ケーソン式混成堤の主要な被災パターンについて

高 橋 重 雄* ・木 村 克 俊**・下迫健一郎*** 鈴木高二朗****・五明美智男****

1. まえがき

混成堤は我が国の主要な防波 堤構造で,その設計法はほぼ確 立した段階にあり,現在さらに 経済性を目指した信頼性設計法 の導入(下迫ら,1998)が考え られている。しかし,混成堤の 被災は少なくなっているとはい え,毎年のように発生しており, 弱点や設計上の問題点が無いわ けではない。こうした弱点や問 題点は,これまでの設計法が

持っている余裕(安全率)のなかで守られ,被災に結び ついていないだけかもしれない.新しい設計法は基本的 にこの余裕幅を見直して経済性を高めようとするもの で,その導入によりこうした弱点や問題点が顕在化し, 被災が急に増える危険性がある.本報告は新しい設計法 を推進する立場から,混成堤の被災パターンをとりまと

め、弱点や設計法の問題点を検討するものである。

2. 被災の調査

防波堤に重大な災害が発生すると、その報告書がとり まとめられるが、公表されることは比較的少なく、業務 資料に留まることが多い.防波堤の被災に関する全体的 な調査は古くから行われており、主要港湾における被災 は、被災防波堤集覧(1968)としてまとめられ、最近で は宮井ら(1993)がその4をまとめている.また鹿島ら (1986)は、消波ブロックで被覆した防波堤や護岸の被災 調査を行っており、五明ら(1995)も消波ブロック被覆 堤のブロックの沈下・散乱について調査している.こう した調査は、被災の全体像をみるのに貴重であり、多く の有用な情報がまとめられている.ただし、一つ一つの 被災事例に関する原因の検討は必ずしも十分ではない.

* 正会員	工博	運輸省港湾技術研究所水工部耐波研究室長
** 正会員	工博	北海道開発庁開発土木研究所港湾研究室
*** 正会員		運輸省港湾技術研究所水工部主任研究官
**** 正会員	工修	運輸省港湾技術研究所水工部耐波研究室
***** 正会員	水修	東亜建設工業(株)技術研究所水理研究室

本報告では消波ブロック被覆堤を含むケーソン式混成 堤を対象に,最近20年ほどの主要な被災事例を種々の被 災資料や現地調査から整理し,主要な被災パターンをと りまとめた。特に,この防波堤の弱点や設計上の問題点 に関連する主要被災パターンについては,典型的な被災 事例をとりまとめ,その具体的な内容を把握している。

3. 通常の混成堤の被災

3.1 被災パターン

図-1は、通常の混成堤の被災パターンを示すもので ある。多くの場合、被災は来襲波が設計波高近くかそれ を上回って発生するが、防波堤全体に被災が発生するこ とは少なく、むしろ防波堤の弱点や設計上の問題点に関 連する①~⑥が主なパターンである。ただし重量が大き く不足し全体的な被災に至る場合(過小な設計波、古い 波力算定法、施工時)を⑩として図に示している。

3.2 典型的な被災

① 法線方向の波高増大(防波堤の蛇行災害)

図-2は、1992年2月の陸奥小川原港の沖防波堤の滑 動災害の状況である。上部工が施工途中であり、ほぼ設 計波に近い波が作用してケーソンが滑動しており、伊 藤・谷本(1971)が「蛇行災害」と名付けて以来有名と なった法線方向の特異な分布をしている。これは防波堤 堤頭部からの回折波による影響で、堤前波高が通常の入 射波だけの場合に比べ、大きくなることに対応している。

写真一1 急勾配海底上のケーソンに働く衝撃砕波力

特に,堤頭函から 0.3~0.5 波長の所で 2 割程度の波高増 大があり, 3~4 m の滑動量となっている.

