface (RIS) sheds light on the above challenge
by establishing LoS links, thereby enhancing the quality of wireless channel [49]. RIS
consists of a digital controller and an array of massive passive elements, which is capable
of dynamically adjusting phase shifts in response to incident electromagnetic waves. From
one perspective, RIS has been proved to enhance the transmission rate by improving the
wireless channel, significantly reducing offloading delays in MEC scenarios. Specifically, the
author of [34] proposed a joint optimization algorithm to minimize the offloading latency in
RIS-assisted MEC framework. The authors of [77] focused on reducing the system delay in
multi-RIS-assisted MEC scenarios where RIS was adopted to enhance the transmission rate.
The author of [16] presented a double-RIS-assisted offloading scheme for non-orthogonal
multiple access (NOMA) MEC to reduce the offloading and transmission time. From another
perspective, existing studies have also shown that RIS can play an important role in improving
the accuracy of user sensing and tracking. In specific, the author of [13] introduced the
utilization of RIS in an integrated sensing and communication (ISAC) system to enhance
detection and localization accuracy, by improving the received signal strength in receiver.

It is important to note that with the rapid development of RIS-assisted MEC networks
and RIS-assisted ISAC systems, the performance of RIS-assisted ISCC systems has also
garnered significant research attention, demonstrating potential enhancements in integrated
communication, sensing, and computational capabilities. The authors of [74] employed
RIS to facilitate the task offloading process between users and MEC, and an algorithm
was proposed to minimize the system delay. In [85], the RIS was employed as a passive
information carrier in an ISCC system, and the results showed that the proposed framework
could enhance the weighted throughput capacity performance.

Motivated by the aforementioned considerations, this paper introduces a RIS-enabled
ISCC system tailored for IoRT scenarios, where the RIS is deployed to enhance the wireless
transmission rate for offloading local tasks to MEC, thereby improving the reliability and
reducing latency of robotic operations in complex environments. The main contributions of
this paper are summarized as follows.

• We propose an RIS-enabled ISCC system for IoRT scenarios, where RIS is employed
to enhance the transmission rate of task offloading process. In our proposed network,
we aim to enhance QoS of ISCC system by jointly optimizing the communication
precoding matrix of BS, the phase shift matrix of RIS, the offloading volume, the edge
computing resource allocation, and sensing beamforming matrix of robot.
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• A block coordinate descent (BCD) based algorithm is introduced to decouple the
QoS optimization problem into two sub-problems. These are named as follows: the
minimization of computing latency in stage-I and the maximization of transmission rate
and sensing accuracy in Stage-II. Specifically, in stage-I, the minimization computing
latency problem is solved by applying KarushKuhn-Tucker (KKT) conditions and
the bisection search. In stage-II, we first utilize the alternating optimization (AO)
algorithm to further decompose the problem. Through iterative optimization, we
identify an approximate optimal configuration of the RIS and BS beamforming vectors
to maximize the communication rate. Additionally, we introduce a codebook-based
global scanning strategy to enhance the perceptual accuracy of the robots.

• Extensive simulations are conducted to verify the effectiveness of the proposed RIS-
enabled ISCC system for IoRT scenarios and the advantages of employing RIS.

5.1 Related Work

RIS, known for its capabilities to control the propagation for wireless signals, is employed to
enhance the performance of IoT system. In [97, 37, 5, 95], the coverage, reliability, trans-
mission rate, and energy consumption of RIS-assisted network were analyzed. Specifically,
the authors of [97] introduced a weighted gradient descent algorithm for jointly optimizing
the positions and orientations of RISs to maximize the wireless network coverage. In [37],
the reliability of RIS-assisted NOMA IoT system was investigated, and the result indicated
that the integration of RIS can effectively improve the reliability of network. The authors
of [5] investigated RIS-assisted multi-user indoor communications, and a majority voting
optimization method was proposed to optimize the configuration of RIS. Experimental re-
sults indicated that the average received signal strength increased by 9.5 times compared
to scenarios without RIS. In [95], the authors deployed RIS on a IoT system to minimize
the energy consumption by jointly optimizing the passive beamforming of RIS, the active
beamforming of BS and user association. However, the above works have primarily focused
on leveraging RIS to enhance the communication performance of IoT systems, ignoring the
immense potential of 6G signals in integrated sensing, computing, and communication.

Some works have demonstrated the effectiveness of RIS in enhancing the performance of
ISCC systems [30, 101, 36, 81]. Specifically, the authors of [30] proposed a two-timescale
transmission design for multiple RIS-assisted ISAC system, where RIS not only improved
the transmission rate, but also enhanced the sensing accuracy. In [101], the potential of
employing active RIS in ISAC system is explored, and focused on optimizing transmit
beamformers, RIS reflections, and radar receive filters to maximize radar SNR and maintain
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communication SINR. In [36], the authors investigated the performance of RIS-assisted ISAC
system and maximized the average achievable capacity through joint optimization of the time
resource allocation between sensing and communication at the BS and the precoding matrix
at the RIS. The authors of [81] deployed RIS on dual-functional unmanned aerial vehicle
(UAV)-enabled ISAC system to enhance the weighted sum of average sum-rate and SNR
by optimizing the phase shift of RIS, the trajectory of UAV and the dual-functional-radar-
communication beamforming of the system. Nevertheless, these studies mainly focused
on optimizing phase shifters and beamforming vector to enhance the communication and
sensing performance of the network, overlooking how to effectively handle massive disturbed
ISAC data and utilize MEC to alleviate computational burdens and reduce computing latency
for users.

Moreover, the performances of RIS-assisted IoRT systems were further explored in
[57, 28]. Specifically, in [57], a novel RIS-assisted ISCC framework was introduced to
optimize resource allocation, improve reliability, and enhance data processing speeds. The
author of [28] utilized RIS to enhance the quality of wireless channel from users to MEC,
aiming to improve the energy efficiency of the RIS-assisted ISCC system. However, the
above works mainly concentrated on multi-input single-output (MISO) scenarios, which
may not align in the real-world application. While the state of art has investigated a wide
range of details in sensing and communications, the majority of these works fall short in
investigating the sensing accuracy. Therefore, in this work, we propose a RIS-enabled ISCC
system specifically tailored for IoRT scenarios, which optimizes sensing accuracy, computing
latency, and transmission speed simultaneously, thereby enhancing the performance of IoRT
systems.

