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MURORAN INSTITUTE OF TECHNOLOGY

Abstract

Doctor of Engineering

Study on Image Dehazing with the Self-Adjustment of the Haze Degree

by Jun Mao

Student ID:12092002

With the increase in industrial production and human activities, the concentration of

atmospheric particulate matter (PM) is substantial increased, leading to fog and haze

occurs more frequently. Limited visibility caused by suspended particles in the air,

such as fog and haze, is a major problem for many applications of computer vision.

The captured scenes by such computer vision systems suffer from poor visibility, low

contrast, dimmed brightness, low luminance and distorted color, which makes detection

of objects within the scene more difficult. Therefore visibility improvement, contrast

and features enhancement of images and videos captured in bad weather, also called as

dehazing, is an inevitable task. Furthermore, estimated actual weather condition is a

valuable information to invoke corresponding approaches.

Haze removal is a difficult problem due to the inherent ambiguity between the haze and

the underlying scene. Model-based single image dehazing methods are physically sound

and produce qualitatively good results, however, more attentions to dehazing quality

rather than the applicability leads to for real-time applications they may not always be

fast enough, besides, there exist limitations such as color-bias and unable to deal with

the sky area , etc.

The objectives of this study are to automatically estimate the haze degree from single

image and label the image a haze factor, to propose a self-adjustment dehazing method

due to the haze degree and to evaluate the performance of the dehazing method.

http://www.muroran-it.ac.jp/
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In this research, based on the atmospheric scattering model analysis and the statistics

of various outdoor images, the following conclusions can be drawn: clear-day images

have higher contrast than images plagued by bad weather; in most of the local regions

even the sky, hazed images have larger minimum values of most color channel (RGB)

pixels closing to airlight value. Relying on these two observations, an estimate function

to label the foggy image with different haze degrees is developed which is related to haze

removal constant parameter. In order to reduce the computational cost while providing

the promising dehazed results also for real-time applications, by modifying the dark

channel prior, the transmission estimation is carried out by obtaining the minimum

value from only the relevant pixel itself or the mean filter of minimum values of its

neighboring pixels.

The main advantage of the proposed algorithm compared with others is its processing

speed: its complexity is a linear function of the number of image pixels, because of only

performing mean filter once to estimate the final transmission map. Another advantage

is similar image processing quality with Dark Channel Prior method. Further, labeling

images different haze-degree can makes images-set mixed with haze and haze-free images

batch processing possible. At last, the haze removal degree can be adaptive adjusted by

a built-in function which makes the dehazed images look more natural.

Experiments are designed to test the haze degree estimate function using simulated

images and real photographs. The proposed algorithm was also compared to other

known haze removal methods, the experimental results clearly indicate that our approach

achieves good performance on enhanced visibility, processing speed and stability, which

makes our method applicable for real-time requirement.
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Chapter 1

Introduction

1.1 Problem Statement

One of the most serious environmental problems in the world is air pollution. Air

pollution can be defined broadly as the introduction of chemicals, particulate matter,

or biological materials into the atmosphere that cause harm or discomfort to humans or

other living organisms, or cause damage to the natural environment or built environment.

Air pollutants come from a variety of natural and manmade sources. Natural sources

can include windblown dust, and soot from wildfires. Manmade sources can include

motor vehicles, electric utility or industrial fuel burning, cooking, and manufacturing

operations. The industrial revolution — which began in Great Britain and spread to

the rest of Europe, the USA and Japan in the 18th century , is still ongoing in developing

country such as China and India — increased significantly the combustion of biomass

and fossil fuels in urban centers, leading to substantial increase in the concentration of

atmospheric particulate matter(PM) and global warming, see Fig.1.1 and Fig.1.2(a).

Particle pollution (also known as ”particulate matter”) in the air includes a mixture of

solids and liquid droplets. Some particles are emitted directly; others are formed in the

atmosphere when other pollutants react. particles come in a wide range of sizes. Those

less than 10 micrometers in diameter (PM10) are so small that they can get into the

lungs, potentially causing serious health problems. Ten micrometers is smaller than the

width of a single human hair. Particles less than 2.5 micrometers in diameter(PM2.5)

are called ”fine” particles. These particles are so small that they can be detected only

with an electron microscope. Sources of fine particles include all types of combustion,

including motor vehicles, power plants, residential wood burning, forest fires, agricultural

burning, and some industrial processes. Particles between 2.5 and 10 micrometers in

1



Chapter 1. Introduction 2

Figure 1.1: Global satellite-derived map of PM2.5 averaged over 2001-2006. Credit:
Dalhousie University, Aaron van Donkelaar).

diameter are referred to as ”coarse”. Sources of coarse particles include crushing or

grinding operations, and dust stirred up by vehicles traveling on roads.

One of the most basic forms of air pollution - haze - is the major cause of reduced

visibility in many global cities and scenic areas, for instance, Beijing, see Fig.1.2(b),

from Beijing environmental bureau’s reports, Beijing only had 176 days with good air

quality in 2013 . Haze is caused when sunlight encounters tiny particulate matter in the

air, which reduce the clarity and color of what we see, and particularly during humid

conditions.

Many outdoor computer vision applications like video surveillance, object detection,

object recognition, tracking, intelligent vehicles and remote sensing systems etc. , assume

that the input images have clear visibility. Unfortunately, this is not always true in many

situations, in particular, haze and fog weather occurring more and more frequently.

Outdoor images or videos are usually degraded by light scattering and absorbing from

the aerosols, such as dust, mist, and fumes in the atmosphere, here regarded as haze.

The captured scenes suffer from poor visibility, contrast, brightness, luminance and

distorted color. With the help of Atmospheric optics theories, one can explain the

effects that haze has on the visibility of a scene and eventually of an image taken of that

scene. Moreover, with the development of computer graphics technology, it is possible

to improve the visibility in terms of range, color verisimilitude and feature separation

in digital images. Herein the term ”dehazing” means to produce an image of a scene

that does not contain haze effects although the source of that image originally comprised

haze, for an example please refer to Fig.1.3.
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(a) Beijing’s month-average pm2.5 from 2008 to 2014

(b) Vehicles make their way along a road in poor visibility on a hazy day in
Beijing

Figure 1.2: High PM2.5 concentration in Beijing and poor visibility caused by haze
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Figure 1.3: Images show the hazy input image (parts of top left and bottom right) and
the dehazed result (parts of top right and bottom left) using our dehazing Algorithm.

1.2 Motivation

A main objective in dehaze research is improvement of visibility and recovery of colors,

as if imaging is done in clear conditions. Then Computer vision and human vision can

process on such improved images for various applications, such as long range surveillance.

The need for image enhancement stems from the fact that the atmosphere is never free

of particles. Even just pure air, the visual range has been found to be between 277km

[1] to 348km [2], [3], not considering the curvature of the earth’s surface. However,

real visual ranges are much less than this theoretical value. The international visibility

code for meteorological range rates visibilities between under 50m up to over 50km for
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exceptionally clear air. These codes have been found to reflect a convenient scale for

visual ranges in the daily work of meteorologists. For the exact codes please refer to

Tab.1.1, the scattering coefficient

βsc is an important parameter in visual range and will be dealt with in a separate section

in this thesis(chapter 2).

Table 1.1: International Visibility Code with Meteorological Range

Code no. Weather Condition
Meteorological Range,

Rm

Scattering coefficient,
βsc(km

−1)

0 Dense fog 50m >78.2
1 Thick fog 50m - 200m 78.2 - 19.6
2 Moderate fog 200m - 500m 19.6 - 7.82
3 Light fog 500m - 1000m 7.82 - 3.91
4 Thin fog 1km - 2km 3.91 - 1.96
5 Haze 2km - 4km 1.96 - 0.954
6 Light haze 4km - 10km 0.954 - 0.391
7 Clear 10km - 20km 0.391 - 0.196
8 Very clear 20km - 50km 0.196 - 0.078
9 Exceptionally clear >50km 0.078
- Pure air 277km 0.0141

Source: [1]

In general, the haze-free image is more visually pleasuring. Second, most computer vi-

sion algorithms, from low-level image analysis to high-level object recognition, usually

assume that the input image (after radiometric calibration) is the scene radiance. The

performance of computer vision algorithms(e.g., feature detection, filtering, and photo-

metric analysis) will inevitably suffer from the biased, low-contrast scene radiance. Last,

the haze removal can produce depth information and benefit many vision algorithms and

advanced image editing. Haze or fog can be a useful depth clue for scene understanding.

The bad haze image can be put to good use.

Significant progress in single image haze removal has been made in recent years. [4]

made the observation that a haze-free image has higher contrast than a hazy image while

assuming a smooth layer of airlight, and was able to obtain good results by maximizing

contrast in local regions of the input image. However, the final results obtained by

this method are not based on a physical model and yet may produce some halos near

depth discontinuities in scene. [5] was able to obtain good results by assuming that

transmission and surface shading are locally uncorrelated. With this assumption, he

obtainsthe transmission map through independent component analysis. This approach

is physically sound and can produce impressive results. However, it is deeply based on

the color and thus cannot deal with a gray level image. The algorithm may fail in the

cases when the locally uncorrelation of transmission and scene albedo is broken and is
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computationally intensive. Lastly, a simple but powerful approach proposed by He et

al.[3] who observed that the fact that objects in a clear image patch have at least one

color channel with very low intensity, but in a hazy patch all color channels will have

higher intensity due to airlight addition. Their method obtains results on a par with or

exceeding other state-of-the-art algorithms, and is even successful with very hazy scenes.

However, dark channel prior approach has two main drawbacks: (i) the soft matting in

order to refine the transmission and remove halos near depth discontinuities in scene

consumes a considerable amount of time and is hence not appropriate for real-time

applications [6], it takes 10 to 20 seconds to restore a 600 x 400 image, (ii) due to the

fixed haze removal constant parameter ω, the dehazed image may looks over-dehazed,

and transition between frames appears unnatural if using in video-dehazing.

Above all, we propose for a practical dehazing method, there are three problems to be

solved: natural and consistent processed results between images, dehazing effect and

processing speed.

1.3 Thesis goal

we aim to propose a simple and fast hazed degree Estimate method which is based

on two basic observations: haze-free images have more contrast than images plagued

by bad weather; in most of the local regions even the sky, hazed images have larger

minimum values of most color(RGB)channel pixels closing to airlight value. Relying on

these two observations, we develop an estimate function related to haze removal constant

parameter ω. In order to reduce the computational cost while providing the promising

dehazed results also for real-time applications, by modifying the dark channel prior, the

transmission estimation is carried out by obtaining the minimum value from only the

relevant pixel itself or the median filter of minimum values of its neighboring pixels.

The first chapter after the introduction concerns with the basic of digital image and

atmospheric Atmospheric Optics, followed by a chapter, which gives an overview of

the dehazing methods that have been developed in recent years. In the fourth chapter

detecting foggy images and estimating the haze degree method is described. Next, the

author further describes the self-just dehazing algorithm using haze degree. The thesis

finishes with a discussion and conclusion chapter.



Chapter 2

Backgroud

2.1 Digital image basics

We have multiple ways to acquire digital images from the real world: digital cameras,

scanners, computed tomography, and magnetic resonance imaging to name a few. In

every case what humans see are images. However, when transforming this to our digital

devices what we record are numerical values for each of the points of the image. The

widespread availability of relatively low-cost personal computers has heralded a revolu-

tion in digital image processing activities among scientists and the consumer population

in general.

2.1.1 pixel

In digital image, a pixel is a physical point in a raster image, or the smallest addressable

element in an all points addressable display device; so it is the smallest controllable

element of a picture represented on the screen. The address of a pixel corresponds to

its physical coordinates. LCD pixels are manufactured in a two-dimensional grid, and

are often represented using dots or squares, but CRT pixels correspond to their timing

mechanisms and sweep rates. Each pixel is a sample of an original image; more samples

typically provide more accurate representations of the original. A grayscale or greyscale

digital image is an image in which the value of each pixel is a single sample, that is, it

carries only intensity information. Images of this sort, also known as black-and-white,

are composed exclusively of shades of gray, varying from black at the weakest intensity

to white at the strongest. For most images, pixel values are integers that range from 0

(black) to 255 (white). The 256 possible gray intensity values are shown in Fig.2.1.

