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The electron-pair intracule (relative motion) h(u) and extracule (center-of-mass motion) d(R)
densities represent probability densities for the interelectronic distance and the center-of-mass
radius of any pairs of electrons, respectively. For 102 atoms from He (atomic number Z=2) to Lr
(Z=103), we report that electron-pair radii R,; and R,,, defined by h(R,;)=c,; and d(R,,)
=¢,,, have good linear correlations with the relative sizes R; of atoms introduced based on the
single-electron density p(r) such that p(R)=c;, where c;, ¢,;, and c,, are constants common to
the 102 atoms. It is also shown that an interesting relation R,,=R,;/2 holds, if c,, is set equal to

8C2i.

I. INTRODUCTION AND DEFINITIONS

The motion of an electron pair in atoms is
characterized' ™ by the spherically averaged intracule (rela-
tive motion) density k(u),

h(u)5(477“2)_1”' dr, erS(u— [r;—r,)T'(ry,1p), (1)

and by the spherically averaged extracule (center-of-mass
motion) density d(R), ,

d(R)=(4wR*»)™! f dr;dry8(R—|r; +r2|/2)F(ri ,Iy),
v ()]

where &(x) is the one-dimensional Dirac delta function and
N(N-1)
F(l‘l ,l'z)E _2_ f dO'l d0'2 dX3' N 'dXN

X|¥(xq,....x5)|% (3)

is the spin-reduced two-electron density function* associated
with an N-electron wave function ¥(x,....xy) with x;
=(r;,0;) being the combined position-spin coordinates of
the electron i. By the definitions (1)—(3), the densities A (u)
and d(R) are normalized as

4 J:du wh(u)=4w f:dR R%d(R)=N(N-1)12, (4)

where N(N—1)/2 is the number of electron pairs in the sys-
tem.

The intracule density 2(u) represents' ™ the probability
density function for the relative distance |r;—r;| of any pair
of electrons i and j to be u. It has been used in several
physical and chemical contexts particularly in relation to the
electron correlation problem (see references given in Refs. 2,
3, and 5-8). On the other hand, the extracule density d(R)
mpresents"3 the probability density function for the center-
of-mass radius |r;+1;|/2 of any pair of electrons i and j to be
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R. The density was used to study the shell structure in some
atoms and bonding characteristics in simple molecules (see
references in Refs. 2, 3, and 9-12).

In the literature, many studies, within and beyond the
Hartree~Fock theory, were carried out on the electron-pair
intracule and extracule densities of light atoms and small
molecules, based on approximate basis-set-expansion wave
functions (see Refs. 2, 3, and 5-12 and references therein).
However, it is rather recently that systematic yet accurate
Hartree—Fock  electron-pair =~ densities = have  been
obtained®” %113 for the ground-state neutral atoms He (Z
=2) through Lr (Z=103), where Z denotes atomic number.
Moreover, various properties of the atomic intracule and ex-
tracule densities have been clarified, including their
modalities,”!"'> Maclaurin expansions,'* coalescence £(0)
and counterbalance d(0) densities,">'® and moments (u")
and (R")%1%13 defined by

(u_”)E47rJ:du u"* 2h(u), (5a)

(R)=4m f:dR R""2d(R). (5b)

Though the relative motion and the center-of-mass motion of
two particles are completely independent, it has been pointed
out!®17 that the Coulombic binding of electrons in an
atomic system generates approximate isomorphic relations
between the intracule and extracule properties. Two interest-
ing and important examples are!®1117

d(R)=8h(2R), (6a)
(u")/{R"y=2", (6b)

Approximate linear correlations of the two-electron moments
(u") and (R") with the one-electron moments {r") have also
been reported,18 where

(r")E47rf:dr r"*2p(r), (7)

in which the spherically averaged single-electron density
p(r) is defined by

© 2000 American Institute of Physics
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p(r)=N(47r?)~! f dx;---dxy

X 8(r—|r )| (xy,....xp)|

2
=N_1 (47Tr2)_1J dl'1 dr25(r—-|rl|)F(r1 ,1'2).

®

In the present paper, we study the radii R,; and R,, of
the intracule 2(u) and extracule d(R) densities specified by
a small contour value, i.e.,

h(Ra;)=cy;, (9a)
d(RZe) =C2e> (9b)

for the 102 atoms He through Lr, where ¢,; and c,, are
constants common to all the atoms. As observed between the
two-electron (#") and (R") moments and the one-electron
(r") moments, we have expected that the electron-pair radii
R,; and R,, would have some relations with the ‘‘relative
sizes of atoms’’ R; defined by Boyd!? as

p(R))=cy, (10

based on choosing an appropriate contour value c¢; in the
single-electron density function p(r). In the next section,
Boyd’s relative sizes of atoms are outlined and a modifica-
tion is mentioned. In Sec. III, the electron-pair radii R,; and
R,, are presented and discussed using the intracule and ex-
tracule densities from numerical Hartree—Fock calculations.
It will be found that our anticipation stated above is true and
the radii R,; and R,, have good linear correlations with R, .
We also find that an approximation R,,=R,;/2 is valid, if we
choose the contour values as ¢,,= 8¢,; . Hartree atomic units
are used, except that numerical values of radii are given in
pm with the conversion factor 1 bohr=52.9177249 pm.2°