5.2 System Model and Problem Formulation

5.2.1 Communication Model

In this paper, we consider an RIS-enabled ISCC system in IoRT scenarios as shown in Fig.
1, which consists of K robots with M antennas, an RIS with N reflective elements, and a
L-antennas BS linked to an MEC. In the proposed IoRT scenarios, we assume that each robot
is capable of performing target sensing while concurrently offloading computational tasks to
the BS via communication links. Due to the obstacles may block the LoS path from robots to
BS, RIS is deployed to enhance the communication rate during task offloading. We denote
the set of robots and elements of RIS as K = {1, . . . ,k, . . . ,K}, N = {1, . . . ,n, . . . ,N},
respectively. It is worth nothing that, in this paper, we make a reasonable assumption that
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Fig. 5.1 System model of RIS-enabled ISCC system for IoRT scenarios.

RIS does not have the impact of the sensing capabilities of robot due to the spatial separation
between the BS and the detection target.

By defining the communication channel from k-th robot to RIS, RIS to BS, and k-th robot
to BS as Hr,k ∈ CN×M, G ∈ CL×N and Hb,k ∈ CL×M, respectively, the channel matrix from
k-th robot to BS Hk can be represented as:

Hk = Hb,k +GΘΘΘHr,k ∈ CL×M (5.1)

where ΘΘΘ= diag
{

e jθ1, · · · ,e jθN
}
∈CN×N is the phase shift matrix of RIS and θn ∈ (0,2π],∀n∈

N . Therefore, the received signal of BS can be given by:

yb =
K

∑
k=1

Hkxk +nb ∈ CL×1 (5.2)

where xk ∈CM×1 is transmit signal of k-th robot, nb ∈CL×1∼C N
(
0,σ2

b IL
)

is the Additive
White Gaussian Noise (AWGN). The power constraint of k-th robot can be denoted as:

E
[
xkxH

k
]
≤ Pk,∀k ∈K (5.3)
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where Pk is the transmit power of k-th robot. Furthermore, the SINR of k-th robot can be
formulated as:

SINRk =

∥∥(GΘΘΘHr,k +Hb,k
)

wk
∥∥2

σ2
k +∑ j ̸=k

∥∥(GΘΘΘHr,k +Hb,k
)

w j
∥∥2 (5.4)

where wk ∈ CM×1 and σk are the precoding matrix and AWGN of k-th robot, respectively.
Therefore, the achievable off-loading rate of k-th robot can be expressed as:

Rk = B log2 (1+SINRk) (5.5)

where B represents the communication bandwidth.

5.2.2 Sensing Model

Based on the transmit signal xk, the received sensing signal of k-th robot can be formulated
as:

yk = αkaR
k (θk)aT

k (θk)xk

+
K

∑
j=1, j ̸=k

Hk, jx j +nk ∈ CM×1 (5.6)

where αk denotes the path loss of the sensing object positioned at θk, aR
k (θk) ∈ CM×1 and

aT
k (θk) ∈ C1×M represent the receive and transmit array response vectors for k-th robot,

respectively. These vectors describe how signals are received and transmitted at a specific
angle θk through an array of M antennas. Hk, j ∈CM×M denotes the channel matrix from k-th
robot to j-th robot, and nk ∈ CM×1 is the AWGN with the covariance of δ 2

d . Therefore, the
received sensing signal of k-th robot can be formulated as:

sk = ws,kyk (5.7)

where ws,k ∈ C1×M is the sensing received beamforming vector for k-th robot.
The effectiveness of the sensing can be evaluated by the radar SINR. Following the

implementation of receive beamforming, the radar SINR for k-th robot can be expressed as
follows:

βk =

∥∥ws,kαkaR
k (θk)aT

k (θk)xk
∥∥2∥∥∥ws,k ∑

K
j=1, j ̸=k Hk, jx j +nk

∥∥∥2 (5.8)

where βk is the radar SINR for k-th robot.
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5.2.3 Computing Model

According to [85], in RIS-assisted ISCC system, adopting a partial offloading strategy can
achieve a better performance compared to a binary offloading strategy. This strategy involves
processing a portion of the data locally using the computational resources of the robot, while
offloading the remaining data MEC via the RIS.

a) Local computation model: For k-th robot, let Dk, dk, ck and fk denote the total number
of bits in the computing task awaiting processing, the number of bits offloaded to the edge,
the number of CPU cycles required per bit, and the CPU frequency, respectively. Therefore,
the local computing latency for k-th robot can be expressed as T l

k = (Dk−dk)ck/ fk.
b) Edge computation model: The computational resources assigned to k-th robot are

denoted as f e
k , where ∑

K
k=1 f e

k ≤ f e
total representing the total processing capacity of MEC. It

is assumed that edge computing for k-th robot commences upon the reception of all dk bits
offloaded to the BS. The latency of entire edge computing process for k-th robot mainly
consists of Tk,u, Tk,c and Tk,d , which can be expressed as:

T e
k = Tk,u +Tk,c +Tk,d (5.9)

where Tk,u is the task offloading latency, Tk,c is the MEC computing latency and Tk,d is the
result feedback latency. It is important to know that size of feedback data is small, and
therefore, the feedback latency Tk,d can be considered negligible [7]. As a result, the edge
computing latency can be written as T e

k = Tk,u +Tk,c = dk/Rk +dkck/ f e
k .

In this paper, we consider the simultaneous execution of local and edge computing. Thus,
the total latency of k-th robot can be denoted as:

Tk =

{
T l

k , Tl
k > T e

k

T e
k , Otherwise

,∀k ∈K (5.10)

5.2.4 Problem Formulation

In the RIS-assisted ISCC system for the IoRT scenario, the performance is primarily deter-
mined by the following three indicators: the latency of computing Tk, the transmission rate
of communication Rk, and the accuracy of sensing βk. According to [24], the QoS of k-th
robot can be denoted as:

QoSk = F1 (Tk)F2 (Rk)βk (5.11)

where F1(x) = xmax−x
xmax−xmin

and F2(x) =
x−xmin

xmax−xmin
are two normalization method. From Eq.

(5.11), we can observe that lower computing latency can result in higher value of F1(Tk),
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thereby improving the QoS of the IoRT system. As the same, higher transmission rate and
sensing accuracy can also improve QoS of the RIS-enable ISCC system.

