落石覆工用 PRC 桁の耐衝撃性向上に関する実験的研究

Experimental study on improvement of impact resistant capacity of prototype PRC beams for rock-sheds

今野久志^{*} 岸 徳光^{**} 池田憲二^{***} 竹本伸一^{****} Hisashi KONNO, Norimitsu KISHI, Kenji IKEDA, and Shin-ichi TAKEMOTO

* 工修 北海道開発土木研究所主任研究員 構造研究室(〒062-8602 札幌市豊平区平岸1-3)
 ** 工博 室蘭工業大学教授 工学部建設システム工学科(〒050-8585 室蘭市水元町27-1)
 *** 北海道開発土木研究所室長 構造研究室(〒062-8602 札幌市豊平区平岸1-3)
 ***** ドービー建設工業(株)北海道本店部長 設計部(〒060-0001 札幌市中央区北1西6)

In order to develop Prestressed Reinforced Concrete (PRC) beams with high impact resistant capacity for the use of rock-shed members, static loading and falling-weight impact test are conducted using prototype PRC beams. Here, total six types of PRC beams are tested which are taking shear-bending capacity ratio, pretension ratio of PC tendons, and material property and volume of rebars arranged for letting cracks disperse as variables. Impact test is conducted using 3,000 kg steel weight and applying single loading method with maximum 30 m high dropping. The results obtained from this study are as follows: 1) ductility of the beams can be improved by increasing shear-bending capacity ratio; 2) impact-resistant capacity can be increased arranging normal rebars in two levels; and 3) using high-strength PC steel rebars in stead of normal rebars, not only impact resistant capacity can be most effectively increased but cracks can be dispersed over entire beam.

Key Words: PRC beams, PC rock-shed, tensioning rate, shear-bending capacity ratio キーワード: PRC桁, PC 覆工, 緊張比, せん断余裕度

1. はじめに

我が国の海岸線や山岳部の道路には落石による災害か ら人命を守るため、また道路交通の安全を確保するため に落石防護施設が建設されている.落石防護施設の一つ である落石覆工は、道路側方に落石のための敷地を確保 できない状況下で、落石規模が大きい場合あるいは、落 石防護柵等ではその上を飛び越す恐れのある場合などに 使用される構造物である.落石覆工は落石防護工の中で 最も施工費が高い構造物であることから、より適切な配 置計画と共に安全かつ合理的な耐衝撃設計法の確立が急 がれている.

現在,材料学的な観点からは主に鉄筋コンクリート製 (RC)とプレストレストコンクリート製(PC)が採用 されている.著者らは,これまでに高性能の緩衝材の開 発¹⁾を含め,これらの合理的な耐衝撃設計法を確立する ための研究を継続的に実施している.例えば,RC 覆工 に関しては落石衝撃力作用下の三次元的な動的挙動を考 慮した設計手法を提案している²⁾.また,PC 覆工に関 しても,単桁や多主桁に関する衝撃荷重載荷実験³⁾,さ らに実規模覆工模型を用いた各種衝撃荷重載荷実験を行 い^{4),5)},主桁の荷重分担率や動的応答倍率,さらに構造 形式の違いによる耐衝撃挙動や終局耐力に関する検討を 行っており,現行のPC 覆工に対する合理的な耐衝撃設 計手法を確立しつつある.

一方, PC 覆工は RC 覆工に比較して施工性には優れ ているものの, プレストレス力の導入により靭性能の劣 ることが指摘されている.しかしながら, PC 覆工はプ レキャスト部材を現地で組み立てることによって施工さ れることから, 今後の労働者不足への対応や工期短縮の 観点から, 益々需要が伸びるものと予想される.これら のことから, PC 覆工の安全性の向上や大規模落石への 対応を考慮すると, PC 主桁部材の残存耐力や終局まで のエネルギー吸収能を向上させる技術を確立することが 重要と考えられる.

現行の PC 覆工部材は, PC 鋼材の降伏応力の 80 % 程度のプレストレスを導入することを前提として設計さ れている. PC 覆工の自重による断面力が衝撃荷重を含 む全断面力の 20~30 % であることを考慮すると, 理論 的には, PC 鋼材の緊張率を低減することや PC 鋼材量 を低減して異形鉄筋量を増加させることによって, 残存 耐力やエネルギー吸収量を増加させることが可能である. このような観点から, 著者らは小型の矩形およびT型断 面プレストレスト鉄筋コンクリート製(PRC)桁模型 を用いた実験^{6),7)}を行うとともに, それらの研究成果を 基に, PRC部材の実PC覆工への適用性を検討すること を目的として, 全長が7m, 桁高 90 cm, 上フランジ幅 120 cm で PC鋼材の緊張比やPC鋼材量, 異形鉄筋量を

