

ハノイ市における繊維質材料混合流動化処理土の埋
 戻し地盤への適用に関する研究

メタデータ	言語: eng
	出版者:
	公開日: 2015-12-22
	キーワード (Ja):
	キーワード (En):
	作成者: ズゥオン, クヮン フン
	メールアドレス:
	所属:
URL	https://doi.org/10.15118/00005132

Appendix C Simulation of moving train load with velocity of 60 km/h by Newmark numerical method

I. Inputs

1. Parameters of metro train

Distance from analysis point to the first axial of train: Lo := 3m

Speed of train:

Total number of cars:

Geometry parameters of train

Car length:

 $L_{car_1} := 24m$ $L_{car_2} := 24m$ $L_{car_3} := 24m$ $L_{car_4} := 24m$ $L_{car_5} := 24m$ $L_{car_6} := 24m$ Fixed axle spacing:

 $a_{car_1} := 2m$ $a_{car_2} := 2m$ $a_{car_3} := 2m$ $a_{car_4} := 2m$ $a_{car_5} := 2m$ $a_{car_6} := 2m$ Axle spacing between 2 bogie:

$$b_{car_1} := 16m \ b_{car_2} := 16m \ b_{car_3} := 16m \ b_{car_4} := 16m \ b_{car_5} := 16m \ b_{car_6} := 16m$$

2. Parameters of cars in the analysis model

Car body mass (1/8 car):	$\mathbf{m}_{\mathbf{S}} := \frac{32000}{8}\mathbf{kg}$		
Bogie mass (1/4 bogie):	$\mathbf{m_{u}} := \frac{5540}{4} \mathbf{kg}$		
Wheel mass $(1/2 \text{ axle})$:	$\mathbf{m}_{\mathbf{W}} := \frac{1503}{2} \mathbf{kg}$		
Car mass in total:			
$\mathbf{M}_{car} := 8 \cdot \left(\mathbf{m}_{s} + \mathbf{m}_{u} + \right)$	$\mathbf{m}_{\mathbf{W}} = 49092 \mathbf{kg}$		
Wheel spring stiffness:	$\mathbf{k_u} \coloneqq 2360 \frac{\mathbf{kN}}{\mathbf{m}}$		
Bogie spring stiffness:	$\mathbf{k_{S}} \coloneqq 530 \frac{\mathbf{kN}}{\mathbf{m}}$		
Wheel damping coefficien	$t: c_{\mathbf{u}} := 78.4 \frac{\mathbf{kN} \cdot \mathbf{s}}{\mathbf{m}}$		
Bogie damping coefficient	$: \mathbf{c}_{\mathbf{s}} := 90.2 \frac{\mathbf{k} \mathbf{N} \cdot \mathbf{s}}{\mathbf{m}}$		
Wheel diameter:	D _w := 0.85m		

 $v_t := 60$ kph Ncar := 6

3. Parameters of track:

Sleeper spacing:
$$L_{f} := 0.65m$$

Rail Pad stiffness: $K_{railpad} := 120 \cdot 10^{3} \frac{kN}{m}$
Rail modulus: $E_{r} := 2.07 \cdot 10^{11} \frac{N}{m^{2}}$
Inertia moment of one rail: $I_{r} := 30.55 \cdot 10^{-6}m^{4}$

4. Parameters of wheel-rail irregularity

Types of irregularity that can be model including corrugation of rail, arbitrary wheel surface profile and wheel flat:

-) Corrugation rail surface, wavelength from 30mm to 300mm and 300mm to 1000mm, depth of irregularity from 0.01mm to 0.4mm:

-) Arbitrary wheel surface or wheel flat with wavelength from 0.2 to 1 time of circumference of wheel, depth of irregularity 1mm:

Wavelength from: $0.2\pi \cdot D_w = 0.534 \text{ m}$ to: $1\pi \cdot D_w = 2.67 \text{ m}$

$$L_{ir_2} := 534mm a_{ir_2} := 1mm$$

Frequency from:
$$\frac{\mathbf{v}_t}{\mathbf{\pi} \cdot \mathbf{D}_W} = 6.241 \cdot \mathbf{H} \mathbf{z}$$
 to: $\frac{\mathbf{v}_t}{0.2 \mathbf{\pi} \cdot \mathbf{D}_W} = 31.207 \cdot \mathbf{H} \mathbf{z}$

Wheel-rail irregularity equation, is vertical displacement of wheel:

$$\mathbf{u}_{ir}(t) := \sum_{i=1}^{2} \left[\left(\frac{\mathbf{a}_{ir_i}}{2} \right) \cdot \left(1 - \cos \left(2 \cdot \pi \cdot \frac{\mathbf{v}_t}{\mathbf{L}_{ir_i}} \cdot t \right) \right) \right]$$