こうした波高増大についてはすでに計算法が示されて いるが、実際に考慮して設計された例はほとんどない。 そのため設計波に近い異常波浪での滑動災害はこうした 波高増大が考えられるケーソンから滑動が生じている。 上述のケースでは推定来襲波(H_{1/3}=9.06 m)に対する期 待滑動量(下迫ら,1998)は0.03 m だが、2割の波高増大 を考えると0.91 m となり、被災状況にほぼ対応してい る。ただし、重複波圧で設計されている場合は滑動量が 大きくなり、波高増大箇所のケーソンがマウンドから転 落する場合もある。なお、同様な波高増大で隅角を有す る防波堤では、これを考慮した設計が通常行われている。 ② 高マウンドおよび急勾配海底斜面による衝撃砕波力

写真-1は、急勾配の海底斜面上のケーソンに巻き波 状の砕波が作用している状況で、ケーソン壁が破壊して いる.衝撃砕波力はこうした急勾配海底や大きな(高い/ 広い)捨石マウンドの場合に発生し、ケーソンの滑動や 壁の損傷(高橋ら、1998)に至る.ただし、現象の解明 が進み、特にマウンド形状による衝撃波力の大きさを表 す衝撃砕波力係数が提案(高橋ら、1992)され、マウン ド上水深dとそこでの水深hの比を0.6以下にすると危 険なことがわかっており、最近では被災数がかなり減少 している.この例は突堤状の防波堤で施工時であったた め、仮の堤頭函の側壁に衝撃力が作用した。特殊なケー スだが、同様な事例が最近も報告されている.この例で は海底勾配1/10、水深h10m、砕波波高 H_bがほぼ15m で2.5 w_bH_b以上の衝撃砕波力と考えられる.

③ 堤頭部の速い流れ、斜め入射波による堤体に沿う速い流れによる被覆材の散乱

堤頭部では,波浪によって生じるケーソンの角付近の 流れ(波浪による水粒子運動)によりマウンド部が被災

写真-2 堤頭部ケーソンのマウンド散乱による傾斜

図-3 斜め入射波によるケーソン前面捨石の散乱

しやすい.特に,施工時の仮堤頭部では,対策が十分で ないこともあり被災が多い.

写真-2はS港の事例で,根固め方塊の散乱後,ケーソ ン下面の基礎捨石が散乱・吸い出しを受けた結果,堤頭 部のケーソンが大きく傾斜したものである.木村ら (1996)はその対策法を示しており,外海に面した防波堤 に周期の長い波が作用するときに,堤頭部のマウンド近 傍に大きな流れのピーク値が発生し,被災が発生する事 を示している.また島堤の場合には,波向きによって被 災を受ける場所が変化する.

堤幹部でも,入射角 60 度程度の斜め入射では,防波堤 に沿う波浪による流れの作用によりケーソン基部のマウ ンド捨石が散乱しやすい.図-3 は M 港内の波除堤の被 災例で,捨石が散乱(吸い出し)を受け,引き波時の波 力によって直立部が港外側に傾斜し,転倒したものであ る.港内のように比較的設計波高が小さな施設でも,水 深や波向きによってはマウンド散乱の危険性がある.

④ 前面の侵食・法先の洗掘

図-4は日本海側の大規模な防波堤の断面図であり, 設計波相当の有義波高7mを越す異常波浪来襲後の海 底地形変化を示すものである.水深が15mと深いにも かかわらず,防波堤前面が100m以上にわたって侵食さ れ,法先部では3m以上も掘れている.被災が発生する ような異常波浪時には,こうした砂の移動は珍しくない.

このような直立堤前面の海底地形の変化には、全体的 な地形変化(侵食)と、局所的な洗掘がある.法先の局 所的な洗掘は入江ら(1984)の研究でそのメカニズムが 明らかとなり、グラベルや洗掘防止マットなどを敷く対 策工もある程度確立されている.しかし、地形変化が大

図-4 マウンド前面の海底地形の変化

写真一3 マウンド下の洗掘

規模になると対処が難しく,マウンドの散乱・沈下があ る程度あったとしても,ケーソンの沈下や傾斜に至らな いようにすることが重要である.