試験体名	PC鋼材 緊張比	PC鋼材 本数	下端筋鋼材 <u>種類・径×本数^{*1}</u>	有効緊張力 (kN/本)	桁高 (cm)	せん断 余裕度 ^{*2}
Type 1	1.0	14	D16×4	133.3	90	1.30
Type 6	1.0	14	D16×4	133.3	90	1.60
Type 7	0.5	14	D16×4	67.2	90	1.30
Type 8	0.5	14	G23×4	67.2	90	1.26
Type 9	0.8	14	D16×8	106.6	90	1.30
Type 10	0.5	14	G23×4	67.2	65	1.31

表-1 試験体一覧

注)*1 D: 異形鉄筋, G: 総ネジ PC 鋼棒 *2 せん断耐力/曲げ耐力(表-3参照)

変化させた実規模 PRC 桁を製作し,静載荷実験および 衝撃荷重載荷実験を実施している⁸⁾. その結果, 1)静載 荷実験結果より, PC 鋼材の緊張比を減少させることに よって,せん断耐力も低減され,桁が曲げ破壊型からせ ん断破壊型に移行するためエネルギー吸収量が減少し, 靭性が乏しくなること, 2)衝撃荷重載荷実験結果より, PC鋼材の緊張比を従来からの値を 1.0 として 0.5 程度に 低減することによって最も効率的に耐衝撃性を向上させ ることができること,等が明らかとなっている.

また、 衝撃荷重載荷実験において静的せん断余裕度 (曲げ耐力に対するせん断耐力の比,以後単にせん断余 裕度)が 1.0以上の場合でも、衝突速度が速い場合には 曲げ破壊よりもせん断破壊が卓越することも明らかとな っている.これより、せん断余裕度と衝撃破壊モードと の関連性に関する検討も重要であるものと考えられる. さらに、 覆工用 PC 桁は現場への運搬上の制約から断 面寸法が制限される.限られた断面寸法で耐荷力を向上 させるためには、異形鉄筋の代わりに高強度鋼材を使用 することも一つの有効な方法であるものと推察される.

これらのことから,平成12年度には,せん断余裕度 を現行設計と同程度とし,PC 鋼材の緊張率を低減した 場合や緊張率を低減せずにせん断余裕度を向上させる場 合,さらには下端筋鋼材を異形鉄筋から高強度材料であ る総ネジPC鋼棒に置き換える場合について,大型試験 体による静載荷実験⁹⁾および衝撃荷重載荷実験を実施し ている.繰り返し載荷実験結果¹⁰⁾から,PC 鋼材の緊張 率を低減すること,さらに下端筋鋼材を高強度材料とす ることによって耐衝撃性を向上できること,が明らかと なっている.一方,単一載荷実験ではいずれの場合も終 局に至っていないため,終局時近傍の耐衝撃性状につい ては明らかとなっていない.耐衝撃性に優れた落石覆工 用 PRC 桁を開発するためには、単一載荷実験により終 局までの耐衝撃挙動を把握することが重要と考えられる.

このような背景から, 平成13年度には後述する基準試 験体と耐衝撃性に優れていると考えられる緊張比が 0.5 の試験体の 2タイプに対する実験検討を中心に, 併せて 曲げ耐力を基準試験体と同一にして下端筋を総ネジ PC 鋼棒とした試験体や PC 道路防災構造物マニュアル¹¹⁾ で提案されている試験体について単一載荷実験および静 載荷実験を実施した.本論文ではこれらの実験結果に平 成12年度実施した単一載荷実験結果を含めた形で,変位 分布,変位波形,エネルギー吸収量やひび割れ分布性状 に着目し,終局までの耐衝撃性状を比較検討している.

2. 実験概要

2.1 試験体

表-1には試験体の一覧を示している、試験体は PC 鋼材1本当たりの有効緊張力,緊張比,下端筋鋼材の種 類と本数, せん断余裕度をパラメータにとった全6タイ プである.ここで,桁の基本設計条件を述べる. Type 1 は現行設計法の下で製作した純スパン長 6 m で落石衝 撃荷重が 610 kN(落石質量 1,000 kg, 落下高さ 10 m) の落石覆工用 PRC 桁である.本 PRC 桁には,有効緊 張力が 133.3 kN/本の PC 鋼材が 14 本. ひび割れ制御 用下端筋としての異形鉄筋 D16 が4本配置され,静的 曲げ耐力が 1.53 MN, 静的せん断耐力が 1.99 MN とな っている、本研究では、過去の研究と同様に、Type 1 を PC 鋼材の有効緊張力あるいは緊張比. 下端筋鋼材 量や鋼材の材質等の変数に関する基準試験体とした。 従 って、Type 1 の PC 鋼材の緊張比は 1.0 である. また、 各タイプの静的曲げ耐力は、全ての鋼材およびプレスト レス力を考慮して断面分割法により算定しており、静的 せん断耐力はプレストレス力による効果を考慮して示方 書に準拠して評価している.なお,各試験体タイプは過去 の実験研究⁸⁾からの連番としている.