Vertical vibration velocity of wheel:

$$\mathbf{v_{ir}}(t) := \sum_{i=1}^{2} \left[\left(\frac{\mathbf{a_{ir}}}{2} \right) \cdot \left(2 \cdot \pi \cdot \frac{\mathbf{v_{t}}}{\mathbf{L_{ir}}} \right) \cdot \sin \left(2 \cdot \pi \cdot \frac{\mathbf{v_{t}}}{\mathbf{L_{ir}}} \cdot t \right) \right]$$

Vertical vibration acceleration of wheel:

$$\mathbf{w_{ir}}(t) := \sum_{i=1}^{2} \left[\left(\frac{\mathbf{a_{ir_i}}}{2} \right) \cdot \left(2 \cdot \pi \cdot \frac{\mathbf{v_t}}{\mathbf{L_{ir_i}}} \right)^2 \cdot \cos \left(2 \cdot \pi \cdot \frac{\mathbf{v_t}}{\mathbf{L_{ir_i}}} \cdot t \right) \right]$$

٦

-

5. Data export parameters:

Sampling frequency per 1 sec: SRate := 1000

Sampling frequency per 1 sec: SRate := 1000
Sampling time: Ttotal := 9s Choose:
$$\frac{1}{v_t} \cdot \left(2L_0 + \sum_{i=1}^{N_{car}} L_{car_i} \right) = 9s$$

Integral time step: $\Delta t := \frac{1 \sec}{SRate}$
Integral time step total: $n := \frac{Ttotal}{\Delta t}$
Calculation index: $i := 0, 1... n$
 $t := 0, \Delta t...$ Ttotal

II. Calculation:

Newmark direct integration method:

1. Matrices of differential equation:

$$\begin{split} \mathbf{M}sys &:= \begin{pmatrix} \mathbf{m}_{s} & \mathbf{0} \\ \mathbf{0} & \mathbf{m}_{u} \end{pmatrix} \qquad \mathbf{C}sys := \begin{pmatrix} \mathbf{c}_{s} & -\mathbf{c}_{s} \\ -\mathbf{c}_{s} & \mathbf{c}_{s} + \mathbf{c}_{u} \end{pmatrix} \qquad \mathbf{K}sys := \begin{pmatrix} \mathbf{k}_{s} & -\mathbf{k}_{s} \\ -\mathbf{k}_{s} & \mathbf{k}_{s} + \mathbf{k}_{u} \end{pmatrix} \\ \mathbf{R}_{i} &:= \begin{pmatrix} \mathbf{0} \\ \mathbf{c}_{u} \cdot \mathbf{v}_{ir}(i \cdot \Delta t) + \mathbf{k}_{u} \cdot \mathbf{u}_{ir}(i \cdot \Delta t) \end{pmatrix} \end{split}$$

2. Condition at t=0, no vibration

$$\mathbf{u}_{\mathbf{i}} := \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \mathbf{m}$$
 $\mathbf{v}_{\mathbf{i}} := \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \frac{\mathbf{m}}{\mathbf{s}}$ $\mathbf{w}_{\mathbf{i}} := \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \frac{\mathbf{m}}{\mathbf{s}^2}$

3. Time step Δt , integral parameters Newmark and factors ai:

Choose:
$$\delta_{\Delta_{\lambda}} := 0.5$$
 $\alpha := 0.25$
 $\mathbf{a0} := \frac{1}{\alpha \cdot \Delta t^2}$ $\mathbf{a2} := \frac{1}{\alpha \cdot \Delta t}$ $\mathbf{a4} := \frac{\delta}{\alpha} - 1$ $\mathbf{a6} := \Delta t \cdot (1 - \delta)$
 $\mathbf{a1} := \frac{\delta}{\alpha \cdot \Delta t}$ $\mathbf{a3} := \frac{1}{2\alpha} - 1$ $\mathbf{a5} := \frac{\Delta t}{2} \cdot \left(\frac{\delta}{\alpha} - 2\right)$ $\mathbf{a7} := \delta \cdot \Delta t$