なお,前面の海底地形が変化し,堤体の前面水深が増 大するような場合には,砕波波高が増大したり,マウン ドが相対的に高マウンドとなって②と同様な衝撃砕波が 発生しやすくなることもあり,注意が必要である. ⑤ 捨石マウンド下の砂地盤の吸い出し

外海に面した混成堤のマウンドには 200~500 kg の捨 石を用いることが多い.こうした粒径の大きい捨石を用 いると、マウンド内でも流れが小さくならず、マウンド 下部の砂地盤が吸い出される可能性が高い.こうした事 実は古くから知られており、マウンド下部に帆布を敷設 するなどの吸出防止工が用いられている.西田・田中 (1970)は帆布を敷かなかったために吸出を受け、ケーソ

ンが傾斜した直江津港の例を 挙げている.**写真-3**はマウ ンド下部に帆布がない場合の 実験であり,中央粒径0.08 mmの細粒砂地盤上に設けた 混成堤模型に波高55 cm (水 深1.0 m),周期3.5 sの規則 波を2000波作用させた結果 である.マウンド下の砂が吸 い出され,ケーソンが前のめ りに沈下している.最近では 昔の経緯が忘れられ,対策工 を設けずケーソンの沈下に至 る場合がある.

⑥ 捨石マウンドと地盤のすべり

マウンドや地盤の支持力については、小林ら(1987) がビショップ法による計算を提案しており、設計法がか なり整備されている。ただし、現状では支持力により被 災した事例は非常に少ないようであり、土田ら(1996) は、期待滑動量に対応する期待沈下量により、経済性の 向上を目指している。しかし、特殊な地盤では、新潟西 港第二西防波堤(善ら、1984)のような波による液状化 の危険性がある。また、近年ケーソン底面の摩擦増大工 により経済性の向上を図ることが多いが、通常はケーソ ン底面で滑りが発生していたものが、底面での摩擦係数 が大きくなるとマウンド捨石を含んだ滑り破壊に変わる ことも考えられ、それに対応した設計が必要である。

4. 消波ブロック被覆堤の被災

4.1 被災のパターン

1970年代の後半から,通常の混成堤より消波ブロック 被覆堤が設計されることが多くなり,それにともなって 消波ブロック被覆堤の被災が増加している. 図-5 は消 波ブロック被覆堤の被災パターンである. 通常の混成堤 に比べブロックがあることで複雑だが,①から⑥までの 6つの主要な被災パターンがある.①は消波ブロックの 散乱につながり,②と③はブロックの散乱と不完全消波 による衝撃砕波力の発生要因となる.なお,図-1と同 様, ①は設計波を大きく上回ったり,施工時の重量不足 によるケーソンやブロックの全体的な被災である.

4.2 典型的な被災

① リーフや急勾配海底における消波ブロックの散乱

リーフ海域や離島のように、急勾配の海底がある場所 では消波ブロックの散乱が発生しやすい。竹田ら(1995) の海底勾配1/10,1/2.5の複合勾配の実験では、砕波領域 で波高が10-50%増大することや、入射波が巻き波とな り法先付近で崩れ落ちることで消波ブロックの散乱が法

図-5 消波ブロック被覆堤の被災パターン

先に集中して生じている。喜田ら(1979)が示した亀徳 港の事例では、急勾配のリーフ先端に防波堤堤頭部が存 在し波高増大と砕波後の強い流れによって、消波ブロッ ク重量が不足して散乱に至っている。

② 堤頭部や消波工端部における消波ブロックの散乱と 不完全消波による衝撃砕波力の発生

堤頭部では波浪による流れで消波ブロックが不安定に なり易い. 散乱した消波ブロックが航路に達すると船舶 航行に支障を来す恐れある.また消波ブロック天端が下 がると,直立部の波力増大が生じケーソンが滑動するこ とがある.木村ら(1997)は平面実験で堤頭部のブロッ クに働く波力自体が堤幹部に比べて大きいことを示すと ともに,ブロック重量の割増率について検討している.