Type 6 はせん断余裕度の影響を検討するための試験 体であり, Type 1 のせん断補強筋量のみを増加させ, せん断余裕度を 1.60 に向上させたものである. その他 の試験体のせん断余裕度は, Type 1 とほぼ同程度の値 としている.

Type 7 は緊張比の影響を検討するための試験体であり,緊張比を 0.5 に低減したものである.

Type 8 はさらに下端筋鋼材を高強度材料とした場合 の影響を検討するための試験体であり,緊張比を 0.5 と し下端筋鋼材を総ネジPC鋼棒に置き換えたものである.

Type 9 は「PC道路防災構造物マニュアル」(北海道 土木技術会コンクリート研究委員会,2001年3月)によ る設計断面であり,緊張比を0.8とし,さらに下端異形 鉄筋を2段配置として鉄筋の依存度を高めたものである.

Type 10 は前述の Type 8 の曲げ耐力およびせん断耐 力を Type 1 と同一としたものであり, 緊張比が 0.5, 下端筋を総ネジ PC 鋼棒としたものである. 表からも明 らかなように, 本タイプの桁高は 65 cm であり, 他の Type 1~9 に対して約 20 % の容積減となっている.

図-1には,実験に使用した試験体の形状寸法および 配筋の詳細を示している.いずれの試験体もプレテンシ ョン方式で製作された単純 T 型断面の PRC 桁である. 試験体は,桁長 700 cm,ウェブ幅 40 cm,上フランジ 幅 120 cm であり,桁高は Type 1, 6, 7, 8, 9 が 90

表-2 実験ケース一覧

試験体名	落下高さ h (m)					
Type 1	12.5	17.5	20.0	22.5		
Type 6	15.0	17.5	—	. –		
Type 7	15.0	17.5	20.0	22.5		
Type 8	20.0	30.0	—	~		
Туре 9	-	_	-	22.5		
Type 10	_		-	22.5		

cm, Type 10 が 65 cm である.使用した PC 鋼材は,全 て SWPR7BN- ϕ 15.2 (公称断面積 138.7 mm²) である. この PC 鋼より線の公称引張荷重,降伏点荷重は,それ ぞれ 261 kN, 222 kN であり,使用状態における許容緊 張力は 155 kN である.また,下端に配筋されている軸 方向異形鉄筋および総ネジPC鋼棒は,それぞれ SD345-D16 (降伏強度 400 MPa) およびゲビンデスターブ ϕ 23 (母材部断面積 415.5 mm²,降伏強度 1,090 MPa) であ り, 圧縮側鉄筋には SD295A - D13 (降伏強度 361 MPa) を使用している.せん断補強筋は全て SD295A - D13 で あるが,せん断余裕度を増加あるいは同程度に確保する ため,各試験体で補強量が異なっている.コンクリート は,設計基準強度が 58.8 MPa,実験時の平均圧縮強度 は 65.6 MPa であった.

2.2 実験方法

(1) 静載荷実験

静載荷実験は、静的最大荷重3 MNの油圧サーボ試験

試験体名	Type 1	Type 6	Type 7	Type 8	Type 9	Type 10
総緊張力 (MN)	1.87	1.87	0.94	0.94	1.50	0.94
初期上縁ひずみ (µ)	24	24	12	11	5	8
初期下縁ひずみ (µ)	-218	-218	-110	-107	-151	-126
ひび割れ発生荷重 (MN)	0.73	0.73	0.44	0.46	0.56	0.27
下端筋鋼材降伏荷重 (MN)	1.07	1.07	0.75	1.43	0.96	0.86
曲げ耐力 (MN)	1.53	1.53	1.53	2.32	1.55	1.53
せん断耐力 (MN)	1.99	2.45	1.99	2.92	2.01	2.00
せん断余裕度	1.30	1.60	1.30	1.26	1.30	1.31

表-3 断面分割法による静載荷時の解析結果一覧

機を用い,幅20.5cm,厚さ15cm,長さ146cmの矩形鋼 材を,スパン中央部の軸直角方向に線載荷となるように 設置して実施している.また,実験は載荷速度0.1mm/s の変位制御で行い,鋼材が破断し急激に除荷状態になっ た時点を終局と見なし終了している.なお,試験体は純 スパン長を6mとし,単純支持状態としている.