7
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0=Black 128=Mid-gray 255=White

Figure 2.1: The range of intensity values from 0 (black) to 255 (white).

The intensity of each pixel is variable. In color image systems, a color is typically

represented by three or four component intensities such as red, green, and blue(RGB

color model), or cyan, magenta, yellow, and black(CMYK color model). For example

in the Fig.2.2 you can see the 15× 15 pixel block that represents the bottom left-hand

corner of the image is nothing more than a matrix containing all the intensity values

of the pixel points. How we get and store the pixels values may vary according to our

needs, but in the end all images inside a computer world may be reduced to numerical

matrices and other information describing the matrix itself.

2.1.2 RGB color model

The RGB color model is an additive color model in which red, green, and blue light are

added together in various ways to reproduce a broad array of colors. The name of the

model comes from the initials of the three additive primary colors, red, green, and blue.

The main purpose of the RGB color model is for the sensing, representation, and display

of images in electronic systems, such as televisions and computers, though it has also

been used in conventional photography. Before the electronic age, the RGB color model

already had a solid theory behind it, based in human perception of colors.

2.1.3 Channels of digital image

Color digital images are made of pixels, and pixels are made of combinations of primary

colors. A channel in this context is the grayscale image of the same size as a color image,

made of just one of these primary colors. For instance, an image in RGB color model

will have a red, green and blue channel. A grayscale image has just one channel.

Fig.2.3 is an example of color channel splitting of a full RGB color image. The column

at left shows the isolated color channels in natural colors, while at right there are their

grayscale equivalences:
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150 154 160 157 106 140 147 142 141 147 132 150 171 117 136
144 159 125 121 157 143 132 136 153 138 155 164 169 162 152
190 175 169 155 161 136 152 158 141 162 147 153 161 168 169
185 203 139 161 151 159 145 167 179 167 150 155 165 159 158
151 153 163 152 160 152 164 131 131   51 124 152 154 145 143
164 162 158 167 157 164 166 139 132 138 119 148 154 139 146
147 148 143 155 169 160 152 161 159 143 138 163 132 152 146
 66  129 163 165 163 161 154 157 167 162 174 153 156 151 156
162 173 172 161 158 158 159 167 171 169 164 159 158 159 162
163 164 161 155 155 158 161 167 171 168 162 162 163 164 166
167 167 165 163 160 160 164 166 169 168 164 163 165 167 170
172 171 170 170 166 163 166 170 169 168 167 165 163 163 160
173 172 170 169 166 163 167 169 170 170 170 165 160 157 148
167 168 165 173 173 172 167 170 170 171 171 169 162 163 162
200 198 189 196 191 188 163 168 172 177 177 186 180 180 188

15 x 15 pixel portion of the image Pixel intensity values of the 15 x 15 pixel portion of the image.

A sample pixel value

A digital grayscale image

Figure 2.2: A digital grayscale image. The dimensions of this image is 512 rows by
768 columns. Thus the image is comprised of 512 × 768 = 393,216 pixels. Photo by
Radka Tezaur. Bottom of the left hand is a 15 × 15 pixel portion of the image, right

hand is the pixel intenstity value matrix of the portion.
Source: http://www.whydomath.org/node/wavlets/imagebasics.html

2.2 Edge detection

Edge detection is the name for a set of mathematical methods which aim at identifying

points in a digital image at which the image brightness changes sharply or, more formally,

has discontinuities. The points at which image brightness changes sharply are typically

organized into a set of curved line segments termed edges. The same problem of finding

discontinuities in 1D signals is known as step detection and the problem of finding signal

discontinuities over time is known as change detection. Edge detection is a fundamental

tool in image processing, machine vision and computer vision, particularly in the areas

of feature detection and feature extraction.[7]
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Figure 2.3: Composition of RGB from 3 Grayscale images.
Source: http://en.wikipedia.org/wiki/Grayscalemediaviewer

The purpose of detecting sharp changes in image brightness is to capture important

events and changes in properties of the world. It can be shown that under rather

general assumptions for an image formation model, discontinuities in image brightness

are likely to correspond to:[8, 9]

• discontinuities in depth,

• discontinuities in surface orientation,

• changes in material properties and

• variations in scene illumination.

In the ideal case, the result of applying an edge detector to an image may lead to a set

of connected curves that indicate the boundaries of objects, the boundaries of surface

markings as well as curves that correspond to discontinuities in surface orientation.

Thus, applying an edge detection algorithm to an image may significantly reduce the

amount of data to be processed and may therefore filter out information that may be

regarded as less relevant, while preserving the important structural properties of an

image. If the edge detection step is successful, the subsequent task of interpreting the

information contents in the original image may therefore be substantially simplified.

However, it is not always possible to obtain such ideal edges from real life images of
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moderate complexity. Edges extracted from non-trivial images are often hampered by

fragmentation, meaning that the edge curves are not connected, missing edge segments

as well as false edges not corresponding to interesting phenomena in the image thus

complicating the subsequent task of interpreting the image data. Edge detection is one

of the fundamental steps in image processing, image analysis, image pattern recognition,

and computer vision techniques.

The edges extracted from a two-dimensional image of a three-dimensional scene can

be classified as either viewpoint dependent or viewpoint independent. A viewpoint

independent edge typically reflects inherent properties of the three-dimensional objects,

such as surface markings and surface shape. A viewpoint dependent edge may change as

the viewpoint changes, and typically reflects the geometry of the scene, such as objects

occluding one another.

A typical edge might for instance be the border between a block of red color and a block

of yellow. In contrast a line (as can be extracted by a ridge detector) can be a small

number of pixels of a different color on an otherwise unchanging background. For a line,

there may therefore usually be one edge on each side of the line.

2.2.1 A simple edge model

Although certain literature has considered the detection of ideal step edges, the edges

obtained from natural images are usually not at all ideal step edges. Instead they are

normally affected by one or several of the following effects:

• focal blur caused by a finite depth-of-field and finite point spread function.

• penumbral blur caused by shadows created by light sources of non-zero radius.

• shading at a smooth object.

A number of researchers have used a Gaussian smoothed step edge (an error function)

as the simplest extension of the ideal step edge model for modeling the effects of edge

blur in practical applications.[9, 10]

f(x) =
Ir − Il

2

(
erf(

x√
2σ

) + 1

)
+ Il (2.1)

At the left side of the edge, the intensity is Il = lim
x→−∞

f(x), and right of the edge it is

Ir = lim
x→∞

f(x). The scale parameter σ is called the blur scale of the edge.
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2.2.2 Approaches of edge detection

There are many methods for edge detection, but most of them can be grouped into

two categories, search-based and zero-crossing based. The search-based methods detect

edges by first computing a measure of edge strength, usually a first-order derivative

expression such as the gradient magnitude, and then searching for local directional

maxima of the gradient magnitude using a computed estimate of the local orientation

of the edge, usually the gradient direction. The zero-crossing based methods search

for zero crossings in a second-order derivative expression computed from the image in

order to find edges, usually the zero-crossings of the Laplacian or the zero-crossings

of a non-linear differential expression. As a pre-processing step to edge detection, a

smoothing stage, typically Gaussian smoothing, is almost always applied (see also noise

reduction). The edge detection methods that have been published mainly differ in the

types of smoothing filters that are applied and the way the measures of edge strength are

computed. As many edge detection methods rely on the computation of image gradients,

they also differ in the types of filters used for computing gradient estimates in the x-

and y-directions.

2.2.3 Canny edge detection

John Canny considered the mathematical problem of deriving an optimal smoothing

filter given the criteria of detection, localization and minimizing multiple responses to

a single edge.[11] He showed that the optimal filter given these assumptions is a sum

of four exponential terms. He also showed that this filter can be well approximated by

first-order derivatives of Gaussians. Canny also introduced the notion of non-maximum

suppression, which means that given the presmoothing filters, edge points are defined as

points where the gradient magnitude assumes a local maximum in the gradient direction.

Looking for the zero crossing of the 2nd derivative along the gradient direction was first

proposed by Haralick.[12] It took less than two decades to find a modern geometric vari-

ational meaning for that operator that links it to the MarrHildreth (zero crossing of the

Laplacian) edge detector. That observation was presented by Ron Kimmel and Alfred

Bruckstein.[13] Although his work was done in the early days of computer vision, the

Canny edge detector (including its variations) is still a state-of-the-art edge detector.

Unless the preconditions are particularly suitable, it is hard to find an edge detector

that performs significantly better than the Canny edge detector. The Canny-Deriche

detector was derived from similar mathematical criteria as the Canny edge detector,

although starting from a discrete viewpoint and then leading to a set of recursive filters

for image smoothing instead of exponential filters or Gaussian filters.[14] The differen-

tial edge detector described below can be seen as a reformulation of Canny’s method
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from the viewpoint of differential invariants computed from a scale space representation

leading to a number of advantages in terms of both theoretical analysis and sub-pixel

implementation.

2.2.4 Process of Canny edge detection algorithm

The introduction of procedure below is developed based on OpenCV function Canny.

1. Convert color images to gray images if necessary.

2. Since edge detection is susceptible to noise in the image, first step is to remove

the noise in the image with a Gaussian filter. For instance, a 5× 5 Gaussian filter

used to create the image to the right with σ = 1.4 is shown below.(The asterisk

denotes a convolution operation.)

Fσ =
1

159



2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2



B = Fσ ∗A

3. Computing derivatives of the image using vertical and horizaontal Sobel Operator,

so we get the derivatives along both x and y directions, based on which we can get

the final gradient magnitude and the norm direction of the edge. We therefore have

2 images in this step, one derivative magnitude image and one image recording the

gradient directions of corresponding pixels.

• Apply a pair of convolution masks (in x and y directions):

Gx =


−1 0 1

−2 0 2

−1 0 1



Gy =


−1 −2 −1

0 0 0

1 2 1
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• Find the gradient strength and direction with:

G =
√
G2

x +G2
y

θ = arctan(
Gy

Gx
)

The direction is rounded to one of four possible angles (namely 0, 45, 90 or 135)

4. Non-maximum suppression is applied. For this, at every pixel, pixel is checked

if it is a local maximum in its neighborhood in the direction of gradient. If so,

it is considered for next stage, otherwise, it is suppressed ( put to zero). This

removes pixels that are not considered to be part of an edge. Hence, only thin

lines (candidate edges) will remain.

5. Hysteresis: This stage decides which are all edges are really edges and which are

not. For this, we need two threshold values,minV al (lower threshold) andmaxV al

(upper threshold).

• If a pixel gradient is higher than the upper threshold, the pixel is accepted

as an edge.

• If a pixel gradient value is below the lower threshold, then it is rejected.

• If the pixel gradient is between the two thresholds, then it will be accepted

only if it is connected to a pixel that is above the upper threshold.

Canny recommended a upper:lower ratio between 2:1 and 3:1. So what we finally

get is strong edges in the image.

More edges could be found in dehazed images is believed and illustrated by results of

Canny edge detector of Fig.1.2(b) and dehazed output.

2.3 Basics of the Atmosphere

As light travels through a medium, it will most likely get altered due to interactions with

the particles of that medium if the travel distance through that medium is sufficiently

long. Reflections, scattering or absorption may happen depending on various factors

of the medium. Due to these effects, it is plausible to conclude that light can’t travel

endlessly through a medium and especially not undistorted. To understand how exactly

the atmosphere alters incident light, one must have a closer look at the composition of

air and the atmosphere. This section will give a broad overview of the composition of

the atmosphere and the origination of particles. The author will conclude the section

with an observation of special atmospheric conditions such as fog and clouds.
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Figure 2.4: Dehazed output of Fig.1.2(b) by our dehazing method

Figure 2.5: Canny edge detection of Fig.1.2(b), minV al = 50,maxV al =
120, kernelSize = 3
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Figure 2.6: Canny edge detection of Fig.1.2(b) dehazed output, minV al =
50,maxV al = 120, kernelSize = 3

2.3.1 composition of air

Visibility is among other things dependent on the type of atoms, molecules and particles,

in the field of view as well as their number and size distribution. In the simplest of cases,

only pure air is present in the observed atmosphere. Although it is convenient for some

research issues to introduce the concept of pure air, this is only a theoretical construct

that marks the upper boundary of visibility in the atmosphere. Pure air only contains

molecules with molecule sizes of 10−4µm in radius and a concentration of about 1019

per cm3. The common name given to the atmospheric gases used in breathing and

photosynthesis is air. By volume shown in Fig.2.7, dry air contains 78.09% nitrogen,

20.95% oxygen, 0.93% argon, 0.033% carbon dioxide, and small amounts of other gases.