In practical scenarios, it is crucial to fully consider the hardware conditions and deploy-
ment environment of the system. However, this paper primarily focuses on the theoretical
aspects and simulation results, and does not delve into the practical deployment consider-
ations. In this paper, our objective is to enhance the QoS for robots in RIS-assisted ISCC
network, aiming to meet the high demands of robotic application in terms of real-time
communication and precise environment interaction. Specifically, we aim to jointly opti-
mize the communication precoding matrix W = {wk,∀k ∈K }, the sensing beamforming
matrix Ws =

{
ws,k,∀k ∈K

}
, the phase shift matrix ΘΘΘ = diag

{
e jθ1, · · · ,e jθN

}
∈ CN×N ,

the offloading volume d = [d1, · · · ,dK]
T, and the edge computational resource allocation

f =
[

f e
1 , · · · , f e

K
]T.

Thus, the optimization problem can be formulated as:

(P0) max
W,Ws,ΘΘΘ,d,f

K

∑
k=1

λkQoSk (12)

s.t. Tr
[
E
[
xkxH

k
]]
≤ Pk,∀k ∈K (5.12a)

βk ≥ βth,∀k ∈K (5.12b)

0 < θn ≤ 2π,∀n ∈N (5.12c)

∑
k∈K

f e
k ≤ f e

total (5.12d)

dk ∈ {0,1, . . . ,Dk} ,∀k ∈K (5.12e)

f e
k ≥ 0,∀k ∈K (5.12f)

where λk is the weight of k-th robot, βth is the sensing threshold. However, (P0) is a
multi-variable non-convex problem with a high degree of coupling between variables, solving
it remains a significant challenge. Therefore, we adopt a block coordinate descent (BCD)
method, decoupled the complex problem into several sub-problems.

5.2.5 Problem Decomposition

In the RIS-enabled ISCC system in IoRT scenarios, the QoS optimization problem can be
divided into two successive stages by employing BCD. In the first stage, given the passive and
active beamforming matrix {W,Ws,ΘΘΘ}, the offloading volume d and edge computational
resource allocation f are jointly optimized, with the constraints (12d), (12c) and (12e). In
the second stages, given the {v, f}, the passive and active beamforming matrix are optimized
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with constraints (12a), (12b) and (12c). In alignment with the two stages, the non-convex
problem (P0) is segmented into two sub-problems, namely minimizing the computing latency
Tk in stage-I and maximizing the communication transmission rate Rk and sensing accuracy
βk in stage-II. The two sub-problems can be expressed as:

Problem 1:Minimization computing latency of Stage-I

(P1) max
d,f ∑

k∈K
λkF1 (Tk) (13)

s.t. (12d), (12e), (12f) (5.13a)

Problem 2:Maximization transmission rate and sensing accuracy of Stage-II

(P2) max
W,Ws,ΘΘΘ

∑
k∈K

F2 (Rk)βk (14)

s.t. (12a), (12b), (12c) (5.14a)

Thus, by this way, the complex problem (P0) is effectively divided into two more
manageable sub-problems, (P1) and (P2), which are successfully addressed in Section IV.

5.3 QoS Optimization in RIS-assisted ISCC system in IoRT
scenarios

5.3.1 Minimization Computing Latency at Stage-I

In this section, a partial offloading approach is proposed to minimize the computing latency.
From (P1), it is evident that the computing latency T l

k and T e
k exhibit opposing responses

to increase in offloading volume dk. Specifically, T l
k decreases while T e

k increases as dk

grows. Therefore, to achieve the minimum value of Tk, an alternating optimization method is
employed. First, given an initial value of f, we optimize d to balance T l

k and T e
k according to

Eq. (5.10). Then, with the optimized d, we update and optimize f. This process is repeated
iteratively until convergence is achieved, ensuring that both f and d are optimally adjusted to
minimize the computing latency. The optimal value of dk can be calculated as:

d∗k =
DkRkck f e

k

f e
k f l

k +Rkck( f e
k + f l

k)
(5.15)
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where d∗k denotes the optimal value of offloading volume for k-th robot. Note that d∗k must
satisfy the constraint (12e). If d∗k meet the constraint, then the boundary of dk should chosen
as the optimal offloading strategy, which equals to a binary offloading strategy.

Following obtaining d∗k for each robot, the (P0) can be transform into:

(P3) min
f ∑

k∈K
λk

Dkck( f e
k +Rkck)

f e
k f l

k +Rkck( f e
k + f l

k)
(16)

s.t. (12d), (12f) (5.16a)

The problem (P3) is convex and satisfies the Karush-Kuhn-Tucker (KKT) condition. There-
fore, the Lagrangian function can be written as:

L (f,µ) = ∑
k∈K

λk
Dkck( f e

k +Rkck)

f e
k f l

k +Rkck( f e
k + f l

k)

+µ( ∑
k∈K

f e
k − f e

total)
(5.17)

where µ is the Lagrange multiplier. The optimal f e∗
k can be obtained when:

∇ f e
k
L =−

DkR2
kc3

kλk(
Rkck f l

k +Rkck f e∗
k + f l

k f e∗
k

)2 +µ
∗ = 0 (5.18a)

µ( ∑
k∈K

f e
k − f e

total) = 0 (5.18b)

∑
k∈K

f e
k − f e

total ≤ 0 (5.18c)

µ ≥ 0, f e
k ≥ 0 (5.18d)

When µ is given, we can obtain the optimal f k
e by solving:

max
f k
e∈(0, f e

total]
µ
∗( ∑

k∈K
f e
k − f e

total) (5.19)

which can be solved by binary search method. The overall process is summarized at Algo-
rithm I. The complexity is mainly influenced by the binary method, which can be denoted as
O(logn).
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Algorithm 8 Joint optimization of offloading volume and edge computing resource allocation

1: Input: Beamforming matrices ΘΘΘ, W, Ws

2: Output: Optimal edge computing resource allocation f =
{

f e∗
1 , · · · , f e∗

K
}T, offloading

volume d = {d∗1 , · · · ,d∗K}
T

3: Initialization: t = 0, f0, d0, maximum iterations tmax
4: Calculate d∗k using Eq. (5.15) for all k ∈K

5: repeat
6: Determine µ and update f (t+1)

e via binary method
7: t← t +1
8: until t = tmax or

∣∣T t
k −T t−1

k

∣∣< ε

9: Return: Optimal edge computing resource allocation f=
{

f e∗
1 , · · · , f e∗

K
}T and offloading

volume d = {d∗1 , · · · ,d∗K}
T

5.3.2 Maximization Transmission Rate and Sensing Accuracy at Stage-
II

This section introduces an optimization framework to solve problem (P2), where objective
function conversion and Alternative Optimization (AO) methods are applied. Given {f,d},
we first focus on enhance the communication performance with fixed Ws, which can be
formulated as:

