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Zero potential energy criterion applied to Hartree-Fock wave functions
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The zero potential energy criterion, which is a necessary condition for the exact wave function,
is applied to Hartree—-Fock wave functions for a closed-shell system with doubly occupied
spatial orbitals. With the help of the known long-range asymptotic behavior of Hartree-Fock
orbitals, we first derive a single-electron zero potential energy criterion to be satisfied by
Hartree—-Fock orbitals. The Hartree-Fock wave function is then shown to never satisfy the
zero potential energy criterion, which implies that the Hartree-Fock approximation cannot
describe the correct long-range asymptotic behavior of many-electron wave functions. Some

numerical illustrations are given.

I. INTRODUCTION

Previously, the zero potential energy (E,,) criterion
has been proposed' and applied' as a sensitive measure for
assessing the accuracy of approximate wave functions. E, is
defined as the local energy®™® evaluated at those points in
position space at which the potential energy operator
V({r,}) vanishes, i.e.,

E, =lyitfl“{[T({r,})\l’({r,})]/\l’({r,-})}, (1)

where W ({r,}) is the total electronic wave function, {r,} the
position vectors of electrons, and T({r;}) the electronic ki-
netic energy operator T({r,}) = Z,¢(r;), where (r;)
= — (1/2)A,. The zero potential energy has an important
property' that the relation

E,=E, =E (2)

is a necessary (but not sufficient) condition for a wave func-
tion to be the true wave function, where E is the true energy
and E,, the average energy. It is known' that E,, is more
sensitive to the wave function error than E,, since E,, and
E,, are, respectively, linear and quadratic in the error.

The zero potential energy formula, Eq. (1), is a special
form of the local energy formula with vanishing potential
energy contribution, and it may be regarded as a partner to
the zero momentum energy criterion’~'” which considers the
momentum-space local energy with vanishing kinetic energy
contribution. For atoms and molecules of our interest, the
limiting pracedure V-0 involved in Eq. (1) is equivalent to
considering a point infinitely apart from the nuclei where
Coulombic interactions disappear. Therefore, E,, measures
the quality of wave functions at their long-range tails.

In the present paper, we study the zero potential energy
of the Hartree-Fock wave function for a closed-shell system
from the viewpoints of the one-electron orbital and the total
electronic wave function. In Sec. 11, the zero potential consi-
deration is applied to the Fock equation and the orbitalwise
zero potential energy criterion is derived based on the known
long-range asymptotic behavior'""'? (see also Refs. 13-19
and the references therein). In Sec. III, the total zero poten-
tial energy is derived for the Hartree-Fock wave function
described as a single Slater determinant. The result shows
that the Hartree—Fock approximation cannot correctly de-
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scribe the long-range behavior of the many-electron wave
function. Some numerical examples are presented in Sec. IV.
Atomic units are used throughout this paper.

1. ORBITALWISE ZERO POTENTIAL ENERGY

Let us consider the Hartree-Fock approximation for a
closed-shell 2N electron atomic or molecular system with N
doubly occupied spatial orbitals {1, }. For a large 7, the lead-
ing asymptotic behavior of the Hartree-Fock orbital ¢, is
known'"'? to be

6, (r) = [ar"+ 00" H]exp(—&r), r=]r|.(3)
The exponent £, is ( — 2¢;)'/? for atoms in which only s-type
orbitals appear (referred to as s-type atoms hereafter), while
otherwise it is ( — 2¢, ) '/? independent of i. €, is the orbital
energy associated with ¥;, and A refers to the highest occu-
pied orbital which is presumed to be nondegenerate. The
expression for b; can be found in Ref. 12. Now from Eq. (3),
the zero potential energy criterion for the orbital ¥, is ob-
tained as

€ = im{[1(N)9, (04,0} = — (1/2)¢3

=le,
For s-type atoms, the correct Hartree—Fock orbital ¥, must
have the zero potential energy equivalent to its orbital ener-
gy. The orbitalwise criterion in this special case is identical to
that for the Hartree orbital. For other cases, however, the
zero potential energy should be equal to the orbital energy of
the highest occupied orbital, independent of /! This curious
condition for the Hartree-Fock orbital originates from the

nonvanishing contribution of exchange terms at r— «. In-
deed, we have for systems other than s-type atoms that

«, = lim “ 3 K,(r)tﬁi(r)]/t//i(r)] =€, — €, (5)
r=oo LLj(#0)

where K, is the exchange operator. At a point infinitely apart

for s-type atoms

4)

otherwise
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from the nuclei, the exchange term «; locally has a constant
contribution which is directly related to the orbital energy.
Equation (4) is the consistency condition for the asymptotic
behavior of the Hartree-Fock orbital and the associated or-
bital energy. Applications of this criterion will be presented
in Sec. IV for a few atoms.

ll. HARTREE-FOCK ZERO POTENTIAL ENERGY

The Hartree-Fock wave function is written as
Y({r,h =[N 23 (- 1P
P

X [¢ (DY, (2) Yy 2N — DYy (2N) ],
(6)

where the symbols have the ordinary meaning. The zero po-
tential energy for the wave function (6) is then

E,=% lml [teHv{rH]/vdr D . (7)

Using the asymptotic form of a spatial function [Eq. (3)],
we find for a large r that

l(l'i)‘l’({l',-}) = — (1/2)§f'"’({l‘,})
and therefore Eq. (7) is reduced to

(larger;) (8)

E, - 2 Z €, for s-type atoms . (9)