Air also contains a variable amount of water vapor, on average around 1% and strongly

varies locally. Regardless of their small absolute volumes, ozone, vaporised water and

water play an important role in atmospheric optics, because of their strong absorption

of ultraviolet and infrared, respectively. Additional importance is attached to water,

because of its influence on the growth behavior of particles in the atmosphere, which

has a big influence on particle sizes of hygroscopic nuclei.

However, the concentration of gases in the atmosphere is not constant. The atmosphere,

that is to say the overall envelope of the earth is several hundred kilometers thick, gases

and therefore optical characteristics alter greatly with altitude. Hence this work will

restrict the altitude of interest to Troposphere that the layer directly above the ground
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Figure 2.7: Major constituents of dry air, by volume

and just a few kilometers above in order to confine the work to just what is needed for

the desired application of image dehazing near the ground.

Also, these are not the only particles present in the atmosphere, all types of particles re-

sponsible for atmospheric scattering are shown in table 2.1, more details referred Fig.2.8.

Haze particle, fog droplet and cloud droplet are strong light-scatterers. This is mainly

because their larger size that scatters light effectively, which will be dealt with later in

this Chapter.

Table 2.1: Particles Responsible for Atmospheric Scattering

Type Size(µm) Concentration(cm−3)

Air molecule 10−4 1019

Aitken nucleus 10−3 − 10−2 104 − 102

Haze particlea 10−2 − 10 103 − 10
Fog droplet 1− 10 100− 10

Cloud Droplet 1− 10 300− 10
Raindrop 102 − 104 10−2 − 10−5

a:Including PM2.5 and PM10

Scattering of Light by small particles and molecules in the atmosphere

Different from reflection, where radiation is deflected in one direction, some particles

and molecules found in the atmosphere have the ability to scatter solar radiation in all
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Heavy Dust

0.4 0.7

0.0001 0.001 0.01 0.1 1 10 1000 m1000.4 0.7

Figure 2.8: Airborne particulate size and wavelength of visible spectrum

directions Fig.2.9. The particles/molecules which scatter light are called scatterers and

can also include particulates made by human industry.

The size of a scattering particle is often parameterized by the ratio

x =
2πr

λ
(2.2)

where r is its characteristic length (radius) and λ is the wavelength of the light. Objects

with x ≫ 1 act as geometric shapes, scattering light according to their projected area.

At the intermediate x ≃ 1 of Mie scattering, interference effects develop through phase

variations over the object’s surface. Rayleigh scattering applies to the case when the

scattering particle is very small (x ≪ 1, with r < λ/10 wavelength) and the whole

surface re-radiates with the same phase.

2.3.2 Rayleigh scattering

Rayleigh scattering shown in Fig.2.10, named after the British physicist Lord Rayleigh

[15], is the dominantly scattering of light or other electromagnetic radiation by particles
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Sunlight

Atmosperic Particles

Scattered Light

Figure 2.9: Scattering of Light by small particles and molecules in the atmosphere

Direction of Incident Light

Rayleigh Scattering Mie Scattering Mie Scattering,

Larger Particles

Figure 2.10: Mie scattering Compare with Rayleigh scattering

much smaller than the wavelength of the light.

In detail, the intensity I of light scattered by any one of the small spheres of diameter

d and refractive index n from a beam of unpolarized light of wavelength λ and intensity

I0 is given by

I = I0
1 + cos2 θ

2R2

(
2π

λ

)4(n2 − 1

n2 + 1

)2(
d

2

)6

(2.3)

The Raleigh phase function looks like this, according to [16]:

P (θ) =
3

4
(1 + cos2 θ) (2.4)

where θ is the scattering angle between the incident beam and the scattered ray of light.

An angle of 0 degrees means forward scattering along the direction of the incident beam.

An angle of 180 degrees constitutes backward scattering. Averaging this over all angles

gives the Rayleigh scattering cross-section[17],
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σs =
2π5

3

d6

λ4

(
n2 − 1

n2 + 1

)2

(2.5)

The fraction of light scattered by a group of scattering particles is the number of particles

per unit volume N times the cross-section. It can be seen from the above equations

that Rayleigh scattering is strongly dependent upon the size of the particle and the

wavelengths. The intensity of the Rayleigh scattered radiation increases rapidly as the

ratio of particle size to wavelength increases. Furthermore, the intensity of Rayleigh

scattered radiation is identical in the forward and reverse directions.

2.3.3 Mie Scattering

The Rayleigh scattering model breaks down when the particle size becomes larger than

around 10% of the wavelength of the incident radiation. In the case of particles with

dimensions greater than this, Mie’s scattering model [18] can be used to find the intensity

of the scattered radiation. The intensity of Mie scattered radiation is given by the

summation of an infinite series of terms rather than by a simple mathematical expression

[19]. The phase function which models the scattering of light by Mie regime particles is

approximated by the Henyey-Greenstein function which is as follows, according to [16]:

P (θ) =
1

2

1− g2

(1 + g2 − 2g cos θ)

3

2

(2.6)

Where the asymmetric parameter g is a parameter derived from the phase function and

gives the relative direction of scattering by particles or gases.

It can be shown in Fig.2.10, however, that Mie scattering differs from Rayleigh scattering

in several respects: it is roughly independent of wavelength and it is larger in the forward

direction than in the reverse direction. The greater the particle size, the more of the

light is scattered in the forward direction.

Mie scattering is not strongly wavelength dependent and produces the almost white

glare around the sun when a lot of particulate material is present in the air. It also gives

us the the white light from mist and fog.

2.4 Degradation Model

Light scattering occurs when light interacts with particles suspended in the air. Effects

of scattering are felt daily as we perceive the sky to be blue or reddish, depending
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Rayleigh Scattering

Mie Scattering

Rayleigh Scattering

Mie Scattering

Figure 2.11: Rayleigh and Mie Scattering

on atmospheric conditions and solar illumination. Atmospheric scattering has been

extensively studied by physicists and meterologists. Light passing through a scattering

medium is attenuated along its original course and is distributed to other directions. This

process is commonly modeled mathematically by assuming that along short distances

there is a linear relation between the fraction of light deflected and the distance traveled.

According to [15], if particles in the atmosphere are spherical or small, light is scattered

symmetrically with respect to incident rays of light. We represent the portion of light

that is scattered by a function F (λ, θ), the angular scattering function. The variable θ

is the angle between the incident ray of light and the emanating ray of light; λ is the

wavelength.

According to [20], atmospheric scattering manifest itself through two phenomena. The

first phenomenon is attenuation of power; the second is sky intensity, we discuss sepa-

rately.

2.4.1 Attenuation of power

Take a beam of light projected through a scattering medium, as illustrated in Fig.2.12.

The distance between object and observer is d. As rays of light are deflected by particles,

the power of light conveyed by the beam decreases. For a differential portion of the

trajectory, power decreases as dP = −β(λ)Pdd[21], where P0(λ) is the power of the

source and β(λ) is called the total extinction coefficient, It represents the ability of the

volume to scatter flux of a given wavelength in all directions. By integration through

the whole path, the received power intensity is given by:

P (λ) = P0(λ) exp(−β(λ)d) (2.7)
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The intensity of an image shot by the observer is interested. Two factors affect the

relationship between power and intensity. Power decreases with distance by the inverse

square law so power decreases with d2, on the other hand, intensity at a receiver increase

with square of distance d2, because the solid angle subtended by the receiver corresponds

to a larger area on the object. [20] shows how the two effects cancel each other, so that

the dependency of distance remains restricted to the exponential term. For an object

with intensity I0(λ) in the absence of scattering and distance d from the viewer, the

intensity measured by the viewer I(λ) is:

I(λ) = I0(λ) exp(−β(λ)d) (2.8)

Figure 2.12: Light travels from an object to a observer through the air and sky
intensity under uniform illumination(sunlight)

2.4.2 Sky intensity

Even though light power is attenuated by direct scattering, there is another effect, also

due to scattering, which increase the power in a light beam.

Consider an imaginary line, traced from the observer to some point infinitely far away

in a scattering medium. Suppose the line is illuminated by a uniform source from the

top, for instance, the sky. At each point of the line, scattering events take place and

divert light from its original path.

As light is directed to the observer from all points in the line, the observer perceives a

new source of light, due exclusively to scattering.
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From the previous sections, we suppose that the light coming from any point at distance

x is affected by the angular scattering function and is attenuated exponentially. To

obtain the amount of light received in this way, we assume

• illumination from the sky is uniform and rays of light from sky are parallel

• Each ray of light is scttered once

we integrate the effect of scattering events from the viewer to an arbitrary distance d[22]:

P ′(λ) =

∫ d

0
P ′
0(λ)F (λ, θ) exp(−β(λ)d)dx (2.9)

which lead to:

P ′(λ) =
P ′
0(λ)F (λ, θ)

β(λ)
(1− exp(−β(λ)d)) (2.10)

Then we assume:

The variation of θ across an object located relatively far away is small enough so that

its effect in
P ′
0(λ)F (λ, θ)

β(λ)
is negligible.

Assuming that this added light is dominated by light that underwent multiple scattering

events, allows us to approximate it as being both isotropic and uniform in space. This

constant light A(λ), known as the airlight [23] or also as the veiling light.

2.4.3 Combining scattering effects

According to [24], attenuation and sky intensity are additive due to the linear character

of light propagation. Suppose an object located at distance d has intensity I0(λ) when

imaged in a vacuum. In the presence of atmosphere the intensity is:

I(λ) = I0(λ) exp(−β(λ)d) +A(λ)(1− exp(−β(λ)d)) (2.11)

In a non-polluted atmosphere, without rain or snow, scattering is mainly caused by

small particles and is sensitive to λ, for instance, such particles produce an extinction

coefficient that is larger for red and smaller for blue, which causes the sky to be blue

and distant mountains to appear bluish. For d is not so large, there is no appreciable

”blueing” effect. For larger particles, Mie scattering are dominate, the dependence on

wavelength becomes negligible. Due to such considerations, we drop the dependency on
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λ in the remainder of the thesis. Referring the measured intensity of an object as I, and

the intensity of the object without scattering as J , we arrive at our basic equation:

I = J exp(−βd) +A(1− exp(−βd)) (2.12)

The 2.12 is called degraded fog model in some papers, in section 4.1 a haze model in

RGB model will be introduced.
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Previous Work of Dehazing

During the past decade many researchers have been devoted on the problem of how to

obtain high quality dehazed image [3] [4][5] [25] [20][26][27][28] [29] [30] [31][32] [33][34].

In this chapter, We will introduce and analyze the existing dehazing methods.

3.1 Overview of dehazing method

Many ways can lead to achieve the goal of haze removal and visibility improvement.

The methods can basically be divided into three groups: non-model-based methods,

model-based multi images or intervention-requeired methods, model-based single image

methods. Fig.3.1 shows comparison of their representative methods and image process-

ing effects, the images are taken from Fattal(2008) [5].

Those non-model-based methods trying to enhance the contrast of an image using sim-

pler computer vison techniques such as gamma correction, histogram equalization or

unsharp masking.

Representative model-based multi-image or intervention-requeired methods come from

Schechner, et. al.(2003) [27], Narasimhan et al.[35], [36] and Kopf et al.(2008) [30].

Schechner, et. al.(2003)notice that the airlight scattered by atmospheric particles is

partially polarized. Based on this observation, they develop a quick method to reduce

hazes by using two images taken through a polarizer at different angles. Narasimhan et

al. propose a physics-based scattering model [35] [36]. By this model, the scene structure

can be recovered from two or more weather images. Kopf et al. [30]propose to dehaze

an image by using the scene depth information directly accessible in the georeferenced

digital terrain or city models.