(P4) max
W,ΘΘΘ

∑
k∈K

F2 (Rk) (20)

s.t. (12a), (12c) (5.20a)

However, due to the coupling between W and ΘΘΘ, problem (P4) remains non-convex. Conse-
quently, an AO method is employed to address this problem. In AO approach, we consider
W as a fixed parameter and find ΘΘΘ to optimize the objective function. Subsequently, with
ΘΘΘ fixed, we determine the optimal W to enhance the transmission rate. This iterative pro-
cess continues until convergence of the objective function is achieved. For simplicity, the
phase shifts φn of RIS are selected from a predefined set ΘΘΘb =

{
0, 2π

2b , . . . ,
2π

2b

(
2b−1

)}
.

Specifically, in this paper, b = 1.
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1) RIS phase shift optimization: Given the communication precoding matrix W, the
problem (P4) can be rewritten as:

(P5) max
ΘΘΘ

∑
k∈K

∥∥(GΘΘΘHr,k +Hb,k
)

wk
∥∥2

σ2
k +∑ j ̸=k

∥∥(GΘΘΘHr,k +Hb,k
)

w j
∥∥2 (21)

s.t. (12a), (12c) (5.21a)

To tackle this problem, we apply Fractional Program Quadratic Transform method [67] to
the objective function of (P5) and get equivalent optimization problem P(5.1) as follows:

(P5.1) max
ΘΘΘ,yk

log2

(
2yk
√

Ak(ΘΘΘ)− y2
kBk(ΘΘΘ)

)
(22)

s.t. θn ∈ (0,2π] ,n ∈N (5.22a)

yk ∈ R,k ∈K (5.22b)

where
Ak(ΘΘΘ) = ∑

k∈K

∣∣(GΘΘΘHr,k +Hb,k
)

wk
∣∣2 +σ

2
k (5.23)

Bk(ΘΘΘ) = ∑
j ̸=k

∣∣(GΘΘΘHr,k +Hb,k
)

w j
∣∣2 +σ

2
k (5.24)

When the phase shift matrix ΘΘΘ is fixed, the optimal yk can be obtained as:

y∗k =

√
Ak(ΘΘΘ)

Bk(ΘΘΘ)
(5.25)

Then, it is found that optimizing ΘΘΘ for given yk is a convex problem. Therefore, the problem
(P5.1) can be effectively solved by alternating optimization over ΘΘΘ and over the auxiliary
variables {yk}K

k=1.
2) Communication precoding matrix optimization: Given the phase shift matrix ΘΘΘ of RIS

and employing the Quadratic Transform method, the problem (P4) can be transformed into:

(P6) max
W,y1

∑
k∈K

f (W,y1) (26)

s.t. Tr
[
E
[
xkxH

k
]]
≤ Pk,∀k ∈K (5.26a)

y1,k ∈ R,∀k ∈K (5.26b)
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Algorithm 9 AO optimization for communication optimization

1: Input: Hk, δ , ε

2: Output: W, ΘΘΘ

3: Initialization: t = 0, ΘΘΘ0, W0, maximum iterations tmax
4: repeat
5: Calculate ΘΘΘt by solving (P5) with fixed Wt−1
6: Calculate Wt by solving (P6) with fixed ΘΘΘt−1
7: t← t +1
8: until t = tmax or |ΘΘΘt+1−ΘΘΘt |< ε and |Wt+1−Wt |< ε

9: Return: W, ΘΘΘ

where y1 =
{

y1,1, . . . ,y1,k
}

is a auxiliary vector. The formulation of f (W,y1) can be
expressed as:

f (W,y1) = ∑
k∈K

log2

(
2y1,k

√
|Hkwk|2

−y2
1,k

(
∑
j ̸=k

∣∣Hkw j
∣∣2 +δ

2
k

)
+1

) (5.27)

Given the fixed W, the optimal value of y1 can be calculated as:

y∗1,k = ∑
k∈K

√∣∣(Hr,kΘΘΘG+Hb,k
)

wk
∣∣2

σ2
k +∑ j ̸=k

∣∣(HkΘΘΘG+Hb,k
)

w j
∣∣2 (5.28)

It is important to note that after obtaining optimal y1, the optimization problem of W is
convex, which can be solved by convex optimization method.

By implementing the AO method and iteratively updating W and ΘΘΘ, we can obtain
approximate optimal solutions for W and ΘΘΘ. The procedure is encapsulated in Algorithm 2.

Given {W,ΘΘΘ}, we then focus on optimizing Ws of robots to enhance the sensing accuracy.
The problem (P2) can be rewritten as:

(P7) max
Ws

∑
k∈K

∣∣ws,kαkaR
k (θk)aT

k (θk)xk
∣∣2∣∣∣ws,k ∑

K
j=1, j ̸=k Hk, jx j +ηk

∣∣∣2 (29)

s.t. βk ≥ βth,∀k ∈K (5.29a)

Due to signal interference among multiple robots, we employ a codebook-based ap-
proach to enhance the perceptual accuracy of the robots. Let us consider a codebook
Ck =

{
c1,k, . . . ,ck,l, . . . ,ck,L

}
, with each codeword ck,l ∈ CM×1 denotes a specific sensing

beamforming matrix of k-th robot [53]. Without loss of generality, we assume that each
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Algorithm 10 Optimization of Communication Strategy
1: Input: Ck, W, ΘΘΘ

2: Output: Ws
3: Initialization: l = 0, W0

s , maximum iterations L, β ∗k = 0
4: repeat
5: Calculate β l

k by scanning Ck according to (P8)
6: if β l

k ≥ β ∗k then
7: β ∗k ← β l

k
8: end if
9: l← l +1

10: until l = L
11: Return: c∗

codeword in the codebook exhibits a degree of spatial directivity, meaning that the resulting
sensing beamforming matrix is only capable of maximizing when aligned with a specific
(narrow) angle. Therefore, by iteratively scanning all the codewords ck,l ∈ Ck, the k-th robot
is able to scan the space with a given spatial resolution and detect target objects using wireless
signals. By employing a predefined set of codewords, each representing a specific spatial
directivity, we can quickly determine the optimal configuration through iterative scanning.
This approach ensures that the robots can efficiently and accurately detect target objects,
even in dynamic and complex environments. The problem (P7) can be transformed into:

(P8) max
Ws

∑
k∈K

βk(ws,k) (30)

s.t. βk ≥ βth,∀k ∈K (5.30a)

ws,k ∈ Ck,∀k ∈K (5.30b)

By iterating through all the codewords, the angle corresponding to the codeword with the
highest received signal strength is considered to be the direction where the target object is
located. The overall process is summarized as algorithm 3.