Il. RELATIVE SIZES OF ATOMS

Together with an assumed additivity in molecules and
solids, various ‘sizes’” were devised?! empirically for atoms
and ions, such as covalent, ionic, van der Waals, metallic,
and crystal radii. To define intrinsic radii of atoms, before
influenced by the surrounding environment in molecules and
solids, Boyd!® examined several quantities derived from the
single-electron density p(r), and found that a density con-
tour approach given by Eq. (10) gives the most appropriate
measure for the relative sizes of atoms (see also Refs. 22 and
23). Considering 54 atoms from H (Z=1) to Xe (Z=54)
and using the approximate Hartree—Fock density p(r) con-
structed from Clementi wave functions,24’25 Boyd19 chose
¢1=1X10"* so that the following two conditions are satis-
fied: (i) the atomic radius tends to decrease as Z increases
within a period; (ii) the atomic radius tends to increase as Z
increases within a group. Since the calculated relative radii
are substantially larger than the empirical radii due to the
small value of ¢;, Boyd!? further introduced a scaling pro-
cedure,

R,=0.1026R}*** (in pm) (11a)

Electron-pair radii 6967
which scales the theoretical relative radii R; down to R; with
the magnitude of the empirical radii, referring to the univa-
lent radii’! of Pauling for the first five rare-gas atoms.

Since it has been established?®?’ that the wave functions
of Clementi et al.”** suffer from nontrivial errors and inac-
curacies, we have first recalculated the relative sizes of atoms
using the numerical Hartree—Fock electron density p(r).%
Fortunately, the errors in the scaled radii R 1 for the atoms
H-Xe have been found to be 1 pm at most except for the
seven atoms Cr, Nb, Mo, Ru, Rh, Pd, and Ag, for which an
excited state, instead of the ground state,29‘3° was calculated
by Clementi®® and hence by Boyd.!® For these atoms, the
ground-state R, values are 227, 243, 234, 229, 227, 172, and
225 pm in the order given above. In particular, the Pd atom
has an exceptionally small radius (172 pm) among the fifth
period atoms because of the vacant 5s orbital.

We have next examined whether Boyd’s prescription for
the relative atomic sizes works also for the heavier atoms Cs
(Z=55) through Lr (Z=103). We have found that the con-
dition (i) is not satisfied when we employ ¢;=1X10"*. For
example, the Fr (Z=87) and Ra (Z=88) atoms were pre-
dicted to have Rl =338 and 343 pm, respectively. The prob-
lem can be easily resolved if we adopt a smaller value for
¢y, though the tendencies imposed in the conditions (i) and
(i) are more emphasized. An example is to use c¢;=5
X 1073 together with a linear scaling relation,

(11b) *

which results from a regression analysis of the calculated and
empirical univalent radii. We have also examined a regres-
sion by a power formula like Eq. (11a), but a linear regres-
sion of Eq. (11b) has a better fit. When Eq. (11b) is applied,
we have R 1=334 and 329 pm for the Fr and Ra atoms,
respectively. To show a systematic trend, the two sets of
scaled radii R 1, determined by ¢;=1Xx10"*and 5X 1073 in
Eq. (10), are exemplified in Table I for the fourth period
atoms.

In the next section, the radii R; obtained from the con-
tour ¢;=5X107 are referred as the relative sizes predicted
by the single-electron density in our analysis of the electron-
pair radii R,; and R,, for the 102 atoms from He to Lr.

R;=0.7397R;—43.3699 (in pm)

lli. RADIl OF ELECTRON-PAIR DENSITIES

We have first studied the intracule radii R,; defined by
Eq. (9a). The parent intracule densities h(u) were taken from
Refs. 6 and 7 for the atoms He through Xe and from Ref. 13
for the atoms Cs through Lr. These densities were con-
structed by numerical Hartree—Fock calculations in a manner
consistent with the single-electron densities employed in the
determination of R;. For the contour value c,;, we have
examined seven cases 1X 107" with an integer value of n
ranging from 4 to 10. In all the cases, the calculated radii Ry;
satisfy the conditions (i) and (ii), though the values increase
with increasing n. Moreover, the Z dependence of R,; is
found to be parallel to that of R, for all the c,; values ex-
amined. Figure 1 depicts such parallelism for a few selected
cases. In fact, we have observed approximate but good linear
correlations between the calculated values of R,; and R; .
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TABLE 1. Comparison of the relative sizes R, , R,;, and R, for the fourth
period atoms.

