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The zero potential energy criterion， which is a necessary condition for the exact wave function， 
is applied to Hartree-Fock wave functions for a closed-shell system with doubly occupied 
spatial orbitals. With the help of the known long-range asymptotic behavior of Hartree-Fock 

orbitals， we first derive a single-electron zero potential energy criterion to be satisfied by 

Hartree-Fock orbitals. The Hartree-Fock wave function is then shown to never satisfy the 

zero potential energy criterion， which implies that the Hartree-Fock approximation cannot 
describe the correct long-range asymptotic behavior of many-electron wave functions. Some 

numerical iIIustrations are given 

1. INTRODUCTION 

Previously， the zero potential energy (E，p) criterion 
has been proposed 1 and applied 1-3 as a sensitive measure for 

assessing the accuracy of approximate wave functions. E，p is 
defined as the local energy4-O evaluated at those points in 

position space at which the potential energy operator 

V( {r，}) vanishes， i.e.， 

E，p りて([T( {r，}) IJI ({r，})] IIJI ({r，})}， (l) 

where IJI ({r;}) is the total electronic wave function， {r;} the 
position vectors of electrons， and T( {r;}) the electronic ki-
netic energy operator T({r，}) = l;l(r;)， where t(r;) 

=ー(1/2) D.;. The zero potential energy has an important 
property 1 that the relation 

E中=Eav = E (2) 

is a necessary (but not sufficient) condition for a wave func-

tion to be the true wave function， where E is the true energy 

and Eav the average energy. It is known 1 that E叩 ismore 

sensitive to the wave function error than Eav' since Ezp and 
Eav are， respectively， linear and quadratic in the error. 

The zero potential energy formula， Eq. (1)， is a special 

form of the local energy formula with vanishing potential 

energy contribution， and it may be regarded as a partner to 
the zero momentum energy criterion 7-10 which considers the 

momentum-space local energy with vanishing kinetic energy 

contribution. For atoms and molecules of our interest， the 
limiting procedure V→ o involved in Eq. ( 1 ) is equivalent to 

considering a point infinitely apart from the nuclei where 

Coulombic interactions disappear. Therefore， Ezp measures 
the quality of wave functions at their long-range tails. 

In the present paper， we study the zero potential energy 

ofthe Hartree-Fock wave function for a closed-shell system 

from the viewpoints ofthe one-electron orbital and the total 

electronic wave function. In Sec. 11， the zero potential consi-

deration is applied to the Fock equation and the orbitalwise 

zero potential energy criterion is derived based on the known 
long-range asymptotic behavior ll •12 (see also Refs. 13・19

and the references therein). In Sec. 111， the total zero poten-
tial energy is derived for the Hartree-Fock wave function 

described as a single Slater determinant. The result shows 

that the Hartree-Fock approximation cannot correctly de-

scribe the long-range behavior of the many-electron wave 

function. Some numerical examples are presented in Sec. IV. 

Atomic units are used throughout this paper. 

11. ORBITALWISE ZERO POTENTIAL ENERGV 

Let us consider the Hartree-Fock approximation for a 

closed-shell 2N electron atomic or molecular system with N 
doubly occupied spatial orbitals {if;;}. For a large r， the lead-
ing asymptotic behavior of the Hartree-Fock orbital 砂;IS 

known 11，12 to be 

仇(r)= [a;/' + 0(/'--1)] exp( -b;r)， r = Irl・(3)

The exponent b; is ( -2E; ) 1/2 for atoms in which only s-type 

orbitals appear (referred to as s-type atoms hereafter)， whiIe 
otherwise it is ( -2Eh) 1/2 independent of i. E; is the orbital 

energy associated with 仇， and h refers to the highest occu-
pied orbital which is presumed to be nondegenerate. The 

expression for b; can be found in Ref. 12. Now from Eq. (3)， 
the zero potential energy criterion for the orbital ψ; is ob-
tained as 

Ezp.; = lim{[t(r)砂;(r)]1ψ;(r)}=一 (1/2)b;

(「E，川戸阿阿a幻t
E h otherwise 

(4) 