計測項目は、ロードセルによる載荷荷重および支点反 力、レーザ変位計による試験体各点の変位、ひずみゲー ジによる鉄筋ひずみである.また、実験終了後にひび割 れ状況も記録している.

(2) 衝撃荷重載荷実験

図-2には衝撃荷重載荷実験の概要図を,表-2には 実験ケース一覧を示している.試験体は,純スパン長を 6 m とし,試験体の跳ね上がりを防止しかつ回転を拘束 しないように,鋼製の治具を用いてピン支持に近い構造 としている.衝撃荷重は質量 3,000 kg,直径 1 m で底 部 17.5 cm が半径 80 cm の球面状である重錘を所定の 高さから自由落下させることにより与えている.また, 桁の載荷点部には局部破壊を防止するために 120 cm ×

表-4 実験結果の比較

試験体名	最大荷重	最大変位	エネルギー吸収量
	$P_{\rm max}({\rm MN})$	$\delta_{\rm max}({\rm cm})$	<i>E</i> (kJ)
Type 1	1.76 (1.00)	12.39 (1.00)	174.6 (1.00)
Type 6	1.87 (1.06)	13.68 (1.10)	234.8(1.34)
Type 7	1.76 (1.00)	19.07 (1.54)	276.5 (1.58)
Type 8	2.57(1.46)	14.79 (1.19)	284.4(1.63)
Type 9	1.83 (1.04)	19.68 (1.59)	323.1 (1.85)
Type 10	1.69 (0.96)	19.33 (1.56)	259.1 (1.48)

(): Type 1 を基準値とした場合の値

120 cm, 厚さ 20 cm の敷砂層を設けている.過去に実施 した繰り返し載荷実験では,初回の落下高さを 1 m と し,その後 2.5 m から 2.5 m 刻みで桁が破壊に至るま で落下高さを増加させている^{8),10)}.単一載荷実験は,繰 り返し載荷実験における終局時落下高さと同一落下高さ を設定する場合と,各試験体の耐衝撃性を直接比較する ことを目的として同一落下高さを設定する場合の,2つ の条件について実施している.終局限界の目安は過去に 実施した実験結果に基づき,残留変位が純スパン長(6 m)の100分の1(6 cm)に達した時点としている.

測定項目は重錘加速度,両支点反力,50 cm 間隔毎の 変位である.なお,各変位はストローク200 mm,応答 周波数 915 Hz の非接触式レーザ変位計を用いて測定し ている.

3. 静載荷実験結果と考察

3.1 静載荷時の耐力およびエネルギー吸収量

表-3には断面分割法を用いて算定したプレストレス 導入後の上下縁ひずみ, 各段階の荷重および曲げ耐力, さらにせん断耐力, せん断余裕度を一覧にして示してい る. なお, 断面分割法は断面方向の分割数を 177 とし, 土木学会コンクリート標準示方書に準拠した各材料の応 カーひずみ関係および終局状態を設定し解析を行ってい る. また, せん断耐力は, 鉄筋コンクリート部材として の寄与分は示方書に基づき, またプレストレス力による

Type 8

静載荷実験終了後のひび割れ状況 図-4

寄与分は文献12)に基づいて評価している.

解析結果から、ひび割れ発生荷重は PC 鋼材の総緊張 力に対応して変化しており、 Type 1, 6 が 0.73 MN, Type 9 が 0.56 MN, Type 7, 8 が約 0.45 MN, Type 10が 0.27 MN となっている.下端筋鋼材の降伏荷重に関 しては、下端筋として高強度材料である総ネジ PC 鋼 棒を用いた Type 8 が 1.43 MN と最も大きく, その他 の試験体の場合には総緊張力の低下とともに低減してい る.曲げ耐力に関しては、Type 8 が 2.32 MN と最も大 きく, その他の 5 試験体は全て 1.53 MN 程度となって いる. せん断耐力に関しては、せん断余裕度がほぼ 1.3 あるいは 1.6 となるように設計しているため、Type 8 が 2.92 MN、Type 6 が 2.45 MN であり、その他の 4 試験体は全て 2.0 MN 程度となっている.