5.4 Simulation Results

In this section, we conduct extensive simulation experiments to validate the performance of
our proposed RIS-enabled ISCC system in IoRT scenarios. In the RIS-enabled ISCC system
for IoRT scenarios, the QoS performance metrics are mainly influenced by transmission rate,
the computing latency, and sensing accuracy. Therefore, we investigate the affect of system
settings to QoS performance metrics, including the quantity of robots K, the quantity of



5.4 Simulation Results 89

(0,0)

RISBS

Target 2

Robot 1

Robot 2

Target 1

Y(m)

X(m)

(50,0)

(90,30)

(90,50)

(100,-20) (135,-20)

Fig. 5.2 Simulation scenario for RIS-assisted ISCC in IoRT.

RIS element N, the edge computing capability f e
total . To deliver a thorough assessment, we

choose several benchmark schemes compared with our proposed method.

• Proposed Method: This legend denotes the proposed joint optimization approach
for the RIS-assisted ISCC in IoRT scenarios, in which the transmission matrix, the
offloading volume, the edge computing resource allocation, the sensing beamforming
matrix of robot and the phase shift of RIS are jointly optimized.

• No-Passive: This legend means that the simplified optimization approach for the
RIS-assisted ISCC in IoRT scenarios, in which the passive beamforming matrix of RIS
is random generated, while other optimization methods remain unchanged.

• No-Offloading: In this benchmark, robots can not offloading tasks to MEC and only
can finish computational task in local, while other optimization parts is same.

• No-RIS: To validate the impact of RIS on enhancing the wireless transmission rate in
ISCC systems, in this comparative optimization scheme, we have removed the RIS,
and communication between the robots and the BS is conducted solely via LoS links.

• No-Active: In this optimization benchmark, we randomly generate the communica-
tion beamforming matrix, aiming to investigate the impact of active beamforming.

Unless specified differently, the simulation parameters are as follows. As illustrated
in Fig. 5.2, the BS with the number antennas L = 4 and RIS with the number of element
N = 32 are located at [0, 0] and [50, 0],respectively. We assume that two robots with the
number of antenna M = 2 are located at [90, 30] and [100, -20], with corresponding target
at [90, 50] and [135,-20], respectively. The transmit power of each robot is 0 dbW, the
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Fig. 5.3 The convergence of the proposed algorithm via different RIS elements N.

available bandwidth B = 1GHz. The CPU cycles required for processing each bit set as
ck = 500 cycle/bit, and the total computing resource of MEC is f e

total = 5×109cycle/s.
Fig. 5.3 depicts the convergence of the Proposed Method with respect to the number of

iterations for three different RIS element numbers, specifically N = 16, N = 24, and N = 32.
It is evident from the Fig. 5.3 that the QoS metric approaches its peak rapidly, indicating
that the system achieves optimal performance within a few iterations. Additionally, the
convergence profiles for the various system sizes show a high degree of overlap, suggesting
that the QoS metric is robust to changes in the system size within the range considered.

Fig. 5.4 shows the variability in the performance of Proposed Method by displaying the
average QoS for ten different channel realizations, each associated with distinct computational
tasks, indexed from 1 to 10. For every channel realization, optimization variables were
initialized 100 times at random, with the solutions calculated using the prescribed algorithm.
The figure delineates the span between the Max and Min average QoS achieved across these
iterations. Max corresponds to the least favorable outcome, whereas Min is indicative of an
approximation to the optimal QoS. The pattern observed in the Fig. 5.4 suggests that the
spread between Max and Min is consistent across different realizations, pointing to a stable
performance of the algorithm under varied initial conditions.

Fig. 5.5 illustrates the impact of the number of robots K on both the average QoS and
computing latency in the considered RIS-assisted ISCC system. In Fig. 5(a), as K increases,
there is a notable decrease in average QoS for all strategies, which signifies a decline in
service quality with more robots in the network. Similarly, Fig. 5(b) reveals that the latency



5.4 Simulation Results 91

2 4 6 8 10
Realization index

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
Q

oS
Max
Min

Fig. 5.4 Simulation results showing the maximum and minimum latency values across the
realization index.
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Fig. 5.5 The effect of the number of robots K on the average QoS and average latency in the
proposed RIS-assisted ISCC for IoRT scenarios.
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Fig. 5.6 The effect of the number of RIS elements N on the average QoS and average latency
in the proposed RIS-assisted ISCC for IoRT scenarios.

tends to increase with the number of robots for all methods. This could be attributed to
the additional computational and communication load that more robots introduce to the
system. The Proposed Method outperforms the other strategies, as it maintains the highest
average QoS and the lowest latency across the range of K, emphasizing the efficiency of the
proposed system. However, for both metrics, the No-RIS scheme consistently demonstrates
the least favorable performance, underscoring the significance of RIS in enhancing system
performance in IoRT applications. Fig. 6 analyzes the relationship between the number of
RIS elements N and the system performance in terms of average QoS and latency within an
IoRT context employing an RIS-assisted ISCC framework. From Fig. 6(a), we can deduce
that the average QoS improves as N increases for the Proposed Method, which contrasts
with other methods where QoS either increases at a slower rate or plateaus. In Fig. 6(b),
the latency trends downward for the proposed method with an increase in N, indicating
enhanced performance, whereas the other schemes exhibit either a slower reduction in
latency or an initial decrease followed by stabilization. The No-RIS strategy shows a flat
trend, reflecting no improvement with additional RIS elements, since it does not benefit from
the RIS’s reflective capabilities. These observations collectively emphasize the effectiveness
of RIS elements in improving QoS and reducing latency in IoRT applications, with the
Proposed Method demonstrating superior performance compared to other strategies under
investigation.

