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A Simplification Method for Reflective and
Rotational Symmetry Model in Electromagnetic Field
Analysis

Tadashi Naito and Hajime

Abstract—in this paper, a simplification method for reflective
and rotational symmetry model, is proposed. Using spatial eigen-
modes, the coefficient matrix of the final simultaneous equations
for the time and storage capacity can be reduced. The proposed
method can adapt to not only a integral-equation-method model
but also finite element method model.

Index Terms—Model simplification, reflective symmetry.

. INTRODUCTION

OR PRACTICAL electromagnetic field problems, the

size of the simultaneous equations of numerical models
becomes increasingly large. Therefore, simplification methods
of the numerical models are required. In a rotational symmetry
model, the simplification methods are proposed [1], [2], [4].
However, these simplification methods can not adapt to the
model that has the reflective symmetry. In this paper, the au?

thors propose the new simplification method that can adapt to_ ) ) . )
|Firstly, neglecting the connection of each subregion, the si-

This method can adapt to both the finif@ultaneous equations are introduced as follows:

the reflective symmetry model and the reflective and rotationa
symmetry model.
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g. 1. Symmetrical model.

element method (FEM) and integral-equation-method (IEM). S S M M Fu,r B,
In this method, since the coefficient matrix of the simultaneous S S M M Fui: | ) Bu: 1
equations is transferred to the block diagonal matrix , the com- M M S S Fo.( )Bu. (’ 1)
putation time and storage capacity are substantially reduced. M M S S Fl’,-i Bl’,i
Il. FORMULATION where . .
F is unknown variables vector,
A. Integral Equation Method B the constant vector,

A reflective and rotational model is shown in Fig. 1. The the matrices

the coefficient matrices, and

model has a reflective symmetry between upper group and lowetS], [ST', [M], and[M]’

group. There is another reflective symmetry, which includes ro-the sufficesu, I, r,

tational symmetry, in both upper and lower groups. Each group

denote upper, lower, real, imagi-
nary group.

is called real or imaginary group. Each symmetry boundary Moreover, the vectors and the matrices of each group are di-
A, B andZ are shown in Fig. 1. Fig. 1(a) is the example, whicNided by the subregions as follow:

N (number of subregions in each group) is three.
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My M e My And then, using two reflective symmetries, the variables
[M] = M/\—l Mo M1 ’ transform are introduced as follows:
L M, - My My For=Fr+Fu+¥ur+Frv,
My, M o Myq7’ Fo:=Fr—Fpg-+Frr—Frv,
(M] = Ml MA_l MO (2 Fir =Fr+ ¥ —Frur—Frv,
LMy_1 My -+ My_s] Fo;=F;—¥y—Frur+Fy (7)

whereFy, Fyr, Frrr, Fry are new variables.

Secondly the connections of subregions are treated Srhe transform (7) gives four one-fourth size models as
boundary conditions. The boundary conditions are as foIIow:}:0

llows:
Foo.=—F1 . Fo=—[KJF, Fry=—[K)]Fi4, (3) [S+M + S + M'|F; =By,
[S+ M — 5 — M'Frr =By,
where ) )
[S - M + S - M ]FIII :BIII7
_ 0 ; o g [$— M = 5"+ M'[F1v =By, (8)
[Ka] = ’ whereBy, Byy, Byrr, Bryv are the new constant vectors. The
L0 E 0 mathematical form of four equations in (8) are same. To simplify
~ the explanation, we treat only/; and the suffix/ is omitted.
0O EF O 0 0 - . . .
E 0 o0 Then, to utilize the rotational symmetry, the following vari-
K= | o 0 E|. @) ables transform is used [2].
N-1
Lo 0 E 0 - Fr=Y a*" ", (k=12..,N) (9
n=0

and[E] is the unit matrix[0] the null matrix, the suffices, , Wheref is the new variable vector,
b, denote theZ, A, B boundaries, and the variable is the normal
vector to the boundary.
Then, according to the boundary, the coefficient matrix ardsing the transform (9), the equation is simplified as follows:
the constant vector of each subregion are expressed as follows: . -
? ° (1510 + 1516 ) £o =bo.

