

66年経過した張碓トンネルの覆工コンクリートの性 質

メタデータ	言語: jpn
	出版者: 土木学会北海道支部
	公開日: 2013-03-12
	キーワード (Ja):
	キーワード (En):
	作成者: 菅田, 紀之, 小松, 秀喜, 岡本, 恭也, 河村, 巧
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/1909

66年経過した張碓トンネルの覆エコンクリートの性 質

その他(別言語等)	Properties of 66-Year-Old concrete of Hariusu				
のタイトル	Tunne I				
著者	菅田 紀之,小松 秀喜,岡本 恭也,河村 巧				
雑誌名	論文報告集				
巻	57				
号ページ	V-33				
ページ	890-891				
発行年	2001-02				
URL	http://hdl.handle.net/10258/1909				

66 年経過した張碓トンネルの覆エコンクリートの性質

Properties of 66-Year-Old Concrete of Hariusu Tunnel

室蘭工業大学

○正員 菅田 紀之 (Noriyuki Sugata)

㈱地崎工業 張碓トンネル工事事務所

小松 秀喜 (Hideki Komatsu)

㈱地崎工業 張碓トンネル工事事務所

岡本 恭也 (Kyoya Okamoto)

㈱地崎工業 土木部技術課

正員 河村

巧 (Takumi Kawamura)

1. はじめに

張碓トンネルは一般国道5号において昭和9年に供用 開始されたトンネルであり、交通量の増大に対応するため に平成10年度からに拡幅工事が行われた。そのため、既 設覆工が取壊されることになり、製造より66年経過した コンクリートの試験を行う機会を得た。コンクリートの耐 久性に関する検討を行う場合、長期間供用された構造物の コンクリートの性質を知ることは大変重要なことである。

本研究では、張碓トンネルから採取したコンクリートを 用いて、強度、単位容積質量、中性化、細孔構造に関する 試験を行い検討した。

2. 張碓トンネル

張碓トンネルは、一般国道5号において北海道開拓時代 の第二期拓殖計画期(昭和2~21年度)の昭和7年に起 工、8年に竣工、9年に供用開始された。延長は620 m、 幅員は 7.5 m であり、支保材を用いて覆工したものとして は北海道において供用中の最古のトンネルであった。同ト ンネルは札幌~小樽間に位置し、交通量増大に対応するた めの4車線化拡幅工事に伴い、平成10年度から既設覆工 が取壊され、幅員 11.75 m へと拡幅された。

3. コンクリート

昭和初期におけるコンクリートの配合は、セメント、砂、 砂利の容積比のみが示されており、水量については一般に 記されていないことが多い。覆工に用いられたコンクリー トの配合は、容積比でセメント:砂:砕石を1:3:6と されている。また、砕石は現場近郊で採取されたものであ り、最大寸法で 10 cm 程度のものが確認できた。

4. 試験結果および考察

強度、単位容積質量および中性化試験は、小樽側坑口部 の覆工から採取した直径 15 cm のコアコンクリートを用 いて行った。試験用に覆工の側壁部から3本、アーチ頂部 から2本のコアコンクリートを採取した。また、細孔構造 の計測は、小樽側坑口部の覆工側壁部およびアーチ頂部か ら採取した直径 7.5 cm のコアコンクリートを用いて行っ た。表-1に強度、単位容積質量および中性化試験の結果 を示す。

4.1 単位容積質量

表より、側壁部の単位容積質量の平均が 2210 kg/m3で あるのに対して、アーチ頂部では 2110 kg/m3 であり小さ くなっていることがわかる。目視によっても、アーチ頂部 コンクリートに大きな気泡が存在していることが確認で きた。頂部において十分な締固めを行うことができなかっ たことにより、単位容積質量が小さくなったのでないかと 予想される。張碓トンネル建設当時におけるコンクリート の施工は、固練りコンクリートを木蛸で突き固めるという 方法であり、アーチ頂部は物理的に十分な突固めが困難で あったものと考えられる。

4.2 圧縮強度および弾性係数

側壁部における圧縮強度は、平均で39.8 N/mm2であり、 66 年経過時においても十分な強度を維持していたといえ る。アーチ頂部においては 17.9 N/mm² であり側壁部の 1/2 以下になっていることがわかる。しかしながら、トン ネル用コンクリートとしては十分な強度を持っていたと いえる。

弾性係数は割線弾性係数であり、圧縮強度試験時に供試 体にひずみゲージを貼付け求めた応力ーひずみ関係から 算定した。側壁部における弾性係数は 18.1 kN/mm²であ り、圧縮強度が 40 N/mm² 程度のコンクリートとしては小 さな値であるといえる。また、アーチ頂部における弾性係 数は 9.8 N/mm²であり、コンクリートとしてはかなり小 さな値である。配合が同じであったにもかかわらず、アー