Fig. 5.7 illustrates the correlation between the edge computing resources ftotal and both
the average QoS and latency within the framework of a proposed RIS-assisted ISCC for IoRT
scenarios. In Fig. 7(a), the graph indicates an enhancement in average QoS proportional to
the increase in computing resources for the proposed method, whereas the other schemes
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exhibit a more modest growth or saturation in QoS. Concurrently, Fig. 7(b) demonstrates a
decrease in latency as computing resources are augmented, with the proposed method again
showing superior performance with the lowest latency across the resource spectrum. The
No-RIS approach consistently manifests higher latency and lower QoS, unaffected by the
variation in edge computing resources, thereby highlighting the integral role of RIS elements
in augmenting the IoRT network’s efficiency. These observations reinforce the premise that
greater computing resources bolster the IoRT system’s capability, as reflected in the QoS and
latency metrics, particularly when leveraging RIS technology.
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Fig. 5.7 The effect of the number of edge computing resource f e
total on the average QoS and

average latency in the proposed RIS-assisted ISCC for IoRT scenarios.

Fig. 5.8 shows the performance of the RIS-enabled ISCC system in reducing the bit
error rate (BER) of uplink transmission from the robot to the MEC. For binary phase shift
keying (BPSK) signaling, the general BER expression is considered. The average BER for
the uplink can be obtained as follows [49]:

BERk =
1
π

∫ π

2

0
Rk

(
−

sin
(

π

2

)
sin2

θ

)
dθ (5.31)

The upper bound for the average BER with BPSK can be expressed as:

BERk ≤

exp

 −
N2Plossπ2(−k2/(K+1))pk

16(K+1)2N0

1+
NPloss(16(K+1)2−π2(−k2/(K+1)))pk

8(K+1)2N0


2

√
1+

NPloss(16(K+1)2−π2(−k2/(K+1)))pk

8(K+1)2N0

(5.32)

where K is the Rician factor, Ploss is the path loss from k-th robot to BS.
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Fig. 5.8 BER performance of RIS-enabled ISCC system for IoRT scenarios.

Fig. 5.8 shows that as the SNR increases, the BER significantly decreases, indicating that
better signal quality reduces the error rate. Additionally, increasing the number of reflecting
elements substantially improves the system’s BER performance. This significant reduction in
BER with more RIS elements highlights the enhanced reliability and communication quality
of the proposed system, addressing concerns about reliability as a key performance metric.

Fig. 5.9 demonstrates the effect of sensing SNR on the average QoS of the system.
As sensing SNR increases, the average QoS improves significantly for all schemes, which
indicates that higher sensing SNR enhances system performance and reduces the impact of
blockages on the optimization process. Compared to other schemes, the Proposed Method
outperforms other schemes regarding the average QoS, confirming our proposed method’s
effectiveness. Moreover, the QoS initially overgrows with increasing sensing SNR but slows
down after reaching a certain threshold, likely due to diminishing returns as the system
approaches its optimal performance limits.

5.5 Conclusion

This paper introduced a novel RIS-enabled ISCC system specifically designed for IoRT
scenarios to tackle the pressing challenges of computational latency, communication rate,
and sensing accuracy. We formulated an optimization problem aimed at enhancing the
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Fig. 5.9 The effect of the sensing SNR on the average QoS.

overall performance of IoRT systems and proposed a BCD-based algorithm to effectively
decompose this non-convex problem into manageable sub-problems. The first sub-problem
focused on minimizing computing latency by optimizing edge computing resource allocation,
while the second aimed to maximize communication speed and improve sensing precision
through innovative beamforming techniques. Our proposed solution leveraged AO and
objective function conversion techniques to address the complexities of the optimization
tasks. Extensive simulations validated the effectiveness of our approach, demonstrating
significant enhancements in QoS and reductions in system latency. These improvements
not only underscore the potential of RIS in overcoming traditional barriers in wireless
communication and computation but also highlight the pivotal role of integrated ISCC
systems in advancing IoRT technologies. The significant reduction in latency and the
improvement in the reliability and efficiency of robotic operations in complex environments,
as evidenced by our simulations, illustrate the transformative potential of integrating RIS into
IoRT. Additionally, the proposed RIS-enabled ISCC system is designed to be scalable and
can be expanded to large-scale applications. However, the challenges associated with such
expansion, such as interference management and computational overhead, will be addressed
in future work.





Chapter 6

Conclusions and Future Directions

In the first task, we focus on optimizing the deployment of multi-RIS in a multi-user
communication scenario to maximize the achievable rate through a heuristic approach based
on adaptive optimization. Our proposed method enables dynamic adjustment of the RIS’s
phase configuration, resulting in significant improvements in achievable rate compared to
conventional static schemes. Simulation results illustrate that the intelligent deployment of
multiple RISs allows precise focusing of signal transmissions towards users, thus enhancing
overall system efficiency. Future work will explore the combination of multi-hop signal
reflections to improve coverage in broader areas and create a highly adaptive wireless
communication environment.

In the second task, we target large-scale deployment of RISs to extend the coverage of
outdoor wireless networks. The key idea is to employ cost-aware optimization, taking into
account both coverage probability and deployment costs. Our approach involves using a cell
decomposition-based coverage model and an optimization algorithm that incorporates both
greedy and adaptive methodologies to ensure that RISs are optimally placed to achieve desired
coverage levels within network constraints. The results indicate that our method provides a
better balance between maximizing coverage and minimizing deployment costs compared
to conventional methods. In future research, we will investigate coverage enhancements
considering three-dimensional positioning of RISs, as well as user mobility, to further refine
coverage estimates and solutions.

The third task addresses the optimization of resource allocation in RIS-assisted IoT
networks, with a focus on reducing power consumption while maintaining a target coverage
rate. We propose a dual-objective optimization that simultaneously solves for RIS-device
association and phase shift configuration. A heuristic approach is employed to ensure
optimal resource usage, while a relaxation-based phase optimization is used to minimize the
power requirements. Our simulation findings show that the proposed approach effectively
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reduces system power consumption while meeting coverage targets, outperforming existing
benchmark methods. Future work will focus on improving the real-time responsiveness
of the RIS network through the design of a strategic codebook and more advanced phase
adjustment algorithms, thereby better serving the needs of mobile IoT devices.

