

マルチ・エアポート・システムのモデル化

メタデータ	言語: jpn
	出版者: 土木学会
	公開日: 2013-03-01
	キーワード (Ja): 空港計画, 空港選択, 公共交通計画
	キーワード (En):
	作成者: 浦田, 康滋, 松本, 直彰, 田村, 亨, 斎藤, 和夫
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/1776

マルチ・エアポート・システムのモデル化 Modering Multiple Airport Systems

浦田 康滋*、松本 直彰**、田村 亨***、斎藤 和夫**** by Kouji URATA*, Naoaki MATSUMOTO**, Tohru TAMURA***, Kazuo SAITO****

1. はじめに

欧米の大都市圏では複数の空港を有している場合が多く、それぞれの機能分担の下で、航空利用者と航空事業者が空港選択を行っている。わが国ではこの様な複数空港利用が発達していないものの、福岡空港と北九州空港、広島空港と広島西飛行場、新千歳空港と札幌飛行場など地方中枢都市においては現存する複数空港の利用方法が課題となってきている。

海外では、この課題をテーマとした研究が幾つかみられる^{1)・2)・3)}が、その特徴は①空港のハブ機能をどの様に評価するか、②都市圏の人口分布からみた空港配置、③航空事業者の路線参入や便数設定からみた個別企業の空港選択である。この内、③はアメリカを中心とした航空規制緩和に関わるものであり、わが国で当面参考となる研究は①と②と考えられ、この最近研究として Mark Hansenのモデル(1993)⁴⁾がある。

本研究の目的は、Hansenのモデルを紹介するとともに、このモデルを北海道内の路線における新千歳空港と札幌飛行場の選択に適用しその有効性を検討することである。また、この空港選択モデルを利用して都市圏に人口が一様分布していると仮定した場合の最適空港配置問題を定式化することである。

2. 「空港の選択」の考え方

空港の選択は航空利用者と航空事業者によってな されるが、そもそもの空港建設もこれらの需要を考 慮してなされる。空港建設から見た場合、わが国で は事業採算性を重視して、無駄な投資を避けるため

キーワーズ:空港計画、空港選択、公共交通計画

* 正会員 北海道開発コンサルタント

(札幌市豊平区月寒東4条9丁目5-27 Te1011-851-922 FAX 011-852-1783)** 学生員 室蘭工業大学大学院 建設システム工学専攻

(〒050 室蘭市水元町27-1 Te10143-47-3419 FAX 0143-47-3411)
、* 正会員 室蘭工業大学

空港と空港利用圏はワンセットで考えることが多く 空港利用圏を重ねることは殆どない。これに対して 欧米では、航空利用者と航空事業者の選択の範囲を 広げることを重要とし、空港利用圏域が重なること を認めている(図-1)。これは、商圏理論でも説 明され、わが国では施設の最適配置を議論するのに 対して、欧米では活動の最適配置が議論され、活動 の選択機会をいかに増やすかが大切とされる。

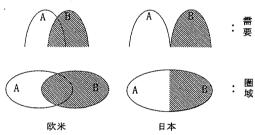


図-1 欧米と日本の交通網整備におけ る商圏の考え方の違い

空港建設が進んだわが国の航空政策においては、空港の有効利用が課題であろう。そして、昨今の多様なニーズに対応するためには、ソフトな施策として、提供するサービスとその価格の組合せのバリエーションを用意して、利用者自らが必要なものと必要でないものとを積極的に判断する状況、すなわち、評価を利用者に委ねることが重要と考えられる。具体的には、後述する①空港の魅力、②路線の魅力、③アクセスの魅力の向上ではなかろうか。

3. Hansenの空港選択モデル

Hansenモデルは、航空旅客の選択に関わる以下の 3つの提案に基づいている。

①旅行者は幹線が参入している空港であるとか、空港ターミナル規模などの「空港の魅力」によって 空港選択を行う。

- ②旅行者は、移動する路線のサービスレベル(運行 頻度、所要時間、運賃など)によって空港選択を 行う。
- ③旅行者は、出発地から空港までのアクセス条件に よって空港を選ぶ。