25
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Model-based single image dehazing, in contrast, is a more challenging problem, since

fewer information about the scene structure is available. Recently, some significant ad-

vances have also been achieved [5], [4] [3] [37]. These progresses benefit much from

the insightful explorations on new image models and priors. Fattal(2008) [5] propos-

es a refined image formation model to account for the surface shading and the scene

transmission. Under the assumption that the two functions are locally statistically un-

correlated, a haze image can be broken into regions of constant albedo, from which the

scene transmission can be inferred. Tan(2008) [4] proposes to enhance the visibility of

a haze image by maximizing its local contrast. Following Tan(2008), Tarel et al.(2009)

[38] points out visibility restoration is an ill-posed problem and a regularized solution

can be obtained by maximizing the contrast of the resulting image assuming that the

depth-map must be smooth except along edges with large depth jumps. The problem

can thus be reformulated as maximizing atmospheric veil assuming than atmospheric

veil is smooth most of the time, and formalized an optimization problem. By simplifying

this optimization problem, the algorithm obtain a high processing speed. especially in

regions with very dense hazes. However, since it is not a physics-based method, the re-

stored image often suffers from distorted colors and significant halos. He et al.(2011)[3]

present an interesting image prior - dark channel prior for single image dehazing sub-

traction from Chavez(1988)[25]. This prior comes from an observation that most local

patches in haze-free images often contain some low intensity pixels. The prior, combined

with a Guided image filtering operation [6], can achieve a quite compelling haze-free re-

sult of very high quality. Kratz et al.[37] model an image as a factorial Markov random

field, in which the scene albedo and depth are two statistically independent latent layers.

A canonical expectation maximization algorithm is implemented to factorize the image.

Kratzs method can recover a haze-free image with fine edge details, but the results often

tend to be over enhanced. More reference [39][40] [41] [42] [43] [44] [45] [46] [47] [48]

[49].

Fig.3.1 shows comparison of their representative methods and image processing effect-

s, some images are taken from Fattal(2008) [5]. Fig.3.1(a) shows the input image,

Fig.3.1(c1) is the result of a polarisation based dehazer, due to its outstanding image

quality this method can be seen as reference method. Fig.3.1(b1-3) contains images,

whose visibility have been improved by simpler image processing methods such as gam-

ma correction, histogram equalisation and unsharp masking, respectively. Fig.3.1(d1-3)

contains the results of Fattal( 2008), Chavez(1988) and He(2009). Fattals results are

the best for the single image dehazing methods in this comparison, He et al.(2009)

produces comparable results to those of Fattal, which shows that single image model

based, recently developed methods are the way to go. Also Tan(2008) [4] and Kopf et

al.(2008) [30], Tarel et al.(2009) [38] respectively, are workers in this field with their own
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(a) Input Image

(b1) Gamma Correction (b2) Histogram Equalization (b3) Unsharp Masking

(c1) Polarization-Based, Schechner et al. 2001

(d1) Fattal (2008) (d2) Chavez (1988) (d3) Dark Channel He(2011)

Figure 3.1: Comparison of computed images from the same input image created with
different dehazing techniques.

image dehazing methods each. The methods of Tan(2008) [4] and Tarel et al.(2009) [38]

Running fast. Kopf et al.(2008) [30] gives outstanding results, and is one of the best in

quality available today. These five works are compared in the Fig.3.2, some images are

from Tarel et al.(2009) [38].

3.2 Non-Model-Based dehazing method

The middle row in Fig.3.1(b1-3) shows the results of the non model based contrast

enhancers. The striking similarity is the blue hue that the three have in common, this is

the typical blueness of small haze particles as described in the preceding chapter. This

can only be eliminated with model based techniques. These are just a few examples,

there are actually many contrast manipulation algorithms available, mostly known from

photography. It is considered humans have a minimum contrast threshold that is needed

for object separation. Luckily, this contrast threshold can be raised in images using

simple mathematical concepts like the gamma correction, unsharp masking or histogram

equalisation. These were not developed to dehaze images, can however improve visibility

for the human eye, hence they can also be used to further improve an already dehazed

image. Thus for this purpose, they should not be used exclusively, but in combination

with a dehazer. For the sake of completeness however, the three introduced concepts

will now be described very briefly.
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Input Image Kopf (2008)

Tan(2008) Tarel(2009)

Fattal(2008) He(2011)

Figure 3.2: Comparison of five Dehazing algorithm

3.2.1 Gamma Correction

Gamma correction, is the name of a nonlinear operation used to code and decode lumi-

nance or tristimulus values in video or still image systems [50]. Gamma correction is, in

the simplest cases, defined by the following power-law expression:

Vout = AV γ
in (3.1)

where A is a constant and the input and output values are non-negative real values;

in the common case of A = 1, inputs and outputs are typically in the range 0 − 1. A

gamma value γ < 1 is sometimes called an encoding gamma, and the process of encoding

with this compressive power-law nonlinearity is called gamma compression; conversely
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a gamma value γ > 1 is called a decoding gamma and the application of the expansive

power-law nonlinearity is called gamma expansion.

Example of  gamma correction. 

The dotted line indicates a linear transfer function (�=1); 

the solid line shows how a typical CRT behaves; 

the dashed line represents the inverse function.

Sample images of �=1 and �=1/2.2 .

Figure 3.3: Plot shows the principle of gamma correction and sample images
source:http://en.wikipedia.org/wiki/Gammacorrection

http://www.wildlifeinpixels.net/blog/tag/tonal-distribution/

Fig.3.3 shows the the principle of gamma correction, and sample images shows that

when γ < 1 make dark regions lighter.

3.2.2 Histogram Equalisation

In general, a histogram is the estimation of the probability distribution of a particular

type of data. An image histogram is a type of histogram which offers a graphical

representation of the tonal distribution of the gray values in a digital image. By viewing

the images histogram, we can analyze the frequency of appearance of the different gray

levels contained in the image. In the right hand of Fig.3.3 we can see an image and its

histogram. The histogram shows us that the image contains only a fraction of the total

range of gray levels. In this case there are 256 gray levels and the image has higher

probability of values between approximately 50 − 100. Therefore this image has low

contrast.

A good histogram is that which covers all the possible values in the gray scale used.

This type of histogram suggests that the image has good contrast and that details in

the image may be observed more easily.

As stated earlier, basically the histogram equalization spreads out intensity values along

the total range of values in order to achieve higher contrast. This method is especially
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useful when an image is represented by close contrast values, such as images in which

both the background and foreground are bright at the same time, or else both are dark at

the same time. For example, the result of applying histogram equalization to the image

is presented in the left hand of Fig.3.3. As we can clearly see from the images that

the new image contrast has been enhanced and its histogram has also been equalized.

There is also one important thing to be note here that during histogram equalization

the overall shape of the histogram changes, where as in histogram stretching the overall

shape of histogram remains same.

Figure 3.4: Comparison of both the histograms and images before histogram equal-
ization and after.

source: http://www.tutorialspoint.com/dip/HistogramEqualization.htm

A disadvantage of this method is that it may increase the noise by discriminating it from

the actual usable signal. However, this method is one of the more advanced methods to

improve image contrast, and is of the three mentioned in this thesis the most resource

intensive, but usually also the one with the best results. This method generally improves

the global contrast, locally however spots in the image with close brightness values may

not be improved in some cases.
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3.2.3 Unsharp Masking

Sharpness makes edges clear and distinct. Unsharp masking produces an edge image

g(x, y) from an input image I(x, y) via

G(x, y) = I(x, y)− Ismooth(x, y) (3.2)

where Ismooth(x, y) is a smoothed version of I(x, y).This edge image can be used for

sharpening if we add it back into the original signal.

Isharp(x, y) = I(x, y) + k ∗G(x, y) (3.3)

where k is a scaling constant. Reasonable values for k vary between 0.2 and 0.7, with the

larger values providing increasing amounts of sharpening. Fig.3.5 shows a Real-World

Example to illustrate principle of unsharp masking. Unsharp masking can increase

Figure 3.5: Simplified principle of unsharp masking
source: http://en.wikipedia.org/wiki/Unsharpmasking

either sharpness or local contrast because these are both forms of increasing differences

between values, increasing slopesharpness referring to very small-scale (high-frequency)

differences, and contrast referring to larger-scale (low-frequency) differences.
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3.3 model-based multi-image or intervention-requeired de-

hazing methods

3.3.1 Visibility Improvement Based on Polarization Filtered Images

Polarisation-based dehazing methods are part of the multi-image or intervention-requeired

group, they usually use two input images taken with two differently polarised filters, one

after another, to produce one dehazed image. This technique makes use of the fact that

the airlight is at least partially polarised, whereas the direct transmission of the object

is unpolarised. Polarisation filters alone cannot eliminate haze in scenes, at least two

images with different polarisation filter states are necessary. The assumed model is that

of Koschmieders theory with additional polarisation filters, see Fig.3.6.

L

D

A

object

transmission
direct

zdistance

α
θ

polarizing
filter airlight

illumination

scattering

object

radiance

camera

Figure 3.6: Model for polarisation-based dehazing.

With the knowledge from Fig.2.12, this figure is pretty much self-explanatory. In this

section, the basic principles are described behind the method shown in [51], however

this is also representative for all other known polarisation-based methods.

Consider Fig.3.6, the resulting image of a scene consists of two components, the first

coming from the object radiance Lobject and the second from the airlight A. The former

is free of scattering in the line of sight and is only dependent on the attenuation of the

atmosphere. The direct transmission t(x) can then be written in:

t(x) = Lobject · τ (3.4)

where
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τ = exp(−βd(x)) (3.5)

is the transmittance or the atmosphere. Here d(x) denotes the distance from the ob-

server to the object and β the attenuation coefficient. The airlight, also called the path

radiance, is produced by the scene illumination and given by:

A = A∞(1− τ) (3.6)

Where A∞ is the saturation airlight, which depends on the atmospheric and illumination

conditions. It is the maximal possible intensity of airlight, which corresponds to the

airlight of the sky near the horizon. In contrast to the direct transmission the airlight

factor increases with distance and dominates the image irradiance Itotal at long ranges:

Itotal = t(x) +A (3.7)

This is the major cause for reduction of image contrast in haze. The partially polarised

airlight can now be used to restore a haze free image by mounting a polarisation filter

with angle in the imaging system. When rotating the polariser, there is an orientation

at which the image is least intense, let this be denoted by Imin. Imin corresponds to the

lowest amount of airlight. This orientation of the polarisation filter may be denoted by

θ∥. When now rotating the pol. filter by 90◦ relative to θ∥, then the image irradiance

is strongest, since now the principle polarisation component of the airlight is strongest,

this may be called Imax with θ⊥. Once these two images are acquired, the dehazed image

can be estimated by:

L̂object =
Itotal − Â

τ̂
(3.8)

where the estimated transmittance, τ̂ is :

τ̂ = 1− Â

A∞
(3.9)

and the estimated airlight Â is:

Â =
Imax − Imin

p
(3.10)

Here p is the degree of polarisationof airlight, which depends on the particle size of

the aerosols. It can however be estimated with just the parameters already known.

It is measured from the raw images by looking at pixels which correspond to objects

at infinity, naturally such pixels are those of the sky near the horizon(in later years,
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Schechner et al. proposed ways to find p without having a horizon in the picture).

p =
Imax − Imin

Imax + Imin
|d(x)=∞ (3.11)

Hence the airlight saturation value can be estimated from the same sky area as

p = [Imax + Imin]d(x)=∞ (3.12)

The distance map can be recovered as a byproduct:

βd̂(x) = − log

[
1− Â

A∞

]
(3.13)

This operation must be done for each color channel separately. The method works with

only slight alterations for both atmospheric photography [27] as well as for underwater

photography [32]. Problematic however, are surfaces that are specular, like windows or

water, because they reflect partially polarised light and lead to errors in the calculation.

These areas must be treated separately, and can for example be detected by analysing

inconsistencies in the depth map, see Namer and Schechner(2005)[51]. Although this

method is model based, no knowledge about the actual scattering particles is necessary.

However, due to its basic principle, only Rayleigh scattering can properly be eliminated.