In the last task, we investigate a multi-RIS-assisted THz communication network for
virtual reality (VR) applications in an indoor environment. The main objective is to enhance
user Quality of Experience (QoE) while maintaining low latency during interactive VR activ-
ities. We tackle this problem by jointly optimizing the RIS beamforming, VR transmission
power, and rendering resource allocation. Simulation results indicate that an increase in
reflective elements, transmit power, and rendering resources directly contributes to higher
achievable rates in the downlink, thus improving QoE. However, adding too many RISs may
not yield additional benefits in confined indoor settings and can negatively affect system
efficiency. Overall, our proposed multi-RIS-assisted optimization approach is validated as a
viable method for enhancing VR experiences, offering superior performance in terms of QoE
compared to other reference algorithms.
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[56] Perović, N. S., Tran, L.-N., Di Renzo, M., and Flanagan, M. F. (2021). Achievable
rate optimization for MIMO systems with reconfigurable intelligent surfaces. IEEE
Transactions on Wireless Communications, 20(6):3865–3882.

[57] Qi, Q., Chen, X., Khalili, A., Zhong, C., Zhang, Z., and Ng, D. W. K. (2022). Integrating
sensing, computing, and communication in 6g wireless networks: Design and optimization.
IEEE Transactions on Communications, 70(9):6212–6227.

[58] Qian, K., Yao, L., Zhang, X., and Ng, T. N. (2022a). Millimirror: 3d printed reflecting
surface for millimeter-wave coverage expansion. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, pages 15–28.

[59] Qian, K., Yao, L., Zhang, X., and Ng, T. N. (2022b). Millimirror: 3d printed reflecting
surface for millimeter-wave coverage expansion. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, MobiCom ’22, page
15–28, New York, NY, USA. Association for Computing Machinery.

[60] Ray, P. P. (2016). Internet of robotic things: Concept, technologies, and challenges.
IEEE Access, 4:9489–9500.

[61] Romeo, L., Petitti, A., Marani, R., and Milella, A. (2020). Internet of robotic things in
smart domains: Applications and challenges. Sensors, 20(12):3355.



104 References

[62] Rossanese, M., Mursia, P., Garcia-Saavedra, A., Sciancalepore, V., Asadi, A., and Costa-
Perez, X. (2022). Designing, building, and characterizing RF switch-based reconfigurable
intelligent surfaces. In Proceedings of the 16th ACM Workshop on Wireless Network
Testbeds, Experimental Evaluation & CHaracterization, page 69–76. Association for
Computing Machinery.

[63] Saad, W., Bennis, M., and Chen, M. (2019). A vision of 6g wireless systems: Applica-
tions, trends, technologies, and open research problems. IEEE Network, 34(3):134–142.

[64] Saeed, T., Abadal, S., Liaskos, C., Pitsillides, A., Taghvaee, H., Cabellos-Aparicio, A.,
Soteriou, V., Alarcon, E., Akyildiz, I., and Lestas, M. (2021). Workload characterization
and traffic analysis for reconfigurable intelligent surfaces within 6g wireless systems.
IEEE Transactions on Mobile Computing.

[65] Sai, S., Prasad, M., Garg, A., and Chamola, V. (2024). Synergizing digital twins and
metaverse for consumer health: A case study approach. IEEE Transactions on Consumer
Electronics, 70(1):2137–2144.

[66] Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., Tufvesson,
F., Benjebbour, A., and Wunder, G. (2017). 5g: A tutorial overview of standards, trials,
challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications,
35(6):1201–1221.

[67] Shen, K. and Yu, W. (2018). Fractional programming for communication systems—part
i: Power control and beamforming. IEEE Transactions on Signal Processing, 66(10):2616–
2630.

[68] Singh, K., Wang, P.-C., Biswas, S., Singh, S. K., Mumtaz, S., and Li, C.-P. (2023). Joint
active and passive beamforming design for ris-aided ibfd iot communications: Qos and
power efficiency considerations. IEEE Transactions on Consumer Electronics, 69(2):170–
182.

[69] Strinati, E. C., Alexandropoulos, G. C., Wymeersch, H., Denis, B., Sciancalepore,
V., D’Errico, R., Clemente, A., Phan-Huy, D.-T., De Carvalho, E., and Popovski, P.
(2021). Reconfigurable, intelligent, and sustainable wireless environments for 6g smart
connectivity. IEEE Communications Magazine, 59(10):99–105.

[70] Struye, J., Lemic, F., and Famaey, J. (2022). Covrage: Millimeter-wave beamforming
for mobile interactive virtual reality. IEEE Transactions on Wireless Communications.

[71] Stutzman, W. L. and Thiele, G. A. (2012). Antenna Theory and Design. John Wiley &
Sons, Hoboken, NJ, 3rd edition.

[72] Taneja, A. and Rani, S. (2024). Robust resource control mechanism for connected
support to iot-based sustainable consumer electronics for industry 5.0. IEEE Transactions
on Consumer Electronics, 70(1):1463–1470.

[73] Tang, W., Chen, M. Z., Chen, X., Dai, J. Y., Han, Y., Di Renzo, M., Zeng, Y., Jin, S.,
Cheng, Q., and Cui, T. J. (2020). Wireless communications with reconfigurable intelligent
surface: Path loss modeling and experimental measurement. IEEE Transactions on
Wireless Communications, 20(1):421–439.



References 105

[74] Wan, J., Ren, H., Pan, C., Yu, Z., Zhang, Z., and Zhang, Y. (2024). Reconfigurable
intelligent surface assisted integrated sensing, communication and computation systems.
arXiv preprint arXiv:2402.13692.

[75] Wang, J., Tang, W., Jin, S., Wen, C.-K., Li, X., and Hou, X. (2023a). Hierarchical
codebook-based beam training for ris-assisted mmwave communication systems. IEEE
Transactions on Communications.

[76] Wang, L., Abanto-Leon, L. F., and Asadi, A. (2022). Joint communication and sensing
in ris-enabled mmwave networks. arXiv preprint arXiv:2210.03685.

[77] Wang, S., Song, X., Song, T., and Yang, Y. (2024). Fairness-aware computation
offloading with trajectory optimization and phase-shift design in RIS-assisted multi-uav
mec network. IEEE Internet of Things Journal, pages 1–1.

[78] Wang, X., Fei, Z., Huang, J., and Yu, H. (2021). Joint waveform and discrete phase shift
design for ris-assisted integrated sensing and communication system under cramer-rao
bound constraint. IEEE Transactions on Vehicular Technology, 71(1):1004–1009.

[79] Wang, Z., Mu, X., and Liu, Y. (2023b). Stars enabled integrated sensing and communi-
cations. IEEE Transactions on Wireless Communications.