図-3には静載荷実験により得られた各試験体の荷重 ー載荷点変位曲線を、表-4には図-3より求められた 最大荷重,最大変位,エネルギー吸収量を一覧にして示 している.欄には絶対値と共に、比較を容易にするため に Type 1 の値に対する無次元量を括弧内に示している. 以下、Type1の値を基準にして考察する.

最大荷重に関して比較すると、緊張比を 0.5、下端異 形鉄筋を総ネジ PC 鋼棒に置き換えた Type 8 の場合に は、最大荷重が46% 増加しており、下端筋鋼材を高強 度材料とすることによる効果が現れている.他の4試 験体に関しては多少ばらつきはあるものの Type 1 とほ ぼ同程度の値を示している.

最大変位量に関しては、いずれの試験体も Type 1 に 比較して大きく示されている. しかしながら Type 1 に 比べてせん断余裕度を向上させた Type 6 の場合には, 10%程度で他の試験体に比較して最も小さい.下端筋

として総ネジ PC 鋼棒を用いている Type8の場合には、 耐力が増加しているため 19 % 程度の増加に留まってい る.曲げ耐力およびせん断耐力を Type 1 と同一とし緊 張比を 0.5 とした Type7, 緊張比を 0.8 とし下端異形鉄 筋を 2 段配置としている Type 9, 緊張比を 0.5 とし下 端筋鋼材を総ネジ PC 鋼棒とした Type 10 ではいずれ も最大変位が 50 % 以上増加している. これより, 静荷 重載荷時の最大変位量を向上させ撓化性に富んだ構造と するためには、曲げ耐力が同程度でせん断余裕度が 1.3 以上の条件下において、PC 鋼材の緊張比を 0.5 程度と することが最も効果的であることがわかる.

エネルギー吸収量に関しても、最大変位と同様にいず れの試験体もType1の場合よりも増加している. Type 6 では最大荷重、最大変位ともに 10 % 程度増加している ことにより、エネルギー吸収量は34%の増加となって いる. Type 8 に関しては、最大変位の増加量は小さい ものの最大荷重が大きく増加していることより、エネル ギー吸収量は 63 % の増加となっている. Type 7, 9. 10 に関しては最大変位が大きく増加していることより, それぞれ 58 %、85 %、48 % の増加となっている。

以上より,曲げ耐力およびせん断余裕度を現行設計と 同程度とし PC 鋼材の緊張率を低減することによって、 エネルギー吸収量を大きく改善可能であること、また下 端筋鋼材を異形鉄筋から高強度総ネジ PC 鋼棒とする ことにより、最大荷重やエネルギー吸収量を大幅に改善 できること,等が明らかとなった.

3.2 静載荷時のひび割れ状況

図-4には静載荷実験終了後のひび割れ状況を示して いる.いずれの試験体も下縁には曲げひび割れが多数発

図-5 重錘衝撃力,支点反力,載荷点変位の時系列応答波形図(Type 1, 6, 7, 8)

生し,また載荷点近傍のコンクリートが圧壊により剝離 するとともに,最終的には鋼材の破断によって終局に至 っている.以下,試験体下縁のひび割れ分散性状につい て考察する.

せん断余裕度の異なる Type 1 と Type 6 を比較する と, せん断余裕度を向上させた Type 6 では, Type 1 の 両支点側に見られたせん断ひび割れが抑制されてせん断 余裕度の向上による効果が現れているが, 損傷が載荷点 近傍部に集中し, 桁が角折れの傾向を示している.

次に Type 1 と Type 7, 8, 9, 10 のひび割れ分散性 を比較すると, 緊張比を0.5に低減した Type 7 の場合 には、Type 1 に比較してひび割れの分散幅が広く示さ れており、プレストレス量の低減によってひび割れが分 散することがわかる.一方,緊張比を 0.8,下端異形鉄 筋を 2 段配筋した Type 9 の場合は Type 7 よりもひび 割れ分散の程度が向上している.これは下端鉄筋が2段 配筋されていることによる効果であると推察される.ま た、 高強度総ネジ PC 鋼棒を下端筋として用いている Type 8, Type 10 の場合は、スパン全体に渡ってひび割 れが分散しており、 異形鉄筋を配筋しているいずれの Type よりもひび割れ分散性に優れていることがわかる. また、Type 8 は全試験体中最もせん断余裕度が小さい にもかかわらず, 顕著なせん断ひび割れの進展も示され ていない. これは、用いている総ネジ PC 鋼棒の断面 積(G23)が異形鉄筋(D16)より2倍以上大きいこと により軸剛性が改善されていることや、破断強度が異形 鉄筋の3倍以上であることによるものと推察される.下 端筋鋼材量が同程度である異形鉄筋を2段配筋している Type 9 と総ネジ PC 鋼棒を配筋している Type 8 ある いは Type 10 を比較すると、明らかに、総ネジ PC 鋼 棒を配筋している Type 8, 10 の場合が、ひび割れ分散 性に優れており、Type 10 のように総ネジ PC 鋼棒を用 いることによってひび割れ分散性の向上とともに断面の 大幅な小型化が可能になるものと判断される.