この提案からHansenは、「空港の魅力」「路線の魅力」「アクセスしやすさ」をパラメータとした空 港選択行動をモデル化した。

モデル式を(1)、(2)に示す。

$$P(j | i,k) = \frac{e^{v_{i,jk}}}{\sum_{k} e^{v_{i,jk}}}$$
 -----(1

$$V_{i,k} = \alpha \cdot \log(PAX_{i,k} + \theta \cdot (NLPAX_{i,k} + \sum_{n \in k} PAX_{i,n}))$$

$$+ \beta \cdot \log(DIST_{k}) \cdot \log(1 + PAX_{i,k})$$

$$+ \phi \cdot ATIME_{i,k} + \gamma_{i,k} - \cdots (2)$$

ただし、

P(j|i,k):地域iに居住する人の目的地kへの移

動におけるj空港の選択率

PAX; k: j空港から目的地kへの乗客の総計

NLPAX; :j空港における幹線航空利用者数

DIST_k:複数空港地域と目的地kの間の距離

ATIME: :地域iからj空港までのアクセス時間

γ: :i空港に関する定数項

(2)式の第一項は、当該空港の魅力(トランジットを含む)を示し、幹線とローカル線に路線を分けることによって当該空港のハブ機能の大きさを表している。第二項は、路線距離とその需要量を用いて路線の魅力を表している。式中で需要に1が加わっているのは、需要がないときも距離によって路線の魅力を表すためである。そして第3項は、空港アクセスに関するものとなっている。このモデルの今後の課題としてHansenらは、空港制約容量をどのように取り込むかを挙げている。

4. 北海道におけるモデルの適用

北海道内の空港を対象として、空港選択モデルの 構築を行う。使用したデータは、表 - 1 に示す路線 を有する 8 空港の道内路線乗降客を対象にアンケー ト調査を実施したものである。調査内容は、回答者 の属性(性別、年齢、職業、旅行目的など)、回答 者の航空利用特性(出発地目的地、出発空港、到着 空港、乗り継ぎ状況、アクセス・イグレス交通状況 など),交通機関選択要因(交通機関の頻度,所要 時間,所要費用などを変化させた数個のケースを用 意し、利用者がそれぞれのケースについて希望の交 通機関を選択するもの)である。

表-1 調査概要

実施日	平成7年11月29日~12月2日		
対象路線	丘珠・干歳- 釧路		
1	丘珠・千歳- 紋別		
	丘珠・千歳-中標津		
į	丘珠・千歳- 稚内		
	丘珠 一 函館		
	千歳 一女満別		
対象者	3140人		
回答者	2687人		
回収率	85. 6%		

(1). 空港選択モデルの構築

丘珠・新千歳両空港を選択可能な路線の利用者について、道央都市圏内における丘珠空港、新千歳空港の空港選択モデルを構築した。Hansenモデルを適用するに際し、「運行頻度」のモデルへの導入の仕方を検討するため2つのモデルを考えた。1つは、そのままの運行頻度を用いた場合(モデル1)、他の1つは、運行頻度に対数をとりSカーブ効果を導入した場合(モデル2)である。「運行頻度」以外のモデルの説明変数は「飛行時間」と「アクセス時間」の2変数とした。分析の結果を表-2に示す。

表-2 空港選択モデル

モデル1					
説明変数	パラメーター	t 値			
運行頻度	1. 2769	8. 0862			
飛行時間	-0. 0116	-1.0040			
アクセス時間	-0.0081	-2. 9094			
尤度比	0. 387	2			
サンプル数 426					

モデル 2					
説明変数	パラメーター	t 値			
運行頻度	2. 1008	7. 0252			
飛行時間	-0. 0098	-0.8907			
アクセス時間	-0. 0083	-3. 0331			
尤度比 0.3311					
サンプル数 426					

モデル1とモデル2の違いは、機材頻度にS字カーブを導入する(モデル2)か否かである。モデルの適合度を示す尤度比は、モデル1が0.3872、モデル2が0.3311であり、S字カーブを使わないモデル