Since Mie scatterers polarise the light in a different way if any(the larger the particle, the

less the polarisation). Also clear day recording is preferred for this method, since then the

airlight polarisation can properly be separated from the direct transmission. However,

when the prerequisites are met, polarisation-based dehazing gives very good results, an

example is given in Fig.3.7. Note that the correct colours can also be restored in contrast

to the formerly mentioned enhancers that purely focus on the contrast without being

model based.

Multi image dehazing methods in general, although usually giving qualitatively great

results tend to be unsuitable for real-time image dehazing purposes. It is thinkable that

for example, half the framerate could be sacrificed in order to capture two images with

different polarisation state, however rotating a static polarisation filter is of course very

slow when done by hand or even done by a clocked mechanical mechanism. Although

there are now electronic liquid crystal based polarisation filters available on the market

that may be able to switch on every frame, they are very colour selective and give

different results for different wavelengths of light [51]. Namer and Schechner also stated,

that: ”While we still do not demonstrate dehazing in video, we currently assess the

LC technology using still photography.” [51]. Also there is the argument, that special

hardware requirements may not be feasible in real world applications, since it may be
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Figure 3.7: Example for polarisation-based dehazing, (a) shows the image taken with
a polarisation filter under best polarisation state θ∥ (b) shows the image taken with a
polarisation filter under worst polarisation state θ⊥ and (c) shows the dehazed image.

Source: Schechner, et. al.(2003)[27]
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inconvenient in practice to equip once deployed cameras with a liquid crystal polarisation

filter for simple physical or monetary reasons. Especially in windy weather conditions,

cameras that are mounted on high masts and equipped with a polarisation filter may

be very sensitive to translation. Thus two images of different polarisation state may

be useless when shifted by a few pixels or even subpixels due to wind or other causes.

Additionally to multi-image techniques, there are methods using multiple images such as

the dehazing method of Nayar and Narasimhan described in [52] and [35], which require

images taken under two different weather conditions. This is of course way too slow for

real-time applications.

3.3.2 The Deep Photo System

A rather different approach was proposed by Kopf et al. in 2008 called the Deep Photo

System. Crucial to all dehazing methods is to acquire the depth information of every

pixel in the frame, but rather than acquiring these by making assumptions or employing

statistical observations, Kopf et al. developed a data-driven dehazing procedure, by

employing a registration process to align the photograph within an existing 3D model.

This way the method does not need to estimate the distances in the scene, but will get

the exact distances right away, assuming that such kind of georeferenced digital terrain

and urban models are available. They propose a user interactive referencing system, in

which the user registers certain scene points with the corresponding points in the mod-

el, such a model could come from satellite image data obtained from GoogleEarthTM ,

BingMapsTM or other providers. The 3D models for buildings and other objects are

already available for many cities like Berlin or New York City and others(for example

through V irtualEarthTM ). Additionally helpful can be GPS tags, produced by the

imaging system itself, sometimes even tilt and heading is provided by these cameras.

With a static surveillance camera in mind, the scene must be georeferenced only once

initially and could then rely on a set of depth information indefinitely assuming no

camera shifts take place. Taking airports as an example, 3D models of buildings and

high resolution geo information is usually available due to construction plans and air

traffic controlling agencies. Here also lies the limitation of such a system, since it heavily

relies on those sets of data, if no 3D model of the scene is available, no dehazing can

be performed. Also in dynamic scenes, with vehicles such as aircrafts driving or flying

through, there is no depth information for those foreground objects whatsoever, hence

dehazing for those objects would rely on wrong depth information and cause a super-

abundant dehazing on those spots. However, for scenes where distances are great and

the influence of moving objects to scene distance is low, such as in Fig.??, the image

quality is remarkable. After acquiring the depth information, the method of Kopf et al.
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estimates the airlight and the attenuation coefficient similarly to the other haze removal

methods and then basically solves Koschmieder’s equation, however with some nuances

differently. In the paper [30], the authors explore further possible applications for the

depth information of an image, other than dehazing, such as approximating changes in

lighting, expanding field of view, adding haze, adding new objects into the image with

the correct haze values according to distance, and integration of GIS data into the photo

browser, just to name a few. Since often the depth map of other dehazing methods also

comes as a byproduct, these mentioned applications may also be implemented combined

with other dehazers, such as [5] or [3], for example. Problems may arise from the fac-

t that the alignment between the photograph and the model may not be completely

accurate due to unprecise 3D models or the lens curvature of the imaging system.

3.4 model-based single image dehazing methods

3.4.1 Fattals Method

Fattal introduced a new technique in 2008 for single image dehazing that produces

qualitatively great results on hazy images. The main idea of this approach is to take

the image degradation model from Rossum and Nieuwenhuizen([22]) also known as the

Radiative Transport Equation(shown in Eq.(3.14 )) and express it in terms of surface

shading in addition to the transmission. This gives a refined image formation model.

Quoting Fattal: ”This allows us to resolve ambiguities in the data by searching for a

solution in which the resulting shading and transmission functions are locally statistically

uncorrelated. A similar principle is used to estimate the color of the haze.” [5].

I(x) = t(x)J(x) + (1− t(x))A (3.14)

In this equation, t(x) is the transmission, a scalar for each colour component:

t(x) = exp(−βd(x)) (3.15)

Similar to the preceeding section the term t(x)J(x) is being called the direct attenuation

and (1−t(x))A the airlight. Here I(x) is the input image, J(x) the haze free image and A

the global atmospheric light colour vector. This equation is commonly used to describe

the image formation in the presence of haze and was used before by, for example [25],

[52] and [28]. This inherits many ambiguities in each pixel independently, such as in the

airlight-albedo, that gives a large degree of freedom. Fattal however, manages to reduce
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this degree: ”To reduce the amount of this indeterminateness, we simplify the image

locally by relating nearby pixels together.” [5]. He does that by grouping pixels belonging

to the same surface, thus having the same surface reflectance and therefore the same

constant surface albedo. Now the key idea to resolve the airlight-albedo ambiguity is

that he assumes that the surface shading l and the scene transmission t are statistically

uncorrelated, because l depends on the illumination on the scene, surface reflectance

properties and the scene geometry, whereas t depends on the density of the haze(

) and the scene depth. Fattal then presents an independent component analysis method

to determine l and t. The same principle of uncorrelation is applied to the estimation of

the airlight colour. This method also gives a depth map, which could be used over and

over again for a static camera when using it in a real-time application. ”The Method

works quite well for haze, but has difficulty with scenes involving fog, as the magnitude

of the surface reflectance is much smaller than that of the airlight when the fog is

suitably thick.” [53]. According to Fattal, the noise level in the input image influences

the quality of the dehazed image greatly. However, with Fattals method the absolute

error in transmission and haze-free image are both less than 7% in tests where the real

haze free image was known, explanatory: ”In its essence this method solves a non-linear

inverse problem and therefore its performance greatly depends on the quality of the

input data.” [5]. ”Moreover, as the statistics is based on color information, it is invalid

for grayscale images and difficult to handle dense haze which is often colorless and prone

to noise.” [3]. For examples of performance, please refer to Fig.3.2.

3.4.2 Tan’s Method

Tan presented a single image based dehazing method in 2008, too. His proposed method

is based on the optical model:

I(x) = L∞ρ(x) exp(−βd(x)) + L∞(1− exp(−βd(x))) (3.16)

with L∞ being the atmospheric light and ρ(x) the reflectance, this formula is very similar

to 2.12. The first term in this equation is the direction attenuation and the second term

corresponds to the airlight A. He then expresses it in terms of light chromaticity and

as a vector for the color components. In this formula are more unknowns than knowns.

Nevertheless, there are some clues or observations that Tan makes use of in his algorithm:

1. ”The output image, [..] must have better contrast compared to the input image I.”

[4] 2. ”The variation of the values of A[atmospheric light for the color components] is

dependent solely on the depth of the objects, d, implying that objects with the same

depth will have the same value of A, regardless their reflectance(ρ). Thus, the values of
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A for neighbouring pixels tend to be the same. Moreover, in many situations A changes

smoothly across small local areas. Exception is for pixels at depth discontinuities, whose

number is relatively small.” [4]. 3. ”The input images that are plagued by bad weather

are normally taken from outdoor natural scenes. Therefore, the correct values of [the

direct attenuation] must follow the characteristics of clear-day natural images.” [4]. The

author of this paper then proposes an algorithm employing the clues above. With I

being the input image, the algorithm is:

1. Estimate L∞

2. Compute α (light chromaticity) from L∞

3. Remove the illumination colour of I

4. Compute the data term ϕ(px | AX) from I′

5. Compute the smoothness term ψ(Ax, Ay)

6. Do the interference, which yields the airlight, A

7. Return the direct attenuation, Dγ′ , computed from A.

He also proposed a data cost function for step 4 in the framework of Markov random

fields, which can be efficiently optimised by various techniques, such as graph-cuts. This

algorithm is applicable for both colour and gray images. However, it does not recover

the scenes original colour [4]. Despite its neat approach, this method is not easily

applicable to real-time applications since it takes ”The computational time for 600×400

images, using double processors of Pentium 4 and 1 GB memory, approximately five to

seven minutes (applying graph-cuts with multiple labels)” [4]. Also, this method has

some flaws compared to other methods of for example Fattal and Kopf et al. in terms of

image quality. Since it produces halos near depth discontinuities and ”The method tends

to produce over enhanced images in practice.” [53]. As an example for Tans method in

terms of image quality, please refer to Fig.3.2.

3.4.3 Dark Channel Prior

The success of recently developed techniques such as [5], [30] and [38] compared to

earlier dehazing methods lies in using stronger assumptions. A very promising new

single image technology, developed in 2010 called the Dark Channel Prior comes from

He, Sun and Tang. This method does not rely on significant variance on transmission or

surface shading in the input image and the output image is less effected by halos than
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in [4]. Although every assumption limits the algorithm to specific use cases, the main

assumption here seems to work for most outdoor scenes, except for those where ”the

scene object is inherently similar to the airlight over a large location and no shadow is

cast on the object” [3]. The main prior in this method is, as the name lets assume, the

dark channel prior, which is a statistical based assumption of haze-free outdoor images.

The prior says, that in most of the local regions that arent sky, very often some pixels

have a very low intensity in at least one of its colour channels(RGB). In the hazy image

then, these dark pixels can be used to determine the true airlight, since the airlight is

apparent on a dark object(as stated in the preceding chapter). The dark channel Jdark

of J(the haze-free image) is defined as:

Jdark(x) = min
n∈{r,g,b}

(
min

x∈Ω(x)
(Jn(x))

)
(3.17)

where Jn is a colour channel of J and Ω(x) is a local patch centered at x. This statistical

observation is called the dark channel prior. These low intensities come from natural

phenomena such as shadows or just really dark or colourful surfaces. Since Jdark tends to

be zero and as An, the corresponding channel of the atmospheric light is always positive,

it may be written:

Jdark(x) = min
n∈{r,g,b}

(
min

x∈Ω(x)

(Jn(x))

An

)
= 0 (3.18)

This can be used to estimate the transmission for that patch Ω(x) by putting Eq.(3.18)

into the image formation model Eq.(3.13), however now in combination with the min

operator:

min
n∈{r,g,b}

(
min

x∈Ω(x)
(In(x))

)
= t̃(x) min

n∈{r,g,b}

(
min

x∈Ω(x)
(Jn(x))

)
+ (1− t̃(x))An (3.19)

with t̃(x) denoting the transmission in a local patch, then putting Eq.(3.18) into E-

q.(3.19) leads to:

t̃(x) = 1− min
n∈{r,g,b}

(
min

x∈Ω(x)

Jn(x)

An

)
(3.20)

which is a direct estimation of the transmission for each local patch. They then apply a

soft matting algorithm on the depth map, this leads to a much smoother and detailed

depth map. Having the transmission or depth map, the scene radiance according to

Eq.(3.14) can now be recovered. However, since the direct attenuation term J(x)t(x)

can be very close to zero, the transmission is restricted to a lower bound t0 for example

t0 = 0.1, since the scene radiance is typically not as bright as the atmospheric light A.