4. 単一衝撃荷重載荷実験結果と考察

4.1 応答波形

図-5には Type 1, 6, 7 および Type 8の落下高さ h= 17.5 m および 30 m における重錘衝撃力, 合支点反 力(両支点反力を足し合わせた値,以後単に支点反力), 載荷点変位の時系列応答波形を示している. なお, 重錘 衝撃力波形は重錘に設置した加速度計より得られた加速 度波形に重錘質量を乗じて求めたものであり, 支点反力 波形は両支点反力波形の時間軸を一致させて単純に加え 合わせたものである.

重錘衝撃力波形は,いずれの試験体も継続時間が 10 ms 程度の振幅の大きい独立した 2 つの正弦半波と 2 波 目の直後に発生している振幅の小さい波形から構成され ている.これらの波形は後述の載荷点変位波形の波形性 状からも明らかなように,試験体の応答と重錘の相互作 用によって発生するものと推察される.つまり,3 つの 波形は,まず重錘が敷砂に衝突した際に振幅の最も大き い 1 波目の衝撃力が発生し,この衝撃力の作用によっ て桁が断面方向に応答して変形を始めるために一旦除荷 状態となり,その後未だ落下中である重錘と桁が再度衝

図-6 重錘衝撃力,支点反力,載荷点変位の時系列応答波形図(Type 1, 7, 9, 10)

突して 2 波目あるいは 3 波目の衝撃力波形が形成され るものと推察される. 2 波目以降の振幅の大きさは桁と 重錘の再衝突がどの時点で起きているかによって変化し、 最大変位発生後に再衝突する場合には重錘を桁が突き上 げる状態となり振幅の大きい第 2 波が発生するものと考 えられる. これらは、載荷点変位波形の 1 波目の波形 形状からも明らかである. 落下高さが h=17.5 m と同 一である Type 1, 6, 7 ではほぼ同様な波形分布を示し ているが、Type 8 では h=30 m と大きいため 1 波目 の振幅が他の 3 試験体よりも大きい.

支点反力波形は,いずれの試験体においても重錘の衝 突時点より若干遅れて励起している.これは載荷点から の波動伝播差によるものと考えられる.また,支点反力 波形は重錘衝撃力波形の正弦半波に高周波成分が合成さ れたような分布性状を示しており,その継続時間は3波 を含めた重錘衝撃力波形の継続時間とほぼ対応している.

載荷点変位波形は,支点反力波形と同様にいずれの試 験体も重錘衝突から若干遅れて励起している.荷重除荷 後の変位波形は,緩やかな減衰自由振動状の波形を示し ている.最大変位発生時間と最大支点反力発生時間を比 較すると,前者が後者より遅れて発生している.この現 象は両者がほぼ同一時点に発生している過去の曲げ破壊 型を示す小型矩形断面⁶⁾や小型T型断面⁷⁾桁に関する実 験結果と異なっている.この違いは,本試験体が実規模 で曲げ剛性が大きいことより,変位が励起していない衝 撃初期に周期が短く振幅の大きい重錘衝撃力,支点反力 が励起することや,その後に桁が低次振動状態に移行す ることによるものと推察される. 図-6には Type 1, 7, 9, 10 の落下高さ h = 22.5 m における重錘衝撃力,支点反力,載荷点変位の時系列応 答波形を示している、Type 7, 9, 10 の各応答波形は 3 者ほぼ同様な分布性状を示しているものの, Type 1 に ついては重錘衝撃力および支点反力波形の 2 波目以降の 形状が他の 3 試験体の場合と大きく異なっている. これ は,載荷点変位波形からも明らかなように,Type 1 試 験体はこの時点でせん断破壊により大きな残留変位を生 じ,終局に至っているのに対して,他の Type は未だ十 分な残存耐力を有し減衰自由振動状態を示していること によるものと推察される.