4. Effect stiffness matrix:

Keff := Ksys + a0 · Msys + a1 · Csys

5. Iterative calculation for time integral step to have u, v, w:

i := 0, 1 .. n - 1 $Reff_{i+1} := R_{i+1} + Msys \cdot (a0 \cdot u_i + a2 \cdot v_i + a3 \cdot w_i) + Csys \cdot (a1 \cdot u_i + a4 \cdot v_i + a5 \cdot w_i)$ $u_{i+1} := Keff^{-1} \cdot Reff_{i+1}$ $\mathbf{w}_{i+1} \coloneqq \mathbf{a}\mathbf{0} \cdot \left(\mathbf{u}_{i+1} - \mathbf{u}_i\right) - \mathbf{a}\mathbf{2} \cdot \mathbf{v}_i - \mathbf{a}\mathbf{3} \cdot \mathbf{w}_i$ $\mathbf{v}_{i+1} := \mathbf{v}_i + \mathbf{a} \mathbf{6} \cdot \mathbf{w}_i + \mathbf{a} \mathbf{7} \cdot \mathbf{w}_{i+1}$

6. Displacement of Bogie and Car body:

8. Loading ditribution function on tunnel floor

Bending stiffeness of rail: $\mathbf{EI} := \mathbf{E}_{\mathbf{r}} \cdot \mathbf{I}_{\mathbf{r}}$

Stiffness of railpad:

 $\mathbf{K_{pad}} \coloneqq \frac{\mathbf{K_{railpad}}}{\mathbf{L_{f}}}$

Summess of rangeau. Lf Characteristic length of load distribution on tunnel floor through railpad: $\alpha_{rail} := \sqrt[4]{\frac{4 \cdot EI}{K_{pad}}}$

Loading ditribution function on tunnel floor through railpad:

$$\Phi_{rail}(\mathbf{x}) := \frac{1}{2 \cdot \alpha_{rail}} \cdot e^{\frac{-|\mathbf{x}|}{\alpha_{rail}}} \cdot \left(\cos\left(\frac{|\mathbf{x}|}{\alpha_{rail}}\right) + \sin\left(\frac{|\mathbf{x}|}{\alpha_{rail}}\right) \right)$$

9. Dynamic loading on tunnel floor:

$$\Theta(\mathbf{x}) := \Phi_{rail}(\mathbf{x})$$

$$\begin{split} F_{1w}(t) &\coloneqq \sum_{i=1}^{Ncar} \left(P_{round} \left(\frac{\left| v_{t}^{t-Lo} - \sum_{j=0}^{i-1} L_{car_{j}} \right|}{v_{t} \Delta t} \right) \cdot \Theta \left(v_{t}^{t-Lo} - \sum_{j=0}^{i-1} L_{car_{j}} \right) \right) \\ F_{2w}(t) &\coloneqq \sum_{i=1}^{Ncar} \left(P_{round} \left(\frac{\left| v_{t}^{t-Lo} - \sum_{j=0}^{i-1} L_{car_{j}}^{-a} car_{i} \right|}{v_{t} \Delta t} \right) \cdot \Theta \left(v_{t}^{t-Lo} - \sum_{j=0}^{i-1} L_{car_{j}}^{-a} car_{i} \right) \right) \\ F_{3w}(t) &\coloneqq \sum_{i=1}^{Ncar} \left(P_{round} \left(\frac{\left| v_{t}^{t-Lo} - \sum_{j=0}^{i-1} L_{car_{j}}^{-a} car_{i}^{-a} car_{i} \right|}{v_{t} \Delta t} \right) \cdot \Theta \left(v_{t}^{t-Lo} - \sum_{j=0}^{i-1} L_{car_{j}}^{-a} car_{i}^{-b} car_{i} \right) \right) \\ F_{4w}(t) &\coloneqq \sum_{i=1}^{Ncar} \left(P_{round} \left(\frac{\left| v_{t}^{t-Lo} - \sum_{j=0}^{i-1} L_{car_{j}}^{-a} car_{i}^{-b} car_{i} \right|}{v_{t} \Delta t} \right) \cdot \Theta \left(v_{t}^{t-Lo} - \sum_{j=0}^{i-1} L_{car_{j}}^{-a} car_{i}^{-b} car_{i} \right) \right) \\ \end{split}$$

 $\mathbf{F_{tunnel}(t)} \coloneqq \mathbf{F_{1w}(t)} + \mathbf{F_{2w}(t)} + \mathbf{F_{3w}(t)} + \mathbf{F_{4w}(t)}$

III. Results.

$$max(Val) = 79.885 \cdot \frac{\kappa N}{m}$$

$$f_{DynLoad_{1}} := \begin{vmatrix} \frac{v_{t}}{L_{ir_{1}}} & \text{if } a_{ir_{1}} > 0 & f_{DynLoad_{2}} := \begin{vmatrix} \frac{v_{t}}{L_{ir_{2}}} & \text{if } a_{ir_{2}} > 0 \\ 0 & \text{otherwise} \end{vmatrix}$$

 $\mathbf{f}_{Load} := max \Big(\mathbf{f}_{DynLoad} \Big) = 83.333 \cdot Hz$