The final scene radiance J(x) may then be recovered by:

J(x) =
I(x)−A

max(t(x), t0)
+A (3.21)
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In the above calculations, the atmospheric light A was considered to be known, which

is of course not the case, at least initially. Unlike other workers in the field, He et al. do

not take the pixel with the highest intensity as the atmospheric light, since this could

as well be a white surface such as a white car or a bright building veneer or artificial

light source. He et al. pick the top 0.1% brightest pixels in the dark channel(minn(I
n)),

since these must be the most haze-opaque. Among these pixels, the pixel with the

highest intensity in the input I is picked as the atmospheric light A. This may not be

the brightest pixel in the image, but is more robust than the ”brightest pixel” method

according to [3]. This method seems very elegant and shows very good results, as one

can see from Fig.3.2.



Chapter 4

Detecting Foggy Images and

Estimating the Haze Degree

Factor

At present, most outdoor video-surveillance, driver-assistance and optical remote sensing

systems have been designed to work under good visibility and weather conditions. Poor

visibility often occurs in foggy or hazy weather conditions and can strongly influence the

accuracy or even the general functionality of such vision systems. Consequently, it is

important to import actual weather-condition data to the appropriate processing mode.

Recently, significant progress has been made in haze removal from a single image [5], [3],

[4]. Based on the hazy weather classification, specialized approaches, such as a dehazing

process, can be employed to improve recognition. Fig.4.1 shows a sample processing

flow of our dehazing program.

Despite its remarkable value, determining weather information from a single image has

not been thoroughly studied. Traditional algorithms are designed for specific applica-

tions or require human intervention. Weather-recognition systems for vehicles which

depend on vehicle-specific priors, have been proposed [54], [55], [56]. Another proposed

system [57] can automatically label images with high confidence by assigning weather

labels, such as sunny, or cloudy; however, manual input constraints are required.

Against this background, the main aim of the current study is to develop a set of stable

algorithms for the detecting foggy images and labeling the haze degree of images by

using a factor with universal applications. In this paper, we propose a haze degree

estimation function to automatically distinguish foggy images and label images with

their corresponding haze degrees. We relied on the atmospheric scattering model analysis

42
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and statistics derived from various outdoor images in order to develop the estimation

function.

Figure 4.1: Sample dehazing flows by using haze degree estimation, where ω is a haze
factor we defined

4.1 Atmospheric Scattering Model Analysis

By default, we discuss the case of image that use the RGB color model. A hazy image

can be modeled as shown in [3], [35], (see Fig.4.2):

I(x) = J(x)t(x) +A(1− t(x)), (4.1)

where x denotes the pixel location, I(x) is the observed haze image, and J(x) is the

haze-free image. For n ∈ {r, g, b}, In(x) is one of three color channels of I(x), and

Jn(x) is one of three color channels of Jn(x). A is the global atmosphere light and is

generally a fixed element A0 in all three color channels, An = A0. t(x) is the medium

transmission and it is supposed to be the same in all three color channels at one pixel

location. When the atmosphere is homogeneous, t(x) = exp (−β · dep(x)). Here, β is the

scattering coefficient of the atmosphere, and dep(x) is the scene depth. To determine

the haze degree of an image rapidly and reliably, we define the following:

dI(x) = min
n∈{r,g,b}

In(x), (4.2)

bI(x) = max
n∈{r,g,b}

In(x), (4.3)

cI(x) = bI(x)− dI(x), (4.4)

d =

∑
x∈x

dI(x)

|Sx × Sy|
, b =

∑
x∈x

bI(x)

|Sx × Sy|
, (4.5)
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Atmospheric light A

.

+
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Clear image J(x)
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Transmission map t(x)(Approximative)

..
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⋆ x is pixel location

Estimate A and t(x) from I(x), then
calculate J(x)

Figure 4.2: Atmospheric Scattering model used

c = d− b, (4.6)

where d(x) is the minimum value of three channels, and b(x) is the maximum value. d

and c, which are the average values of dI(x) and cI(x), are referred to as the dark and

contrast values, respectively. Here, we assume that the size of image I is |Sx×Sy|. Take
the minimum and maximum of the three channels on both sides of Eq.(4.1):

dI(x) =

(
min

n∈{r,g,b}
Jn(x)

)
t(x) +A0(1− t(x))

= dJ(x)t(x) +A0(1− t(x)),

(4.7)

bI(x) =

(
max

n∈{r,g,b}
Jn(x)

)
t(x) +A0(1− t(x))

= bJ(x)t(x) +A0(1− t(x)),

(4.8)

A0 − dI(x) = (A0 − dJ(x))t(x). (4.9)

By Eq.(4.8)-Eq.(4.7), we get the following

cI(x) =

(
max

n∈{r,g,b}
Jn(x)− min

n∈{r,g,b}
Jn(x)

)
t(x)

=
(
bJ(x)− dJ(x)

)
t(x)

= cJ(x)t(x).

(4.10)

For most haze-free outdoor images, dJ(x) < A0 even dJ(x) ≪ A0, Eq.(4.9) and Eq.(4.10)

show that the smaller t(x), cI(x) and A0 − dI(x) are closer to 0. As above, the values d

and c may be correlated with the overall haze degree of an image. In the next section,

we use a statistical method to evaluate the relationships.
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Table 4.1: Standards dividing images into six groups

Haze-degree Corresponding ω̄
Standards

Haze area proportion Haze density

0 0.1 0 clear

1 0.3 0− 80% thin

2 0.5 0− 80% normal or thick

3 0.7 80%− 100% thin

4 0.8 80%− 100% normal

5 0.9 80%− 100% thick

Note that, for simplicity, we estimate A as follows. Clearly, b ≤ A0 ≤ maxx∈x b
I(x) is

established, and then, A0 can be expressed as

A0 = λmax
x∈x

bI(x) + (1− λ)b, 0 ≤ λ ≤ 1. (4.11)

Here, we set λ = 1/3.

4.2 Haze Degree Estimation Function

We selected 300 outdoor images that use the RGB color model (component values are

stored as integer numbers in the range 0 - 255) and manually divided them into six

groups according to the standards in Tab.4.1. Fig.4.3 shows the sample images from

the six groups. A grade from 0 to 5 representing the haze degree is assigned to each

group; the higher the grade, the hazier the image. Fig.4.4 shows the values of (A0 − d)

(horizontal axis) and c (vertical axis) of images from six groups and the haze degrees of

all selected images. The point colors represent the groups, and the point size indicates

the haze degree, i.e., the larger points indicate greater haziness. It is evident that for

most images from groups 3 to 5, (A0 − d) is less than 75 and c is less than 50. For most

haze-free images (group 0, the smallest blue points), (A0 − d) is greater than 100 and c

is larger than that in other groups.

To limit ω ∈ (0, 1), we introduce the following to estimate the haze factor ω:

ω = exp

{
−1

2
(µx1 + νx2) + σ

}
, x1 =

A0 − d

A0
, x2 =

c

A0
(4.12)

Obviously, ln(ω) is a linear function of x1, x2 and σ. Each haze-degree were assigned a ω̄

in Tab.4.1. Using multiple linear regression analysis on our data set {ln(ω̄i), xi1, xi2}300i=1,

we can get raw µ, ν and σ . Because µ, ν, σ are experience constants, we recommend

µ = 5.1, ν = 2.9, σ = 0.2461.
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Group 0

Group 2

Group 1

Group 3

Group 4

Group 5

Figure 4.3: Sample images from our database

The main process of our algorithm is as follows:

1. Input processing image I(x).

2. Obtain bI(x), dI(x), cI(x) from I(x).

3. Calculate d, b, c, estimate the air light A

4. Get haze factor ω by using Eq.(4.12).
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Table 4.2: Haze-free sample images which have larger A0 − d and c and haze samples
have smaller ones.

Image No. Original image A− d(x) c(x) A0 − d c

1 143.1593 45.5548

2 143.7508 96.16

3 168.209 87.2932

4 169.4447 54.8168

5 104.049 24.472

6 99.316 7.18002

7 74.148 8.14979

8 57.624 4.78021

4.3 Experimental Results

We used the Foggy Road Image Database(FRIDA) [58] to test the haze factor estimation

function Eq.(4.5). FRIDA is comprised of 90 synthetic images of 18 urban road scenes.

Each image is 640×480 pixels. (Mean execution time is 230 ms on an Intel Core I7 CPU.)

Each image without fog (Lima set) is associated with four foggy images. Different types

of fog are added to each of the four associated images: uniform fog(U080), heterogeneous

fog(K080), cloudy fog(L080), and cloudy heterogeneous fog(M080), as an example Fig.??

shows the No.1 and No.10 images from five sets of FRIDA.
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a point of group 0

a point of group 1

a point of group 2

a point of group 3

a point of group 4

a point of group 5

Figure 4.4: A0 − d (horizontal axis) and c (vertical axis) of images from six groups.
Larger points correspond to higher haze grades.

No. 1

No. 10

K080 L080 LIma M080 U080

Figure 4.5: Sample images from FRIDA Database

As Fig.4.6 shows, the lowest haze degree (between 0.4 to 0.6) is found for images of Lima.

Note that the sky area of images from the Lima set, is different from a real situation.

Real fog-free image in our experimental results, have a degree of below 0.3. The four

associated foggy images have regularity values(between 0.6 and 1) that correspond to

different types of fogs. Images from U080 set always get the highest degree and M080

always get the lowest. For different images in the same set, for instance, No. 1 and No.

10, No. 10 gets higher degree than No. 1, which is consistent with the actual situation.

The experimental results show that Eq.(4.12) can accurately distinguish haze degree.

In addition, we also randomly collected 48 real images to test our method dividing them

by artificially picking three groups: haze-free, haze, and thick-haze. Fig.4.7 shows the

haze factors of three groups and provides some sample images and the factor value.

About 94% haze-free images get a haze-factor value below 0.4, 88% haze images get a

value between 0.4 and 0.6, and, 85% thick images get a value between 0.7 and 1. Note

that photo in the red circle, has haze-factor below 0.1, despite being a thick-haze airport
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Figure 4.6: Estimated haze factor ω of the five sets of FRIDA, the horizontal axis is
Image No. (1 - 18) and the vertical axis is the haze-factor ω.

night view obviously, this is because this picture has a monochrome light source, which

means that A was not the same in three channels which make our model fail.
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Figure 4.7: Estimated haze factor ω of real images divided in three groups and their
sample images with the haze factor on the right.

4.4 Conclusions

We introduced a numerical foggy image detecting method by using the atmospheric s-

cattering model analysis and statistics of various outdoor images, which can estimate

the haze-factor from single image by using an adjustable empirical function without

manual input constraint. Because its complexity is linear, it can be applied as an ini-

tial classification step of dehazing processing and does not exhaust processing resources.
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Experimental results show that the method, can be applied to usual weather condition-

s in video-surveillance, driver-assistance and optical remote sensing system with high

accuracy.

Our proposed prior is inspired by the atmospheric scattering mode, and suppose that

the air light is equal in all three channels which might not always be true. Moreover,

our method can-not be applied to the case of a monochrome light source. Thus we leave

these problems for further research.



Chapter 5

Self-adjusting and Real-time

Dehazing

Many outdoor computer vision applications like video surveillance, object detection,

object recognition, tracking, intelligent vehicles and remote sensing systems etc. , assume

that the input images have clear visibility. Unfortunately, this is not always true in

many situations. Outdoor images or videos are usually degraded by light scattering

and absorbing from the aerosols, such as dust, mist, and fumes in the atmosphere, here

regarded as haze. the captured scenes suffer from poor visibility, low contrast, dimmed

brightness and distorted color. therefore visibility improvement, contrast enhancement

and features enhancement of images and videos captured in bad weather, also called

as dehazing, is an inevitable task. In real-time dehazing, there are three problems to

be solved: natural transition between frames, dehazing effect and processing speed.

This paper proposes a simple and fast hazed degree Estimate method which is based

on two basic observations: clear-day images have more contrast than images plagued

by bad weather; in most of the local regions even the sky, hazed images have larger

minimum values of most color(RGB)channel pixeles closing to airlight value. Relying

on these two observations, we develop an estimate function related to haze removal

constant parameter ω. In order to reduce the computational cost while providing the

promising dehazed results also for real-time applications, by modifying the dark channel

prior, the transmission estimation is carried out by obtaining the minimum value from

only the relevant pixel itself or the median filter of minimum values of its neighboring

pixels. Experiments demonstrate that our results achieve good visibility and real-time

computation.