消波ブロック被覆堤から通常の混成堤に断面形状が変 化する区間(消波工端部)では、不完全消波状態となり、 直立部に衝撃波力が作用する.塩見ら(1994)は陸奥小 川原港における被災事例を分析するとともに、こうした 条件下の衝撃波力が高橋ら(1992)らの衝撃砕波力係数 により算定できること示した.なお消波工端部では、堤 頭部と同様に消波ブロックが不安定になり易い.

③ 消波工施工時における消波ブロックの散乱と不完全 消波による衝撃砕波力の発生

五明ら(1995)は施工途中の防波堤(八戸港中央第2 防波堤)の被災事例を示している。消波工端部の不完全 消波となった北側仮堤頭ケーソンが衝撃砕波力を受けて 滑動すると,消波ブロックの散乱が進み,隣接したケー ソンも不完全消波となって滑動している。一方,消波工 の巻止めが十分になされていた南側の堤頭ケーソンで は,対照的にわずかに消波工が沈下した程度であった。

上久保ら(1998)は、1994~96年にかけて北海道内で 発生した消波ブロック被覆堤の施工時の被災事例(7件) について被災再現実験を含めて検討し、消波工端部だけ でなく静水面付近までしか被覆していない場合にも被災 が発生することを示している。消波工施工時に被災が多 いことは、古くから指摘(鴻上ら、1970)されているが、 消波工の巻き止めなどの対策は、工費や時間がかかるた めあまり行われておらず、最近でも被災が少なくない。 ④ 消波ブロックの洗掘や吸い出しによる沈下

砂地盤上に設置された消波ブロック被覆堤のブロック の沈下問題は、消波ブロック被覆堤が採用されて以来、 絶えず発生しており、五明ら(1997)も事例を多数紹介 している。しかし、一般的にブロック沈下後にブロック を追加設置すると沈下がおさまる傾向にあるため、あま り問題とはされていなかった。

鈴木ら(1998)はブロック前面の洗掘より,ブロック や捨石マウンド下からの砂の吸い出しが,沈下の原因と して重要であることを指摘している。特に砂の粒径が細 かい場合には被災規模が大きい. 図一6 は,吸出防止工と して捨石類(石籠)を用いた T 港の防波堤の例である. 中央粒径が 0.11 mm と小さかったため,周期 17.8 s と 異常に長いが,設計波(5.9 m)よりはるかに小さな波 ($H_{1/3}$ =3.6 m)で石籠の下の砂が吸い出され,天端部は約 2.3 m 沈下している. ブロックが大きく沈下すると,衝撃 砕波力が発生し易くなり,この場合にはケーソン自体も 滑動している.また,沈下に伴ってブロックが動くと, ブロックが折れたり,ケーソン壁を損傷することがある.

洗掘防止工として古くから①捨石類(石かご,グラベ ルマット等),②洗掘防止マット類,③①と②の組み合わ せといった工法があるが,捨石類では砂地盤の粒径に対 してのフィルター効果,マット類では施工時の安定性, 施工後の強度を考慮した上での設計が必要である.

⑤ 消波工設置前の幅広(高)マウンドの衝撃砕波力

消波ブロック被覆堤は、消波ブロック設置前には、幅 の広い捨石基礎マウンドを持つ。特に、このマウンドが 高い場合には、3.2②で述べたようにマウンド上で波が 砕け衝撃砕波力の発生の危険性がある。

⑥ 消波ブロックの波力減殺効果の過大評価

図-7 は、ケーソンが滑動し、その結果消波ブロックが 散乱してしまった事例で、設計波の85%の波高で被災し ている。この防波堤の設置水深hは19 m で設計有義波 高は4.5 m と波高に比して水深が大きく、消波ブロック による波力減殺効果があまり期待できない条件(高橋ら 1990)で、重複波圧が作用していたものと考えられる。 水深波高比を考慮した波力低減係数 λ は来襲波に対して 0.98 であり、滑動安全率はほぼ1.0 である。また、堤頭 函から3 函目のケーソンが転落しており、3.2 ①で述べ た堤頭からの回折波の影響も考えられ、2割の波高増大 で、安全率は0.79 で12.9 m の期待滑動量となる。