Ellpm Ez,-/pm R,./pm

Contour=1X10"%  5Xx107° 1x1077 8x1077

Atom Scaling=Eq. (11a) Eq. (11b) Eq. (12b) Eq. (14¢)
K 290 289 302 305
Ca 279 274 277 280
Sc 266 262 266 268
Ti 257 253 258 260
v 249 246 250 252
Cr 227 229 239 241
Mn 236 235 239 241
Fe 229 229 233 235
Co 224 223 228 231
Ni 219 219 224 225
Cu 211 215 229 230
Zn 210 211 216 . 218
Ga - 224 225 243 245
Ge 211 211 216 217
As 196 196 197 197
Se . 189 188 189 190
Br 179 179 179 180
Kr 169 169 169 170

For more detailed discussion, we have wished to choose
a set of R,; obtained from a particular value of c,;. Since
two electrons in an atom can be on opposite sides of the
nucleus, we may naively expect that an interelectronic radius
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FIG. 1. Z dependence of the relative sizes R; and R,; for the 102 atoms
from He (Z=2) to Lr (Z=103).
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FIG. 2. Correlation between the relative sizes R; from ¢;=5X 107" and R,;
from ¢,;=1X 1077 for the 102 atoms.

R,; is approximately twice the electron-nucleus radius R;.
Such a situation is observed when we use ¢,;=1Xx 1077 (for
c;=5X107%); the average of the ratios R,;/R; over the 102
atoms is 2.118. For this value of c,;, the correlation between
R,; and R is demonstrated in Fig. 2. A regressive analysis
shows that the correlation is approximated by

R,;=2.5229R,—2.8785, (12a)

with a correlation coefficient 0.9932. The result implies that
the distribution of the electron-pair intracule density A(u)
reflects the relative size of an atom defined from the distri-
bution of the single-electron density p(r). If we introduce a
linear scaling relation,

R,;=0.3278R,;,—16.8285 (in pm) (12b)

based on the comparison of R,; with the empirical univalent
radii,?! the scaled radii R,; predict similar sizes as R, for
most of the 102 atoms. Table I explicitly compares the R,
and R,; values for the fourth period atoms K through Kr. The
differences between R; and R,; are less than 5 pm in most
cases. However, R,; gives a slightly larger value (10-18 pm)
than R, for the four atoms K, Cr, Cu, and Ga, where the
outermost 4s or 4p orbital is singly occupied. An analogous
trend is observed for the remaining atoms, and the Fr atom
(Z=87) with a singly occupied 7s orbital has the largest
difference 45 pm. The averages of the absolute and relative
deviations over the 102 atoms are 11.4 pm and 4.3%, respec-
tively.
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FIG. 3. Correlation between the extracule radius R,, and the intracule ra-
dius R,; obtained from c,,=8¢,;=8X107".

Next we consider the radius R,, , defined by Eq. (9b), of
the electron-pair extracule density d(R). Before we perform
numerical examinations, a thoretical conjecture can be ob-
tained from the approximate isomorphic relation Eq. (6a). If
we assume that Eq. (6a) is valid for a large value of R where
both #(2R) and d(R) are small, we have

h(Ry;)=3d(R,,12), (13a)
which means an interesting relation that
Ry, =3Ry;, (13b)

if ¢,,=8c¢,;. Namely, the extracule radius R,, is approxi-
mately half the intracule radius R,; for this special choice of
the contour values ¢, and c,;. Furthermore, Eq. (13b) sug-
gests that the radii R,, and R,; have an approximate propor-
tionality relation for other combinations of ¢,, and c,;, and
hence the extracule radius R,, also has a correlation with the
relative atomic size R;. Using the Hartree—Fock extracule
densities d(R) reported in Refs. 10, 11, and 13, we have
numerically verified that the above anticipation is true. Fig-
ure 3 exemplifies the correlation between R,, and R,; for
2, =8¢,;=8X1077. For this case, we obtain regression
lines,

R,.=0.5042R;— 0.0719, (14a)

R,,=1.2722R,— 1.5244, (14b)
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with correlation coefficients 0.9999 and 0.9932, respectively.
Equations (14a) and (14b) are consistent with Eq. (12a).
Comparison of the R,, values (from c,,=8X 10~7) with the
univalent radii?' gives a scaling relation

R,,=0.6651R,,—18.5773 (in pm) (14c)

for the relative sizes of atoms. The scaled extracule radii R,
are essentially the same as Ez,- for all the 102 atoms; the
average difference is 2.2 pm with the maximum 4.7 pm at
the Fr atom. Thus the differences between R,, and R, are
analogous to those between R,; and R 1 discussed before.
Examples of EZe are given in Table I for the fourth period
atoms.

IV. SUMMARY

When a density contour approach has been applied, the
distributions of the electron-pair intracule and extracule den-
sities have been shown to reflect the relative sizes of atoms.
For a particular choice of the contour values, we have R,,
=R,;/2 for the extracule R,, and intracule R,; radii. If ap-
propriate scaling relations are introduced, all the three scaled
radii, R; from the single-electron density, R,; from the intra-
cule density, and R,, from the extracule density, have been
found to predict essentially the same sizes for the 102 atoms
from He (Z=2) to Lr (Z=103). A numerical table of the
radii is available upon request.
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