51
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5.1 Estimating the Transmission and Recovering the Scene

Radiance

From the time analysis, most method based on Dark Channel Priori can be observed

that the refined transmission process such as Soft-matting or Guided Image Filtering

consumes most of the computation time, i.e., 70% of the execution time[59]. In this

paper, we use the following method to estimate transmission.

By 4.1,

dI(x) > A0(1− t(x)) (5.1)

then

t(x) > 1− dI(x)

A0
(5.2)

when dJ(x)t(x) → 0, i.e., at the pixels where dJ(x) → 0 )(By [3],it often happens) or

quite far pixels (out-door images) t(x) → 0,

t(x) → 1− dI(x)

A0
(5.3)

For Sa × Sa neighborhood Ω(x) near pixel x, using Mean filter on both sides of Eq.(5.2)

Mean
x∈Ω(x)

(t(x)) > 1−
Mean
x∈Ω(x)

(
dI(x)

)
A0

(5.4)

let t̃(x) = Mean
x∈Ω(x)

(t(x)) then we get

t̃(x) > 1−
Mean
x∈Ω(x)

(
dI(x)

)
A0

(5.5)

we use global hazy degree to estimate the value of t̃(x)

t̃(x) = 1− ω

Mean
x∈Ω(x)

(
dI(x)

)
A0

(5.6)

Here, ω is from Eq.(4.12), when ω is large,that is the image is very hazy, in Eq.(5.6),

t̃(x) become small, then haze will be strongly removed in dehazed image, and vice versa.
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By Eq.(5.1) and Eq.(5.6), we set

t(x) = max

(
t̃(x), 1− dI(x)

A0

)
(5.7)

After the transmission map is estimated, the scene radiance can be recovered according

to Eq.(4.1), The final scene radiance J(x) is recovered by

J(x) =
I(x)−A

max(t(x), t0)
+A (5.8)

The term J(x)t(x) can be very close to zero. When the transmission t(x) is close to

zero, which make the recovered scene radiance J(x) is prone to noise. Therefore, the

transmission t(x) is restricted by a low bound t0, a typical value of t0 is 0.1.

5.2 Algorithms and Complexity

The main process of this algorithm is as follows:

1. Input Haze image I(x);

2. Calculate dI(x), d, b, cand max(bI(x));

3. Estimate the dehaze factor ω and A0

4. Flitering dI(x) using mean filter and calculate t̃(x)

5. Calculate the transmission t(x)

6. Output the recovered image J(x)

Fig.5.2 gives the flow chart of this method. It can be seen that the time-consuming parts

of the whole algorithm is the mean filter in step 4, for an image with Sx × Sy pixels,

other steps can be completed in O(Sx × Sy). In [60][61], a fast implementation of the

mean filter in O(Sx × Sy) is proposed. Thanks to this fast mean filter, the complexity

of the proposed algorithm is also O(Sx × Sy), i.e, it is a linear function of the number of

input image pixels whatever the window size Sa × Sa of mean filter.

5.3 Experimental Results and Analysis

The proposed method is implemented by using Visual Studio 2010 and OpenCV vision

library, and a personal computer DELL Precision M4600 with a 2.80GHz Intel Core
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Figure 5.1: Algorithm flow of our dehazing method

i7-2640M processor is employed in the test. In this section, to show the effectiveness of

our method, we compare it with He’s work [3] on both image restoration quality and

the time complexity,and examples are given as following.

5.3.1 Image restoration quality

There is no generally accepted method to evaluate the effect of dehazing, a simple

evaluating method is proposed by this research. Suppose ∥I∥ =
√∑

x∈x
I2(x), Suppose

I denotes original hazed image, and I′ denotes dehazed-output image, then dehazing

factor ρ is definited as:

ρ =
∥I− I′∥
∥I∥

This ρmay represent the differences between dehazed result and original image, however,

in some case, for instance color bias happened and over-hazed , the dehazing factor can

get higher value. Refering Tab.5.1,Tab.5.2 and Tab.5.3, ρ is not always higher is better,

the dehazing factou of Tan’s method get extraordinary highest value almost, but the

results of his show abnormal high contrast. For the sake of the result of Kopf et al.’08

is believed getting better results of dehazing, the dehazing factor of his is selected as a

standard in this thesis.
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Table 5.1: Our method’s image restoration quality compare to others’

Original Kopf et al.’08

ρ = 0.212936

Fattal’08 He et al.’09

ρ = 0.146794 ρ = 0.235055

Tan’08 ours

ρ = 0.394571 ρ = 0.264699
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Table 5.2: Our method’s image restoration quality compare to others’

Original Kopf et al.’08 Fattal’08

ρ = 0.188409 ρ = 0.256156

He et al.’09 Tan’08 ours

ρ = 0.303624 ρ = 0.427152 ρ = 0.23090

Tab.5.1,Tab.5.2 and Tab.5.3 illustrates the comparisons and dehazing factors of our

method with Kopf et al.’08 [30], Fattal’08[5], He et al.’09[3], Tan’08[4]. Kopf’s method

get the best effect to dehaze, depended a data-driven dehazing procedure, by employing

a registration process to align the photograph within an existing 3D model. This way

the method does not need to estimate the distances in the scene, assuming that such

kind of georeferenced digital terrain and urban models are available. Because of the

need of alignment, the method is time-consuming, and does not have the versatility.

Tans method can augment the image details and greatly enhance the image visuality.

However, the colors in the recovered images are often over saturated, since the method

is not a physically based approach and the transmission may thus be underestimated.

Moreover, some significant halo artifacts usually appear around the recovered sharp
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Table 5.3: Our method’s image restoration quality compare to others’

Original Kopf et al.’08 Fattal’08

ρ = 0.20509 ρ = 0.232987

He et al.’09 Tan’08 ours

ρ = 0.36681 ρ = 0.412999 ρ = 0.185656

edges (e.g., Buildings far away). In comparison, our method can improve the visuality

of image structures in very dense haze regions while restoring the faithful colors. The

halo artifacts in our results are also quite small. Fattals method relies on sufficient

color information to estimate the transmission. If the haze is very dense, the color

information will be very faint and the transmission may thus be wrongly estimated,

leading to erroneous enhancement on the image. For example, the bridge enhanced by

Fattals method is too dark and some hazes still remain among the Horizon. As can be

seen from the results, He’s method produce satisfactory results in regions with heavy

hazes. In regions far, our method performs better, He’s method presence color bias

especially the color of the buildings near the bridge looks dim and unnatural. Though

hazes remain in our dehazing results, halo artifacts are smaller. Moreover, our method
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Table 5.4: Our method’s image restoration quality compare to He’s

Image No. Original image ω ⌈255t(x)⌉ Our’s He’s(ω = 0.95)

1 0.5120

2 0.4682

3 0.6315

4 0.4560

5 0.5171

6 0.8290

7 0.3161

8 0.7613

tends to generate a natural-looking result of image details. This benefits from the

incorporation of a median filter into image dehazing. These filters can help to exploit and

augment the interesting image structures, e.g., jump edges and corners. In comparison,

our results are much visually pleasing.

He’s method achieve good performance performance in quality and processing speed

have good performance. In Tab.5.4, eight images’ restoration quality of our’s method

and He’s are shown. Clearly, our treatment effect substantially close to He’s in the area

of non-sky. Please note, in the area of sky of Image No.2, 4 , 6 , 8, Dark Channel Prior

method result overdehazed and color distortion. Despite the fog remains in distant of

our result, but very natural transition exists from near to far.
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5.3.2 Enhanced edge detection

Enhanced edge detection affection test is also carried out to evaluate detail-recovering

capability. Using Canny detector (minV al = 50,maxV al = 120, kernalSize = 5) corre-

spond on iamges in Tab.5.1,Tab.5.2 and Tab.5.3. Tab.5.5,Tab.5.6 and Tab.5.7 illustrates

the comparisons of enhanced edge detection affection and ρ of our method with Kopf et

al.’08 [30], Fattal’08[5], He et al.’09[3], Tan’08[4]. Similarly to the above conclusions, the

dehazed image processed by proposed method can extracte more edges, with the com-

parable ability with Kopf et al.’08 [30], Fattal’08[5], He et al.’09[3]. Similarly, Tan’08[4]

gets the highest ρ in the test, yet might contain a lot of noise.

5.3.3 Processing time cost

Tab.5.8 shows our method has an advantage in terms of processing speed even to im-

proved Dark Channel Prior methods,and we believe there is room for improvement by

optimizing algorithm.

5.3.4 Effects of Different scenarios

To test the robustness of our algorithm,we pick up FRIDA images to handle individual-

ly. FRIDA is comprised of 90 synthetic images of 18 urban road scenes. Each image is

640×480 pixels.(Mean execution time is 230 ms on an Intel Core I7 CPU.) See Fig.5.2 ,

which shows sample images, Each image without fog (Lima set) is associated four foggy

images. Different types of fog are added to each of the four associated images: uni-

form fog(U080), heterogeneous fog(K080), cloudy fog(L080), and cloudy heterogeneous

fog(M080). Tab.5.9 shows the 7th photo’s dehaze effect of 5 sets (Lima-000007 is unpro-

cessed), we can see the dehazed images of 4 kinds of haze have natural defogging effect,

consistent with the results, no issues to be overdehazed.

No. 1

No. 10

K080 L080 LIma M080 U080

Figure 5.2: Sample images from the FRIDA Database
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Table 5.5: Our method’s image enhanced edge detection affection compare to others’

Original Kopf et al.’08

ρ = 0.425162

Fattal’08 He et al.’09

ρ = 0.482821 ρ = 0.407717

Tan’08 ours

ρ = 0.601032 ρ = 0.442046
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Table 5.6: Our method’s image enhanced edge detection affection compare to others’

Original Kopf et al.’08 Fattal’08

ρ = 0.487553 ρ = 0.502986

He et al.’09 Tan’08 ours

ρ = 0.422012 ρ = 0.661718 ρ = 0.503297

5.4 Application of dehazing and symmetry detection

I propose to use the dehazing method on symmetry detecting[62]. Suppose that the

following n points in R3(or R2) are given,

p1 = (p11, p12, p13)
t , . . . ,pn = (pn1, pn2, pn3)

t

and

p′
1 =

(
p′11, p

′
12, p

′
13

)t
, . . . ,p′

n =
(
p′n1, p

′
n2, p

′
n3

)t
Let A = (p1, . . . ,pn) and A

′ = (p′
1, . . . ,p

′
n).
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Table 5.7: Our method’s image enhanced edge detection affection compare to others’

Original Kopf et al.’08 Fattal’08

ρ = 0.626931 ρ = 0.488037

He et al.’09 Tan’08 ours

ρ = 0.468885 ρ = 0.78695 ρ = 0.492789

5.4.1 Definition of D(AA′)

D(AA′) = min
n∑

i=1

n∑
j=1

∥pi − p′
j∥xij

s.t.



n∑
i=1

xij = 1, j = 1, 2, · · · , n

n∑
j=1

xij = 1, i = 1, 2, · · · , n

xij = 0 or 1, i, j = 1, 2, · · · , n
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And suppose that the matrix X = [xij ].

5.4.2 Details of A and A′

Suppose that there exists a plane π : wtx = w0 in R3,

where w = (w1, w2, w3)
t,x = (x1, x2, x3)

t, ∥w∥ ̸= 0, w0 ∈ R,

For each point pi ∈ A,we can get other point p′
i where plane π as the Plane of Symmetry.