図-6 ブロック下の吸い出し

図一7 ケーソンの滑動によるブロックの散乱

堤体	通常の混成堤							消波ブロック被覆堤						
原因	0	1	2	3	4	5	6	0	1	2	3	4	5	6
宮井	5	18	3	6	1	0	0	3	3	6	6	3	0	2
直轄	0	17	0	1	0	0	0	0	0	7	7	0	0	0

表-1 被災別の件数(函数)

5. 最近の被災の傾向と被災確率

宮井ら (1993) は 1983~91 年の間に被災した全国の防 波堤のうち,被害金額の大きいものなど主要な 69 件につ いて被災状況をまとめている.これら 69 件の内訳は通常 の混成堤 32 件,消波ブロック被覆堤 23 件,その他 14 件 である.また,設計有義波高が 5 m 以上のものは 32 件 で,被災時に設計波以上の波が来襲したのは 58 件であっ た.また,全国の直轄工事の混成堤約 9000 函,消波ブロッ ク被覆堤約 7000 函について,1989~93 年までの被災調 査が実施されている(河合ら,1997).その結果,滑動ま たは転倒した混成堤が 18 函,被覆堤が 14 函であった.

表-1はこれらの被災の原因別件数(あるいは函数)を みたものである.混成堤では①の法線方向の波高増大が 多いが,一つの台風で一つの港の複数の防波堤が同じよ うに被災した事例が複数あったためである.また,比較 的波高の小さい重複波堤では①や①の大規模滑動災害が 多いことに注意が必要であり,重複波領域では期待滑動 量が大きくなり,期待滑動量に基づく設計でも滑動安全 率をそれほど低減できないという下迫ら(1998)の指摘 と一致する.一方消波ブロック被覆堤では,堤頭部およ び消波工端部と,消波工施工途中が多く,単純な滑動は 無い.なお,件数が少ないものには被災金額が小さくて 調査対象からはずれたものもあり,注意が必要である.

直轄の調査結果からは,耐用期間を50年とした場合の 被災遭遇確率は,混成堤と消波ブロック被覆堤ともに約 2%となる.また,信頼性理論による滑動遭遇確率の計 算では混成堤で9.9%,被覆堤で1.2%となっている.た だし,計算では波力が抵抗力を少しでも上回ると被災と 見なしているが,実際は,滑動量がある程度の大きさに ならないと被災と認められない.ちなみに,期待滑動量 を計算すると,50年間の滑動量が30cm以上となる確率 は混成堤で3%程度となり,実際の値に近くなる.ただ し,上述したように実際の被災には単純な滑動被災は少 ないことにも留意する必要がある.すなわち,設計上の 弱点や問題点に十分注意して設計すれば,被災はさらに 少なくなると思われる.

参考文献

伊藤喜行•谷本勝利 (1971): 混成防波堤の蛇行災害, 港研資料, No. 112, 20 p.

入江 功・近藤隆道・赤石正廣・寺崎賢次 (1984): 重複波によ

る防波堤前面での海底洗掘,第31回海岸工学講演会論文集, pp. 350-354.