表-1	単位容積質量、	強度、	弾性係数、	中性化試験結果
-----	---------	-----	-------	---------

		単位容 (kg	積質量 ′m³)		強度 nm²)		係数 nm²)		上深さ m)
	1	2220		40.2		18.8		10	
側壁部	2	2190	2210	36.6	,39.8	17.0	18.1	26	16
	3	2210		42.5		18.4		12	
マチ頂如	1	2090	2110	15.0	17.0	8.3	0.0	90	80
アーチ頂部 2	2130	2110	20.7	17.9	11.3	9.8	88	89	

チ頂部における圧縮強度および弾性係数が小さな値を示したことからも、十分な突固めを行うことができなかった ことが予想できる。

4.3 中性化深さ

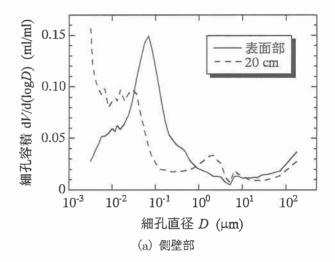
中性化試験はフェノールフタレイン 1 %溶液を用いて、コンクリート切断面に噴霧して行った。側壁部における中性化深さは 16 mm であるのに対して、アーチ頂部においては 89 mm であり、側壁部と比較するとアーチ頂部においては著しく中性化が進んでいることが確認された。これも締固めの影響ではないかと考えられる。

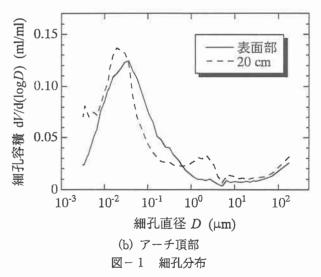
4.4 細孔構造

細孔測定は、水銀圧入式ポロシメータを用いて行い、細孔測定用の試料はコアコンクリートの表面部(中性化部)、深さ $10~\rm cm$ および $20~\rm cm$ の部分(未中性化部)におけるモルタル部から採取した。測定範囲は $3~\rm nm$ から $350~\rm \mu m$ である。表 $-2~\rm cm$ に知ける細孔容積を示す。側壁部における表面部の細孔容積は $22.1~\rm %$ であるのに対して、内部においては $19.5~\rm %$ および $19.6~\rm %$ であり小さくなっていることがわかる。アーチ頂部においては、表面部において $20.5~\rm %$ 、内部において $22.0~\rm %$ であり、内部の細孔が側壁内部よりも多くなっていることが分かる。

側壁部およびアーチ頂部における細孔分布を示すと、図-1のようになる。表面部および深さ 20 cm 部の結果を比較して示している。なお、10 cm 部と 20 cm 部の細孔はほぼ等しい分布をしていた。側壁部の表面部と 20 cm 部における細孔分布の差は大きく、表面部における細孔直径 70 nm をピークとする細孔が、20 cm 部においては減少していることがわかる。また、20 cm 部においては、直径 2 μ m 前後および 30 nm 以下の細孔が増加している。アーチ頂部における細孔分布に関しては、表面部において30 nm をピークとする分布が、20 cm 部においては 20 nm をピークとする分布になり、全体として細孔が小さくなっていることが分かる。また、直径 2 μ m 前後の細孔が増加していることがわかる。

中性化により細孔分布が変化することが知られている。 しかしながら、どのように変化するかについては、一致した見解は得られていない 1)。本結果の細孔分布の変化が中性化によるものと仮定すれば、中性化により 70 nm 前後の細孔が増加し、2 um 前後の細孔が減少するといえる。


5. ま と め


66 年間供用された張碓トンネルの覆工コンクリートの 強度、単位容積質量、中性化、細孔構造試験を行った。そ の結果をまとめると次のようになる。

- 1) 単位容積質量の小さなアーチ頂部における強度および弾性係数は、側壁部と比較すると小さい。
- 2) アーチ頂部における中性化は、側壁部と比較すると著しく進行している。
- 3) 側壁部における細孔構造は、表面部と内部において大きく異なっている。これは中性化等の影響が考えられる。アーチ頂部については若干の変化が見られる。 以上より、66 年間供用されていたにもかかわらず、側

表-2 細孔容積

	深さ (cm)	細孔容積(%)		
側壁部	0	22.1		
	10	19.5		
	20	19.6		
アーチ頂部	0	20.5		
	10	22.0		
	20	22.0		

壁部のコンクリートは十分な強度および耐久性を確保していたといえる。また、アーチ頂部については十分な突固めを行うことが出来なかったと想像され、中性化も著しく進んでいた。しかしながら、トンネルコンクリートとしては十分な強度を維持していたといえる。

参考文献

1) 日本コンクリート工学協会 炭酸化研究委員会:コンクリートの炭酸化に関する研究の現状,日本コンクリート工学協会,pp.24~28,1993.