1の方が適合度が高いことがわかった。以下の分析では、ことわりがない限り運行頻度はそのままの数値を導入するものである。

さて、次に本題であるHansenのモデルを用いて、 空港のハブ機能を表す変数を考慮したモデルを構築 する。

モデルの説明変数は、Hansenモデルに基づいて次 の3つを導入した。1つめは「空港の魅力」であり、 (2) 式の第1項の変数をそのまま用いた。ここで、 θ はハブ機能の重みであり、0から 10^{-1} まで仮定する ことで、ハブ機能が変化したときの「空港の魅力」 を知ることができる。なお、NLPAXiの幹線とは、本 対象では千歳-東京間のみを対象と考えた。2つめ は「路線の魅力」であり、Hansenモデルではこの魅 力は「路線距離」によって表されている。しかし本 研究の対象地域では、2空港間の距離が離れていな いため、路線距離は空港間であまり変わらないもの の、丘珠はジェット化されていないので「飛行時間」 には差がある。そのため、「運行頻度」と「飛行時 間」を変数と考えた。しかし、パラメータの符号の 論理性が合わなかったので、「飛行時間」のみを変 数とすることとした。3つめは「空港アクセスの魅 カーで「アクセス時間」を変数とした。モデルの推 定結果を表-3に示す。

表-3 ハブ機能の変化による空港選択

3				
	$\theta = 0$		$\theta = 0$.	0001
説明変数	ハ° ラメータ	t値	ハ゜ラメータ	t値
利用者数	1. 9994	9. 957	2. 0267	9. 956
飛行時間	-0.0469	-3. 022	-0.0483	-3. 103
アクセス時間	-0. 0121	-2. 796	-0.0121	-2. 796
尤度比	0. 4645		0.46	44
サンプル数	426		26 426	

	$\theta = 0.001$		$\theta = 0$. 01
説明変数	ハ°ラメータ	t値	ハ゜ラメータ	t值
利用者数	2. 2720	9. 948	5. 0835	9. 838
飛行時間	-0.0590	-3. 744	-0. 1439	-7. 192
7クセス時間	-0. 0121	-2. 800	-0.0122	-2.814
尤度比	0. 4634		0.45	66
サンプル数	426		426	

モデルは、尤度比 $0.4646\sim0.4566$ となり、適合度 の高いモデルが構築できた。 t 値で見ると全体として、空港の需要量が空港選択に最も影響を与えている。また、 θ が増加するにつれて(空港のハブ機能が大きくなるにつれて)、空港のハブ機能が空港選

択に与える影響が高くなることがパラメータよりわかる。また、尤度比から見ると $\theta=0.01$ において推計精度の減少が見られ、モデル全体として空港の魅力の扱い方が今後の検討課題となろう。

(2). 交通機関選択モデルの構築

ここで、空港選択モデルに交通機関選択モデルをログサム変数として内生化することを考え、交通機関選択モデルを構築した。モデルは、飛行機・鉄道・都市間バス・乗用車の4選択とし、説明変数は、「運賃」「所要時間」を共通変数として、それぞれの「運行頻度」を選択肢固有変数とした。分析結果を表-4に示す。(モデル2は「運行頻度」にSカーブ効果を導入した場合)

表-4 交通機関選択モデル

モデル 1					
説明変数	パラメーター	t 值			
運賃	-0. 00036	-10. 8272			
所要時間	-0. 02001	-21. 4242			
飛行機頻度	0. 07838	4. 1640			
鉄道頻度	0. 05293	2. 8208			
バス頻度	0. 10406	2. 0458			
尤度比	0. 390	9			
サンプル数 3022					

モデル 2					
説明変数	パラメーター	t 值			
運賃	-0. 00035	-10. 4905			
所要時間	-0. 01960	-20. 7610			
飛行機頻度	0. 35589	4. 3832			
鉄道頻度	0.46114	2. 9486			
バス頻度	0. 30587	1. 6535			
尤度比 0.3913					
サンプル数 3022					

モデルの適合度を示す尤度比は0.39となっており、 都市間の交通機関選択モデルとしては適合度の高い モデルが構築できた。今後このモデルを(1)で示 した空港選択モデルにログサム変数として導入し、 モデルの統合を図る予定である。

4、サンフランシスコベイエリアモデルとの比較

Hansenモデルは、サンフランシスコベイエリアの 3つの空港を対象として実際に構築されている。こ のモデルと北海道内を対象とした先のモデルについ て、「空港の魅力」に関するモデルパラメータの比 較を行う。θを仮定したときのパラメータαに関す る両モデルの比較を表-5に示す。