For s-type atoms， the correct Hartree-Fock orbital砂;must 

have the zero potential energy equivalent to its orbital ener-

gy. The orbitalwise criterion in this special case is identical to 

that for the Hartree orbital. For other cases， however， the 
zero potential energy should be equal to the orbital energy of 
the highest occupied orbital， independent of 11 This curious 

condition for the Hartree-Fock orbital originates from the 

nonvanishing contribution of exchange terms at r→∞・ In-
deed， we have for systems other than s-type atoms that 

K; = lim 11 Iκ(r)仇(r)1/仇(r)f = Eh一鳥， (5) 
F→∞ llj(ヲ6;) J / 

where Kj is the exchange operator. At a point in街IItelyapart
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from the nuclei， the exchange term K; 10calIy has a constant 

contribution which is directly related to the orbital energy. 

Equation (4) is the consistency condition for the asymptotic 

behavior of the Hartree-Fock orbital and the associated or-

bital energy. Applications of this criterion wiII be presented 

in Sec. IV for a few atoms. 

111. HARTREE-FOCK ZERO POTENTIAL ENERGY 

The Hartree-Fock wave function is written as 

IJI ({κ})=[(2N)!]1/25(一 1)中

x [ttl (l)ψ1 (2)・・・ψN(2N -1)ψN (2N)] ， 
(6) 

where the symbols have the ordinary meaning. The zero po・

tential energy for the wave function (6) is then 

Ez申'P 手計札叫L~竺[ドκ巾h州(付何rκり;)'1'町州川川(ぱ山({r;仕仏r叱けJ)]/ 

Using the asymptotic form ofa spatial function [Eq. (3)]， 

we find for a large r that 

t(r; )中({rJ)=一(l/2)s ~IJI ({rJ) (Iarge r;) (8) 

and therefore Eq. (7) is reduced to 

Ezp = ~ 2 平矛E鳥 fors-仰 a剖tom

12N.εeh 0叫the釘rw制IS鈴e 

(9) 

Equation (9) shows that the Hartree-Fock zero poten-

tial energy is the sum of orbital energies of the occupied 

orbital or the orbital energy of the highest occupied orbital 

times the number of electrons. It constitutes the consistency 
condition for the Hartree-Fock wave function and the total 

electronic energy， deduced from the long-range asymptotic 
consideration. Evidently， Ezp does not agree with E"y which 
is given by 

ι= 2Ie; -I(2Jii - Kυ) . ( 10) 
'.} 

Moreover， it is quite unrealistic to assume that the true ener-

gy E， though it is unknown， is expressible in the form of Eq. 
(9). Thus， the Hartree-Fock wave function never satisfies 

the zero potential energy criterion [Eq. (2) ]， which accord-

ingly implies that the Hartree-Fock approximation cannot 

correctly describe the long-range asymptotic behavior of 

many-e1ectron wave functions. Though the Hartree-Fock 

approximation is a welI-established independent-particle 
model and constitutes a beautiful theoretical framework， it 
may not be very suitable for problems such as scattering and 

long-range forces if accurate and careful descriptions of the 

wave function tail are needed. The same is true for the Har-

tree approx1matlOn. 

IV.ILLUSTRATIONS 

The m勾orityof atomic and molecular Hartree-Fock 

calculations uses some basis functions and the (spatial) orbi-

tal is approximated by a linear combination of basis func-

tions. Because of the required asymptotic form [Eq. (3)]， 

basis functions other than the Slater and hydrogenic types 

have no chance to satisfy the zero potential energy criterion. 

For example， a Gaussian-type function 

x(r) =f(x，y，z)exp(ー α?)gives ezp =一∞.For this rea幽

son， we here examine approximate Hartree-Fock wave 
functions obtained with Slater-type basis functions. 

Table 1 summarizes the analysis of two types of ground 

state wave functions for He， Be， and Ne atoms. One is the 

unconstrained wave function due to Clementi and Roetti20 

and the other is the constrained one due to Weber et al. 2 1 and 

Marron et al.，22 in which the orbitals are forced to satisfy 
s; = ( -2e;) 1/2 asymptoticaIIy. The latter authors consid-

ered s; = ( -2eh) 1/2 to be pathologic while 

ι=  ( -2e; ) 1/2 to be physicaIIy meaningful. 