4.2 支点反力-載荷点変位関係

衝撃荷重載荷時の各ケースの荷重一変位履歴特性およ び吸収エネルギー特性を検討するため、支点反力と載荷 点変位に関する履歴曲線を求めた.本来、入力エネルギ ーを議論する場合には、重錘より得られる衝撃力波形を 用いなければならないものと考えられる.しかしながら、 1)重錘衝撃力波形は変位が発生していない状態で最大値 を示すことより,静載荷時と同様の評価ができないこと、 2)図-5,6に示されるように、重錘衝撃力波形は支点 反力や載荷点変位波形と照らして、その形状、周期等が 大きく異なっていること、3)支点反力波形と載荷点変位 波形の主波動が類似していることより、支点反力波形を 用いることによって、衝突体形状の差異等を含んだより 一般化した形で荷重一変位履歴特性、エネルギー収支や 衝撃耐力に関する議論が可能になるものと判断されるこ とより、本研究では荷重一変位履歴曲線評価のための入

力荷重として支点反力を用いることとした.

図-7には、Type 1, 6, 7 および Type 8 に関する 落下高さ h=17.5 m および 30 m における支点反力一載 荷点変位履歴曲線を示している. いずれの試験体もピー クの鋭い三角形状の履歴曲線を示していることがわかる. このような分布性状は、せん断破壊型 RC 梁の場合¹³⁾ と同様であることより、せん断破壊型の傾向を示してい るものと判断される. 落下高さが h=17.5 m の Type 1, 6, 7 ではほぼ同様の履歴曲線を示しており、耐衝撃性 能に大きな違いは見られない. Type 8 における履歴曲 線分布は他 Type とほぼ同様であるが、h=30 m と入 力エネルギーが大きいため、支点反力および載荷点変位 の最大値が大きく示されている.

図-8には、Type 1、7、9、10の落下高さが h= 22.5 m における履歴曲線を示している、Type 1 は底辺の広い三角形状の分布を示し変位もほとんど復元していないことより、せん断破壊を生じ終局に至っていることを確認できる、Type 7、9、10 は緊張比や下端筋鋼材の種類、本数が異なるため履歴曲線の分布形状が各試験体で若干異なっている。Type 10 の履歴曲線は三角形状の分布性状を示しているものの、除荷後減衰自由振動状態を示していることより、未だ終局限界に至っていないことがわかる.

表-5 実験結果の最大変位,残留変位および エネルギー吸収量一覧

試験体	落下高さ	最大変位	残留変位	エネルギー吸収量
	<u>h (m)</u>	δ_{\max} (cm)	δ_r (cm)	E_{s} (kJ)
Type 1		9.6	3.6	105.0
Type 6	17.5	9.2	3.4	115.6
Type 7		10.3	4.6	117.7
Type 1		24.2	21.5	303.2
Type 7	225	13.7	6.3	311.0
Type 9	22.0	13.4	6.5	256.7
Type 10		16.6	6.8	325.2
Type 8	30.0	13.3	5.8	215.4

4.3 最大変位, 残留変位およびエネルギー吸収量

表-5には単一載荷実験における最大変位,残留変位 およびエネルギー吸収量を示している.ここで,エネル ギー吸収量は図-7および図-8における履歴曲線の正 載荷状態(第1象限)におけるループで囲まれた部分の 面積を用いて評価している.

落下高さがh = 17.5 m における Type 1, 6, 7 を比 較すると、最大変位、残留変位ともにせん断余裕度の大 きい Type 6 が最も小さく、緊張比が 0.5 の Type 7 が 最も大きく示されているが、エネルギー吸収量はいずれ

図一10 取入変位のよび状菌変位と沿下間での限

も 110 kJ 前後の値を示している. また, いずれも本実 験で設定した終局限界の目安である残留変位 (6 cm) に 達していない. これより, *h*=17.5mの段階では, Type 1, 6, 7の耐衝撃性能は同程度であるものと判断される.

Type 8 の場合には落下高さh = 30 m において残留変 位が 5.8 cm を示しているものの,吸収エネルギーが h = 22.5 m における他Typeの場合より小さく,未だ終 局限界に達していないものと推察される.

h = 22.5 m における Type 1, 7, 9, 10を比較すると, 基準試験体である Type 1 はせん断破壊により残留変位 が 20 cm 以上を示したのに対して,他の 3 試験体はい ずれも残留変位が終局限界の目安を多少超えた程度で, 未だ減衰自由振動状態を呈していることより,前述のよ うに未だ終局限界には達していないものと判断される. Type 1 を除いた 3 試験体について比較すると,下端筋鋼 材として総ネジ PC 鋼棒を用い桁高を 65 cm と他のタ イプに比較して 25 cm 低減し,かつ曲げ耐力,せん断 耐力を Type 1 と同程度に設定した Type 10 の場合は, 最大変位,残留変位,とも 3 者間で最も大きいものの 減衰自由振動状態を示していることより,未だ終局限界 に達していないものと推察され、最も効率的な断面であ るものと判断される.また、Type7とType9を比較 すると、最大変位はType9がType7よりも小さいも のの、残留変位はType7が小さく、また後述するひび 割れ損傷の程度からもType7が耐衝撃性に優れている ものと考えられる.