[80] Wu, Q. and Zhang, R. (2019). Intelligent reflecting surface enhanced wireless network
via joint active and passive beamforming. IEEE Transactions on Wireless Communications,
18(11):5394–5409.

[81] Wu, Z., Li, X., Cai, Y., and Yuan, W. (2024). Joint trajectory and resource allocation
design for RIS-assisted uav-enabled isac systems. IEEE Wireless Communications Letters,
pages 1–1.

[82] Wymeersch, H., Shrestha, D., De Lima, C. M., Yajnanarayana, V., Richerzhagen, B.,
Keskin, M. F., Schindhelm, K., Ramirez, A., Wolfgang, A., De Guzman, M. F., et al.
(2021). Integration of communication and sensing in 6g: A joint industrial and academic
perspective. In 2021 IEEE 32nd Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), pages 1–7. IEEE.

[83] Xia, L., Sun, Y., Liang, C., Feng, D., Cheng, R., Yang, Y., and Imran, M. A. (2023).
Wiservr: Semantic communication enabled wireless virtual reality delivery. IEEE Wireless
Communications, 30(2):32–39.

[84] Xie, R., Hu, D., Luo, K., and Jiang, T. (2021). Performance analysis of joint range-
velocity estimator with 2d-music in ofdm radar. IEEE Transactions on Signal Processing,
69:4787–4800.

[85] Xu, S., Du, Y., Zhang, J., Liu, J., Wang, J., and Zhang, J. (2024). Intelligent reflecting
surface enabled integrated sensing, communication and computation. IEEE Transactions
on Wireless Communications, 23(3):2212–2225.

[86] Xu, W., An, J., Xu, Y., Huang, C., Gan, L., and Yuen, C. (2022). Time-varying channel
prediction for ris-assisted mu-miso networks via deep learning. IEEE Transactions on
Cognitive Communications and Networking.



106 References

[87] Yang, G., Xu, X., and Liang, Y.-C. (2020). Intelligent reflecting surface assisted
non-orthogonal multiple access. 2020 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–6.

[88] Yang, P., Quek, T. Q., Chen, J., You, C., and Cao, X. (2022). Feeling of presence
maximization: mmwave-enabled virtual reality meets deep reinforcement learning. IEEE
Transactions on Wireless Communications, 21(11):10005–10019.

[89] Yao, Y., Gu, B., Su, Z., and Guizani, M. (2021). Mvstgn: A multi-view spatial-temporal
graph network for cellular traffic prediction. IEEE Transactions on Mobile Computing.

[90] Yildirim, I., Uyrus, A., and Basar, E. (2020). Modeling and analysis of reconfigurable
intelligent surfaces for indoor and outdoor applications in future wireless networks. IEEE
Transactions on Communications, 69(2):1290–1301.

[91] Yu, X., Wang, G., Huang, X., Wang, K., Xu, W., and Rui, Y. (2022). Energy efficient
resource allocation for uplink ris-aided millimeter-wave networks with noma. IEEE
Transactions on Mobile Computing.

[92] Yu, X., Xu, D., and Schober, R. (2019). Miso wireless communication systems via
intelligent reflecting surfaces : (invited paper). 2019 IEEE/CIC International Conference
on Communications in China (ICCC), pages 735–740.

[93] Yu, Z., Ren, H., Pan, C., Zhou, G., Wang, B., Dong, M., and Wang, J. (2023). Active ris
aided isac systems: Beamforming design and performance analysis. IEEE Transactions
on Communications.

[94] Yu, Z., Ren, H., Pan, C., Zhou, G., Wang, B., Dong, M., and Wang, J. (2024). Active
ris-aided isac systems: Beamforming design and performance analysis. IEEE Transactions
on Communications, 72(3):1578–1595.

[95] Yuan, Y., Xu, X., Han, S., Sun, M., Zhang, P., and Yuen, C. (2024). Energy-aware
multiuser symbiotic communications enhanced by ris for passive iot. IEEE Internet of
Things Journal, 11(1):1398–1412.

[96] Zeng, S., Zhang, H., Di, B., Han, Z., and Song, L. (2021). Reconfigurable intelli-
gent surface (RIS) assisted wireless coverage extension: RIS orientation and location
optimization. IEEE Communications Letters, 25(1):269–273.

[97] Zhang, J. and Blough, D. M. (2022). Optimizing coverage with intelligent surfaces
for indoor mmwave networks. In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications, pages 830–839. IEEE.

[98] Zhao, J., Zhu, Y., Mu, X., Cai, K., Liu, Y., and Hanzo, L. (2022a). Simultaneously
transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted UAV
communications. IEEE Journal on Selected Areas in Communications, 40(10):3041–3056.

[99] Zhao, Y., Xu, W., You, X., Wang, N., and Sun, H. (2022b). Cooperative reflection and
synchronization design for distributed multiple-RIS communications. IEEE Journal of
Selected Topics in Signal Processing, 16(5):980–994.



References 107

[100] Zheng, B., You, C., and Zhang, R. (2021). Double-IRS assisted multi-user MIMO: Co-
operative passive beamforming design. IEEE Transactions on Wireless Communications,
20(7):4513–4526.

[101] Zhu, Q., Li, M., Liu, R., and Liu, Q. (2023). Joint transceiver beamforming and
reflecting design for active RIS-aided isac systems. IEEE Transactions on Vehicular
Technology, 72(7):9636–9640.





Publications

Journals
1. Jiale Shu, Kaoru Ota, Mianxiong Dong, "RIS-enabled Integrated Sensing, Computing

and Communication for Internet of Robotic Things," IEEE Internet of Things Journal,
vol. 11, no. 20, pp. 32503-32513, 2024.

Proceeding of International Conference
1. Jiale Shu, Kaoru Ota, Mianxiong Dong, "Optimizing RIS Configurations for Diverse

User Requirements via Network Traffic Prediction," The 8th IEEE International Con-
ference on Smart Cloud, Tokyo, Japan, September 16-18, 2023

Under Review
1. Jiale Shu, Kaoru Ota, Mianxiong Dong, "Localization-based Beamforming for Mobile

Virtual Reality in RIS-assisted mmWave Network," IEEE Transactions on Consumer
Electronics, 2024.

2. Jiale Shu, Kaoru Ota, Mianxiong Dong, Ekram Hossain, "Large-Scale RIS-Assisted
6G Networks: Deployment and Cooperative Beamforming Design," IEEE Transactions
on Wireless Communications (TWC), 2024.