TABLE l. Zero potential cnergy criteria applied to the Hartree-Fock wave functions for the ground state of He， Be， and Nc atoms. 

Orbitalwise Total Zero potential encrgy critcrion 

Orbitalwise Hartree-Foclく Exact
Atom Orbital 一-E， ~/p.1 E，，， E'Ip Eq.(4) Eq.(9) Eq. (2) 

Unconstrained wave functions" 
He Is 0.91795 1.(的414 2.861 68 2.∞829 No No No 
Be Is 4.73267 0.30280 14.57302 1.211 19 No No No 

2s 0.30927 0.30280 No 
Ne 32.77248 1.92441 128.54705 14.02324 No No No 

2s 1.93043 1.92441 No 
2p 0.85044 1.05427 

Constraincd wave functionsh 

Hc Is 0.91796 0.91796 2.861 68 l ι3592 Yes Yes No 
Be 4.73279 4.73280 14.57301 10.084 16 Yes Yes No 

2s 0.30929 0.30928 Yc匂

Nc 32.77334 32.77334 128.54619 74.513 68 No No No 
2s 1.93050 1.93057 No 
2p 0.85098 0.85098 Ycs 

" Reference 20. 
h References 21 and 22. 
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The unconstrained wave functions reveal one general 

feature of basis-set-expansion wave functions: In the long-

range asymptotic region， the basis function with the smallest 

exponent governs the behavior of an orbital unless its coeffi-

cient ofthe linear combination is exactly zero. Therefore， the 
different orbitals {砂;}expressed by the same basis set have 

the identical E，p ，;・ Thesituation is similar to the orbitalwise 

criterion [Eq. (4)]， but orbitals with different symmetries 

(e.g.， s・ andp-type orbitals in Ne atom) can have different 

E，p.; 's， since the exponents are not generally common to basis 
functions for di仔erentsymmetries. However， the correct 
asymptotic behavior [Eq. (3) 1 suggests that the smallest 
exponent should be common to all basis sets for different 

symmetries and beequalto ( -2Eh) 1/2， whereEh is theener-

gy of the highest occupied orbital. As a resu1t， none of the 

unconstrained wave function in Table 1 fulfills the orbital-

wise and Hartree-Fock zero potential energy criteria， 
though the 2s orbitals for Be and Ne show relatively good 

agreement of E; and Ezp.;・

On the other hand， the constrained wave functions for 
He and Be atoms satisfy both the orbitalwise and Hartree-

Fock criteria. For Ne atom， however， only the 2p orbital 
satisfies the orbitalwise criterion， since ~; = ( -2E; ) 1/2 is 

used as the constraint. 

We have also examined several Hartree-Fock wave 

functions for diatomic molecules calculated by Cade， Huo， 
and Wahl. 2'-2弓 Theresults are similar to those ofthe uncon-

strained atomic wave functions given in Table 1 and no de-

tailed numerical data are presented here. 

V.SUMMARY 

We have shown that the exact zero potential energy crト

terion [Eq. (2) 1 cannot be satisfied by the Hartree-Fock 
wave function. This suggests the Hartree-Fock method may 

not be suitable for problems in which a very accurate de-

scription of the long-range asymptotic behavior is needed. 

The Hartree-Fock [Eq. (9) 1 and orbitalwise [Eq. (4) 1 cri-
teria have been derived， which measure the consistency of 
the energy and the wave function tail at the level ofthe Har-

tree-Fock approximation. The present results are extended 

straightforwardly to the unr自主rictedHartree-Fock wave 

function: The orbitalwise criterion applies separately to the 

αand βspin orbitals and the Hartree-Fock criterion is ex-

pressed as the sum of two contributions， since each of the 

two Fock equations for the αand βspin orbitals has the 

same asymptotic structure with that for closed shells dis-

cussed here. 
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