Let p′
i ∈ A′.

then we can find A′ from A and plane π : wtx = w0 as follows:

u =
w

∥ w ∥
(5.9)

ρ =
−w0

∥ w ∥
(5.10)

ρp = At ∗ u− ρ ∗ e (5.11)

A′ = A− 2u ∗ (ρp)t (5.12)

e = (1, 1, · · · , 1, 1)t︸ ︷︷ ︸
n

(5.13)

(1) u is the normal vector of plane π

(2) ρ is distance from original point to plane π

(3) ρp is a vector,the ith element is distance from the point pi to the plane π
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Suppose D(AA′) = ε ≥ 0

if ε = 0 ,

then the plane π is one of the plane of exactly symmetry

and for some ε ≥ 0 sufficiently small, the plane pi is the Plane of ε−approximate Symmetry
of A. I did some comparison test of symmetry detetection in original and dehazed images,

see Fig.5.3, both images are edge extracted using Canny Edge Detector with minVal=50,

maxVal=150, kernelsize=3. From original image there is only one target is observed,

after dehazing, 4 targets are detected, which shows our dehazing method can used to

reduce noise and increase the visual range.

5.5 Conclusion

In this chapter, a simple but efficient method to improve single image dehazing algorithm

based on statistical methods is proposed, which can work well for the various conditions.

In the improved method, haze degree can be calculated in advance, and transmission can

be refined by mean filter once. Therefore, color distortion and halos in invalid regions

can be avoided. Finally, the restored images are obviously more natural, softer and

clearer. It proved that our method has strong robustness and high availability, and can

be widely applied to the real-time dehazing for videos and actual projects.
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Original Dehazed

Edge Detection

Objective Detection

Figure 5.3: Sample application of Dehazing and Symmetry detection

Table 5.8: Processing time cost compare to He’s

Image No. Image Size Time cost(ms)
Our’s He’s

1 800× 600 1933.79 3746.68

2 800× 600 1920.82 3997.35

3 800× 600 1930.76 3595.26

4 1024× 768 2666.08 4270.92

5 800× 600 1980.94 3654.60

6 1024× 768 3615.62 5777.25

7 1024× 768 3561.33 5072.52

8 1024× 768 3546.14 5235.01
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Table 5.9: Effects of Different scenarios

Image No. Original processed

K080-000007

L080-000007

Lima-000007

M080-000007

U080-000007



Chapter 6

Conclusions and future work

6.1 conclusions

In my work, I described the physical basis for dehazing algorithms and exhibited existing

methods. Todays methods are physically sound and produce qualitatively good results,

however more attention to dehazing quality rather than the applicability leads to for

real-time applications they may not always be fast enough. In this thesis, we present a

novel method to detect haze images and label them haze factor with a high identification.

This method can be independently used for weather conditions automatic identifying as

well as batch images and video dehazing as a preprocessor and dehazing factor.

Not similar to existing dehazing algorithms try to remove the entire haze which may

lead to color bias, overall dim , jagged at the edges, halo in sky area etc. our dehazing

method aims to reduce the effect of haze. The complexity could be reduced from O(n2)

to O(n). The recovery of the color, clarify and contrast improves significantly. The

dehazed image appear like a clear-day scene instead of unnatural recovered images of

the other dehazing algorithms which return unnatural black skies.

With higher robustness, our dehazing method is able to adapt to different situations

and needs. It has been shown in the tests here that although the method was built

with just haze in mind, it is possible to even improve foggy, snowy and rainy scenes.

Therefore, possible applications are broad, like outdoor surveillance or on board cameras

in vehicles[63]. Some researchers even showed that it is possible to improve underwater

imaging and aerial photography with similar, if not the same techniques[64].
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6.2 future work

Some problems are leaved for further research.

• Our method is based on simplified haze image model, in order to improve the de-

hazing results, more sophisticated atmospheric scattering physical model is needed.

• Gathering more images to extract trends and patterns between image pixel values

and transmittance in order to improve haze-degree estimating.

• The assumed incident light source is uniform illumination(sunlight), it need to

extend to non-uniform illumination.

• achieving higher processing speed by code optimization in order to meet the real-

time processing request.

• Propose a reasonable way to judge the effect of dehazing.



Bibliography

[1] Hulbert E. O. Optics at atmospheric haze. J. Opt. Soc. Am., 31:467–476, 1941.

[2] J.E. et al. Manson. The possible role of gas reactions in the formation of the

stratospheric aerosol layer. In Chemical Reactions in the Lower and Upper Atmo-

sphere.Interscience, New York., 1959.

[3] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark

channel prior. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

33(12):2341–2353, 2011.

[4] Robby T Tan. Visibility in bad weather from a single image. In Computer Vision

and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,

2008.

[5] Raanan Fattal. Single image dehazing. In ACM Transactions on Graphics (TOG),

volume 27, page 72. ACM, 2008.

[6] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. In Computer

Vision–ECCV 2010, pages 1–14. Springer, 2010.

[7] Bhabatosh Chanda and Dwijesh Dutta Majumder. Digital image processing and

analysis. PHI Learning Pvt. Ltd., 2004.

[8] Harry G Barrow and Jay M Tenenbaum. Interpreting line drawings as three-

dimensional surfaces. Artificial intelligence, 17(1):75–116, 1981.

[9] Tony Lindeberg. Edge detection and ridge detection with automatic scale selection.

International Journal of Computer Vision, 30(2):117–156, 1998.

[10] Wei Zhang and Fredrik Bergholm. Multi-scale blur estimation and edge type classifi-

cation for scene analysis. International Journal of Computer Vision, 24(3):219–250,

1997.

[11] John Canny. A computational approach to edge detection. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, (6):679–698, 1986.

69



Bibliography 70

[12] Robert M Haralick. Digital step edges from zero crossing of second directional

derivatives. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

(1):58–68, 1984.

[13] Ron Kimmel and Alfred M Bruckstein. Regularized laplacian zero crossings as

optimal edge integrators. International Journal of Computer Vision, 53(3):225–

243, 2003.

[14] Rachid Deriche. Using canny’s criteria to derive a recursively implemented optimal

edge detector. International journal of computer vision, 1(2):167–187, 1987.

[15] Lord Rayleigh. Xxxiv. on the transmission of light through an atmosphere con-

taining small particles in suspension, and on the origin of the blue of the sky. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47

(287):375–384, 1899.

[16] Mark Z Jacobson. Fundamentals of atmospheric modeling. Cambridge University

Press, 2005.

[17] AJ Cox, Alan J DeWeerd, and Jennifer Linden. An experiment to measure mie

and rayleigh total scattering cross sections. American Journal of Physics, 70(6):

620–625, 2002.
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and Dominique Gruyer. Vision enhancement in homogeneous and heterogeneous

fog. Intelligent Transportation Systems Magazine, IEEE, 4(2):6–20, 2012.

[32] Yoav Y Schechner and Nir Karpel. Recovering scenes by polarization analysis.

In OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04, volume 3, pages 1255–1261.

IEEE, 2004.

[33] Jiafeng Li, Hong Zhang, Ding Yuan, and Helong Wang. Haze removal from single

images based on a luminance reference model. In Pattern Recognition (ACPR),

2013 2nd IAPR Asian Conference on, pages 446–450. IEEE, 2013.

[34] Deepak Kumar Naik and Deepak Kumar Rout. Outdoor image enhancement: In-

creasing visibility under extreme haze and lighting condition. In Advance Computing

Conference (IACC), 2014 IEEE International, pages 1081–1086. IEEE, 2014.

[35] Srinivasa G Narasimhan and Shree K Nayar. Vision and the atmosphere. Interna-

tional Journal of Computer Vision, 48(3):233–254, 2002.

[36] Srinivasa G. Narasimhan and Shree K. Nayar. Contrast restoration of weather

degraded images. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 25(6):713–724, 2003.



Bibliography 72

[37] Louis Kratz and Ko Nishino. Factorizing scene albedo and depth from a single

foggy image. In Computer Vision, 2009 IEEE 12th International Conference on,

pages 1701–1708. IEEE, 2009.

[38] J-P Tarel and Nicolas Hautiere. Fast visibility restoration from a single color or

gray level image. In Computer Vision, 2009 IEEE 12th International Conference

on, pages 2201–2208. IEEE, 2009.

[39] Jing Yu, Chuangbai Xiao, and Dapeng Li. Physics-based fast single image fog

removal. In Signal Processing (ICSP), 2010 IEEE 10th International Conference

on, pages 1048–1052. IEEE, 2010.

[40] Ko Nishino, Louis Kratz, and Stephen Lombardi. Bayesian defogging. International

journal of computer vision, 98(3):263–278, 2012.

[41] Jing Yu and Qingmin Liao. Fast single image fog removal using edge-preserving

smoothing. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE In-

ternational Conference on, pages 1245–1248. IEEE, 2011.

[42] Cosmin Ancuti, Codruta Orniana Ancuti, Tom Haber, and Philippe Bekaert. En-

hancing underwater images and videos by fusion. In Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on, pages 81–88. IEEE, 2012.

[43] Bin Xie, Fan Guo, and Zixing Cai. Improved single image dehazing using dark

channel prior and multi-scale retinex. In Intelligent System Design and Engineering

Application (ISDEA), 2010 International Conference on, volume 1, pages 848–851.

IEEE, 2010.

[44] Inhye Yoon, Seonyung Kim, Donggyun Kim, Monson H Hayes, and Joonki Paik.

Adaptive defogging with color correction in the hsv color space for consumer surveil-

lance system. Consumer Electronics, IEEE Transactions on, 58(1):111–116, 2012.

[45] Chao-Tsung Chu and Ming-Sui Lee. A content-adaptive method for single image

dehazing. In Advances in Multimedia Information Processing-PCM 2010, pages

350–361. Springer, 2011.

[46] Mengyang Chen, Aidong Men, Peng Fan, and Bo Yang. Single image defogging. In

Network Infrastructure and Digital Content, 2009. IC-NIDC 2009. IEEE Interna-

tional Conference on, pages 675–679. IEEE, 2009.

[47] Nachiket Desai, Aritra Chatterjee, Shaunak Mishra, Dhaval Chudasama, Sunav

Choudhary, and Sudhir Kumar Barai. A fuzzy logic based approach to de-weather

fog-degraded images. In Computer Graphics, Imaging and Visualization, 2009.

CGIV’09. Sixth International Conference on, pages 383–387. IEEE, 2009.



Bibliography 73

[48] Erik Matlin and Peyman Milanfar. Removal of haze and noise from a single image.

In IS&T/SPIE Electronic Imaging, pages 82960T–82960T. International Society for

Optics and Photonics, 2012.

[49] Haoran Xu, Jianming Guo, Qing Liu, and Lingli Ye. Fast image dehazing using

improved dark channel prior. In Information Science and Technology (ICIST), 2012

International Conference on, pages 663–667. IEEE, 2012.

[50] Charles Poynton. Digital video and HD: Algorithms and Interfaces. Elsevier, 2012.

[51] Einav Namer and Yoav Y Schechner. Advanced visibility improvement based on

polarization filtered images. In Optics & Photonics 2005, pages 588805–588805.

International Society for Optics and Photonics, 2005.

[52] Shree K Nayar and Srinivasa G Narasimhan. Vision in bad weather. In Computer

Vision, 1999. The Proceedings of the Seventh IEEE International Conference on,

volume 2, pages 820–827. IEEE, 1999.

[53] Peter Carr and Richard Hartley. Improved single image dehazing using geometry.

In Digital Image Computing: Techniques and Applications, 2009. DICTA’09., pages

103–110. IEEE, 2009.

[54] Martin Roser and Frank Moosmann. Classification of weather situations on single

color images. In Intelligent Vehicles Symposium, 2008 IEEE, pages 798–803. IEEE,

2008.

[55] Mario Pavlic, Heidrun Belzner, Gerhard Rigoll, and Slobodan Ilic. Image based fog

detection in vehicles. In Intelligent Vehicles Symposium (IV), 2012 IEEE, pages

1132–1137. IEEE, 2012.

[56] Sebastián Bronte, Luis M Bergasa, and Pablo F Alcantarilla. Fog detection system

based on computer vision techniques. In Intelligent Transportation Systems, 2009.

ITSC’09. 12th International IEEE Conference on, pages 1–6. IEEE, 2009.

[57] Zichong Chen, Feng Yang, Albrecht Lindner, Guillermo Barrenetxea, and Martin

Vetterli. Howis the weather: Automatic inference from images. In Image Process-

ing (ICIP), 2012 19th IEEE International Conference on, pages 1853–1856. IEEE,

2012.
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