表-5 San fransisco との比較

A 0 0011 11011010 C 1270 D					
		San fransisco		北海	道
θ		ハ°ラメータα	尤度比	ハ°ラメータα	尤度比
0		0. 7594	0.4984	1. 9994	0.4645
10-1	•	0. 7822	0. 4984	2. 0267	0. 4644
10-3	3	0. 8252	0. 4984	2. 2720	0.4634
10-2	2	0.4690	0. 4982	5. 0835	0. 4566
10-1	1	0. 1816	0. 4979		

現在、サンフランシスコのデータと北海道データとの比較を行っており、パラメータ α の比較ができる状態にまでなっている。その結果は発表時に行うが、表-5から分かることは以下の点である。Mark Hansenは θ が 10^{-2} , 10^{-1} と大きな値を取る場合、すなわち、空港のハブ機能をより明示的にモデルに反映させようとした場合、モデル全体の推計精度が下がってくることを指摘している。このことは、北海道のケーススタディでも表れており θ が 10^{-2} で推計精度の低下が見られる。なお、北海道について θ を 10^{-1} に設定した場合は安定的な解が得られていない。

5、空港配置問題

Hansenモデルを利用した空港配置モデルを考える。問題の設定はある都市圏に2つの空港が存在した場合、「空港の魅力」と「路線の魅力」があらかじめ与えられるとして、「アクセスの魅力」によって2空港の利用シェアはどのように変化するかを示すものである。これは、都市圏の人口分布と空港の位置(具体的には空港アクセス条件として入力)に関する問題であり、一般に空港配置問題と言われる。本研究で扱うモデルの特徴はHansenモデルの結果を内挿した空港配置モデルとなっていることである。

定式化における概念(図-2)を説明すると、まず、ある同一空港圏に2つの空港を考え、空港間の時間距離を単位長さ1.0とする。この地域に空港利用者が点在しており、その分布を空港利用圏として大きさ1.0の線状に仮定する。これを、ある空港端よりるだけずらした場合を考える。例えば、図-2は空港2に有利に空港利用圏が存在する場合の仮定を示しており、時間距離の相対的な比率は、空港2の方が大きい。

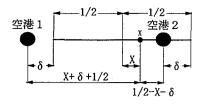


図-2 空港利用圏の概念図

ここで、空港利用圏の中心からXの位置 (-1/2≦X ≤1/2)に居住している人の空港1を利用する確率 P(1|X)をHansenモデルで定式化し、それを都市圏全体の人口分布に対応して集計することで、空港1の利用シェアが導出できる。この内容は発表時に行う。

6、おわりに

本研究のまとめを以下に示す。

- ①「空港の選択」について、マルチエアポートシステムの基本的考え方を示すとともに、Mark Hansenのモデルをレビューできた。
- ②Hansenのモデルを北海道の事例に適用しモデルの 有効性を確認したとともに、サンフランシスコでの 適用事例との比較を通し、空港ハブ機能をどのよう に扱って空港選択モデルを構築すべきかという議論 の糸口を明示できた。
- ③Hansenモデルの応用例として空港配置モデルの概念を提示した。

本研究の課題としては、①空港ハブ機能は本来、 航空事業者の戦略として行われるのであり、それを 与件としてモデル構築している現在の方法を改良す ること、②空港配置モデルについては、新設空港は もとより、既存空港のアクセス改善としての現実の 問題に対応する必要があり、その点でのモデル説明 変数の工夫が必要である。

〈参考文献〉

- Kanafani A., Gosling G. and Taghavi S. (1977): Studies in the decand for short haur air transportation, Institute of Transportation Studies, University of California, Berkeley, special report.
- Harvey G. (1987): Airport choice in multiple airport region.
 Transportation Research A 21A 6:439-449
- 3) Ashford, Norman and Bencheaun M. (1987): Passengers' choice of airport:an application of the multinomial logit model, Transportation Research board, 66th Annual Meeting
- 4) Hansen M. (1993): Modering Multiple Airport Systems, Univ. of California Research Report 93-12