a= e/,

Szz Sza Szb Szf

Slefr + [STn—wfr—r = b
[S] o Saz Saa Sab Saf [N]kfk + [ N]]\‘_kf]\‘ —k ks
O | Sue Swa S Sup | (STifx + [SINatfnver =bn—k, (k=1,2,..., K)
Spz Spa Sy Sppdg ~ ~
[Sx/2 + [SIn/2 ) Fase =bnse: N even
B={B, B. B, By }T7 (5) ( N/2 J\/2) N/2 /2
whereb is a new constant vector,
where, the suffixf denotes the region except the boundary. . N1 o . N-1 o /
Using the boundary condition (3), the coefficient matrix and [Slk = »_ @[S+ Ml,, [Sh = > d*"[S+ M],
the constant vector are modified as follows: n=0 n=0
K=(N-1)/2: N add
[SZZ]O = [SZZ]O - [MZZ]07 [Saa]O = [Saa]O - [Saa]6 K = (N _ 2)/2 N even (11)

[Sus]o = [Sus]o — [Sue -
Bu.=Bu, Bi. Bi,=Bi, B, B. Finite Element Method

Firstly, to simplify the treatment of boundary condition.dn
By,o =Br,a — [Ko]Bija;, Bia = Bi o — [Ku|Br,a, we renumber the subregions as Fig. 2. Neglecting the connection
Byy =Bry— [K))Biv, Biy=DBiy— [Ki|Bry (6) between sub_regions, we introdl_va_a the equat_iqns. In th_is case,
the only[S]o is not the null matrix in the coefficient matrices.
h h . dth  righ ..Then, we assume that the boundaty B and Z have not the
\t/)v fere t e(]rlr_}gtrlfes and the vectors of right term are quantitigs - pointto each other. And the matri€gs,], [S.»] and[Sus)
€lore moditication. éagacome the null matrices.

. Since the equations, that are modified with boundary cond %econdary, the boundary conditions are given as follows:
tion, have the same mathematical form as (1), we discuss abou

(D). Foy.=Fi ., Fro=F;, Fr,=[K/]Fi, (12)
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TABLE |
REDUCTION EFFECT OFCALCULATING TIME
Gauss elimination
. coefficient
modeling . R
matrix
N: odd N:even
IEM (4N-3)/(16N%) | (2N-3)/(8N?)

] 1/(4N)

FEM 1/(16N?)

Fig. 2. Renumbering of subregions.

where
Fig. 3. TEM cell method.
g 0 0 g the constant vector are modified. Then, the simplified equations
(K] = are got as follows:
0 E 0 See 0 0 Si7 (fem b n
0 Saa 0 Saf fa,n _ t}a,n
And since subregions are renumbered, the mdfik be- 0 0 Sw,n Sus fn [ ] Pon [’
comes a differential form with the case of IEM as follows: Sg. Sfa Sp Sy frn bfn
n=01,...,N—1 (15)
So 0 -~ 0 517 ( )
Si So 0 --- 0 where
r_ .
[ST=10 5 S 0 - A3 1S, = {2/1 (1 +a™™) }[Sw], bon =bun/ (1+a7™),
0 -~ 0 S So bon =bsn/2, bon=0ban/2

Finally, 4N small simultaneous equations are given. Since
Using boundary conditions (12), the submatrices of coefigach model size is one¥th, the required storage capacity and
cient matrices and constant vectors are modified as follows: computation time are extremely decreased. Table | shows the
effect of the proposed method.

SW/ =2 va Saa :Zsaa ’
[S.2]o =2[S2:]o,  [Saalo = 2[Saalo ll. COMPUTATION RESULTS

[Seelo =2[Sulo,  [Mglo = [51lo, Fig. 3 shows a TEM(transverse-electromagnetic) cell model.

[Sarlo =[Saflos  [Suslt = [Suflos The problem is solved by the triangular-patch moment method
) T [3]. Using the simplification method, the model is simplified to

By o =By + [K|'Bi,s, Biy = Bip+ ([Ks])” Brs,  aone-8th model. Fig. 4 shows the computation result of current

B;,o =B;,a + Bia, Bia=Bia+Bra, distributions. The results agree with the results which do not use

the simplification method.
Bu,z :Bu,z+Bl,27 Bl,z :Bl,z+Bu,z~ (14)
IV. CONCLUSION

Firstly, using the same procedure as the case of IEM, the modeh new simplification method for reflective and rotational
become four one-fourth models with variables transform (8ymmetry model was proposed. The method can adapt to not
Moreover, using transform (9), the model is more simplifiecanly IEM model but also FEM model. Using spatial eigen-
And, to make the symmetric matrix, the coefficient matrix anchodes, the model is simplified and the computation time is
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reduced. Applicability of the proposed method was verified by
TEM cell model.
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Fig. 4. Calculated distribution of current density vectors, (a) real part,
(b) imaginary part.