- 運輸省港湾技術研究所設計基準部設計基準課(1968): 被災防波 堤集覧,港研資料, No. 58, 239 p.
- 鹿島遼一・今泉正次・戸田泰和(1986): 被災事例から見た防波 堤・防波護岸の波浪被災特性,第33回海岸工学講演会論文 集,pp. 626-630.
- 片岡真二・斎田和成(1986): 防波堤構造収攬,港湾技研資料, No. 556, 150 p.
- 上久保勝美・木村克俊ら(1998): 消波ブロック被覆堤の施工時 における滑動特性,海洋開発論文集 Vol. 14, pp. 339-344.
- 河合弘泰・高山知司ら(1997): 潮位変化を考慮した防波堤堤体 の被災遭遇確率,港研報告,第36巻4号, pp. 3-41.
- 喜田健一郎・里島正一ら(1979): 亀徳港南防波堤の安定性について,第26回海岸工学講演会論文集, pp. 367-371.
- 木村克俊・上久保勝美・坂本洋一・水野雄三・竹田英章 (1997): 消波ブロック被覆堤の堤頭部におけるブロックの耐波安定 性,海岸工学論文集,第44巻,pp.956-960.
- 木村克俊・水野雄三・須藤賢哉・桑原伸司・林 倫史 (1996): 混 成堤堤頭部のマウンド被災特性と被覆材の安定重量算定法, 海岸工学論文集,第43巻,pp.806-810.
- 鴻上雄三・時川和夫(1970): 施工段階における消波工の波圧減 殺効果に関する実験的研究,第17回海岸工学講演会論文集, pp. 205-210.
- 小林正樹・寺師昌明・中島謙二郎・小谷 拓 (1987): 捨石マウ ンドの支持力の新しい計算法,港研報告,第26巻2号, pp. 371-411.
- 五明美智男・堺 和彦・高山知司・寺内 潔・高橋重雄 (1995): 消波ブロック被覆堤のブロックの安定性に関する現状調査, 海岸工学論文集,第42巻, pp.886-890.
- 五明美智男・高橋重雄・鈴木高二朗・姜 関求(1997): 消波プ ロック被覆堤のプロックの安定性に関する現状調査(第2 報),海岸工学論文集,第44巻,pp.961-965.
- 塩見雅樹・山本 浩・津川昭博・黒沢忠男・永松宏一 (1994): 消 波プロック不連続部の波力増大による防波堤の被災とその 対策に関する研究,海岸工学論文集,第41巻,pp.791-795.
- 下迫健一郎・高橋重雄・高山知司・谷本勝利(1998): 変形を許 容した混成防波堤の新設計法の提案―期待滑動量を用いた 信頼性設計―,海岸工学論文集,第45巻,pp.801-805.
- 鈴木高二朗・高橋重雄(1998): 消波ブロック被覆堤のブロック 沈下に関する一実験,海岸工学論文集, Vol. 45, pp. 821-825.
- 善功企(1984):海洋開発における波と地盤の動的問題,昭和 59年度港湾技術研究所講演会講演集,pp. 77-134.
- 高橋重雄・谷本勝利・下迫健一郎(1990): 消波ブロック被覆堤 直立部の滑動安定性に対する波力とブロック荷重,港研報 告,第29巻1号, pp.54-75.
- 高橋重雄・谷本勝利・下迫健一郎・細山田得三(1992): 混成防 波堤のマウンド形状による衝撃砕波力係数の提案,海岸工学 論文集, Vol. 89, pp. 676-680.
- 高橋重雄・津田宗男・下迫健一郎・横田 弘・清宮 理 (1998): 防波堤ケーソンの破壊と衝撃砕波力について,海岸工学論文 集, Vol. 45, pp. 751-755.
- 竹田英章・山本泰司・木村克俊・笹島隆彦(1995): 急勾配斜面 上の防波堤に作用する衝撃波力と消波ブロックの安定性に ついて,海洋開発論文集,第11巻,pp.287-290.
- 土田 孝・湯 怡新 (1996): 港湾構造物の円弧すべり解析にお ける最適な安全率,港研報告,第 35 巻 1 号, pp. 117-146.
- 西田俊策・田中則男(1970): 昭和 45 年冬期異常気象による海象 と構造物の被害について,第 17 回海岸工学講演会論文集, pp. 185-190.
- 宮井真一郎・大平勝司・塩見雅樹(1993): 被災防波堤集覧(その4),港湾技研資料, No. 765,248 p.