2Ne,

Equation (9) shows that the Hartree—Fock zero poten-
tial energy is the sum of orbital energies of the occupied
orbital or the orbital energy of the highest occupied orbital
times the number of electrons. It constitutes the consistency
condition for the Hartree~Fock wave function and the total
electronic energy, deduced from the long-range asymptotic
consideration. Evidently, E,, does not agree with E,, which
is given by

otherwise
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E,=2Ye—>2J; —K;) . (10)
i ij

Moreover, it is quite unrealistic to assume that the true ener-
gy E, though it is unknown, is expressible in the form of Eq.
(9). Thus, the Hartree—Fock wave function never satisfies
the zero potential energy criterion [ Eq. (2) ], which accord-
ingly implies that the Hartree-Fock approximation cannot
correctly describe the long-range asymptotic behavior of
many-electron wave functions. Though the Hartree-Fock
approximation is a well-established independent-particle
model and constitutes a beautiful theoretical framework, it
may not be very suitable for problems such as scattering and
long-range forces if accurate and careful descriptions of the
wave function tail are needed. The same is true for the Har-
tree approximation.

IV. ILLUSTRATIONS

The majority of atomic and molecular Hartree-Fock
calculations uses some basis functions and the (spatial) orbi-
tal is approximated by a linear combination of basis func-
tions. Because of the required asymptotic form [Eq. (3)],
basis functions other than the Slater and hydrogenic types
have no chance to satisfy the zero potential energy criterion.
For example, a Gaussian-type function
x(r) =f(xpz)exp( — ar’) gives €,, = — oo. For this rea-
son, we here examine approximate Hartree-Fock wave
functions obtained with Slater-type basis functions.

Table I summarizes the analysis of two types of ground
state wave functions for He, Be, and Ne atoms. One is the
unconstrained wave function due to Clementi and Roetti*"
and the other is the constrained one due to Weber e al.?' and
Marron et al.,?* in which the orbitals are forced to satisfy
&, = ( — 2€,)"/? asymptotically. The latter authors consid-
ered ¢ =(—2€)"* to be pathologic while
£, = (— 2¢,)"'? to be physically meaningful.

TABLE L. Zero potential energy criteria applied to the Hartree-Fock wave functions for the ground state of He, Be, and Ne atoms.

Orbitalwise Total Zero potential energy criterion
Orbitalwise Hartree-Fock  Exact

Atom Orbital - € — € —E,, -E, Eq.(4) Eq.(9) Eq. (2)
Unconstrained wave functions®
He ls 091795 1.004 14 2.861 68 2.008 29 No No No
Be Is 4.732 67 0.302 80 14.573 02 1.211 19 No No No

2s 0.309 27 0.302 80 No
Ne ls 32.772 48 1.924 41 128.547 05 14.023 24 No No No

2s 1.93043 1.924 41 No

2p 0.850 44 1.054 27
Constrained wave functions”
He 1s 0.917 96 0.917 96 2.861 68 1.83592 Yes Yes No
Be Is 473279 4.732 80 14.573 01 10.084 16 Yes Yes No

2s 0.309 29 0.309 28 Yes
Ne 1s 32.773 34 32.773 34 128.546 19 74.513 68 No No No

2s 1.930 50 1.930 57 No

2p 0.850 98 0.850 98 Yes

“Reference 20.
" References 21 and 22.
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The unconstrained wave functions reveal one general
feature of basis-set-expansion wave functions: In the long-
range asymptotic region, the basis function with the smallest
exponent governs the behavior of an orbital unless its coeffi-
cient of the linear combination is exactly zero. Therefore, the
different orbitals {1/, } expressed by the same basis set have
the identical €,,,,. The situation is similar to the orbitalwise
criterion [Eq. (4)], but orbitals with different symmetries
(e.g., s- and p-type orbitals in Ne atom) can have different
€,.:’S, since the exponents are not generally common to basis
functions for different symmetries. However, the correct
asymptotic behavior [Eq. (3)] suggests that the smallest
exponent should be common to all basis sets for different
symmetries and be equal to ( — 2¢,,) 172 where €, is the ener-
gy of the highest occupied orbital. As a result, none of the
unconstrained wave function in Table I fulfills the orbital-
wise and Hartree-Fock zero potential energy criteria,
though the 2s orbitals for Be and Ne show relatively good
agreement of €; and €, ;.

On the other hand, the constrained wave functions for
He and Be atoms satisfy both the orbitalwise and Hartree—
Fock criteria. For Ne atom, however, only the 2p orbital
satisfies the orbitalwise criterion, since §; = ( — 26,-)'/ 2 is
used as the constraint.

We have also examined several Hartree-Fock wave
functions for diatomic molecules calculated by Cade, Huo,
and Wahl.?*-2* The results are similar to those of the uncon-
strained atomic wave functions given in Table I and no de-
tailed numerical data are presented here.

V. SUMMARY

We have shown that the exact zero potential energy cri-
terion [Eq. (2)] cannot be satisfied by the Hartree—Fock
wave function. This suggests the Hartree~Fock method may
not be suitable for problems in which a very accurate de-
scription of the long-range asymptotic behavior is needed.
The Hartree-Fock [Eq. (9)] and orbitalwise [ Eq. (4)] cri-
teria have been derived, which measure the consistency of
the energy and the wave function tail at the level of the Har-
tree—Fock approximation. The present results are extended
straightforwardly to the unrestricted Hartree-Fock wave
function: The orbitalwise criterion applies separately to the

a and /3 spin orbitals and the Hartree-Fock criterion is ex-
pressed as the sum of two contributions, since each of the
two Fock equations for the @ and /3 spin orbitals has the
same asymptotic structure with that for closed shells dis-
cussed here.
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