以上の結果から、従来までの基準に基づいて設計され た PRC 桁に対して、せん断余裕度を同程度とする条件 下で PC 鋼材の緊張比を 0.5 程度に低減し下端筋を高強 度材料である総ネジ PC 鋼棒にすること(Type 10) に より、桁高が同じ場合にはより大きな落石に対応可能で あること、また同程度の落石荷重に対しては桁高を大幅 に縮小できるためコスト縮減が可能であることが明らか となった.また、現行設計桁に対して、緊張比を 0.8 に 低減し下端異形鉄筋を 2 段配置とする場合や、緊張比 を 0.5 に低減することによって、靭性能を向上でき、よ り大きな落石に対処可能となることが明らかとなった.

4.4 重錘衝撃力および支点反力

図-9には実験結果の最大重錘衝撃力および最大支点

反力と落下高さの関係を示している.図中,曲げ耐力が 他の試験体より大きい Type 8 についてのみ凡例記号を 黒印として区別している.

(a)図より、各試験体の最大重錘衝撃力は、落下高さ の増加とともにほぼ線形に増加する傾向を示している. 落下高さh=22.5 m における 4 試験体の重錘衝撃力を 比較すると、Type 10 が他の試験体よりも多少小さめの 値を示している.これは、Type 10 の桁高が他の試験体 に比較して小さく、また下端筋に配置した総ネジ PC 鋼 棒の効果によりひび割れの分散性に優れていることから、 衝撃力が効率的に緩和されたためと推察される.

(b)図より、最大支点反力に関しては、Type 1 は落下 高さ h = 17.5 m 以降で落下高さの増加とともに支点反 力が直線的に減少し h = 22.5 m で終局に至っている. これは、ひび割れ発生による変形量の増加とともにエネ ルギー吸収量も増加し、支点部に衝撃力が十分伝達され なくなるためと考えられる. 緊張比を 0.5 とした Type 7 は、h = 20 m 以降支点反力が減少しているが、h =22.5 m の支点反力値が Type 1 0h = 17.5 m における それとほぼ同程度であることから、未だ終局限界に達し ていないことがわかる. 緊張比が 0.5 で下端筋鋼材を総 ネジ PC 鋼棒とした Type 8 は、支点反力が他の試験体 に比較して大きく、また h = 20 m と 30 m における値 がほぼ同程度であることや後述のひび割れ性状からも未 だ十分健全であることが推察される.

4.5 最大変位および残留変位

図-10には、実験により得られた最大変位および残 留変位と落下高さの関係を示している. (a)図より、最 大変位の増加割合は、終局に至った場合を除きいずれの 試験体の場合も落下高さに対応してほぼ線形に分布して いる. Type 1 の場合には、落下高さh=20 m までほぼ 直線的に増加しているが、h=22.5 m において終局に至 っているため、最大変位も急激に増加している. h=22.5mにおける他の3試験体について比較すると、Type 7 および Type 9 がほぼ同程度の最大変位であるのに対 して、Type 10 が 20 % 程度大きくなっている. これは 試験体の変形性能の違いによるものと考えられる.

(b)図より,残留変位と落下高さとの関係は,最大変 位の場合とほぼ同様な分布を示している. Type 1 の場 合には,落下高さh=20 m までほぼ直線的に増加して いるが,h=22.5 m において上縁から下縁方向に斜めに 貫通するひび割れが開口して終局に至ったため(後述の 図-11参照)非常に大きな残留変位が発生している. h=22.5 m における他の 3 試験体に関してはほぼ同程 度の残留変位を示しており,終局限界の目安である 6 cm を超えてはいるものの,図-6あるいは8に示され ているように直流成分を含んだ減衰自由振動を呈してお り,未だ終局限界に達していないものと推察される.

4.6 ひび割れ状況

図-11には、単一載荷実験終了後の各桁のひび割れ 状況を示している.いずれの試験体も載荷点に向かう斜 めひび割れが発生しており、せん断破壊型の傾向を示し ていることが確認できる.以下に、ひび割れ分布性状に 関するせん断余裕度の影響(a図), 緊張比の影響(b 図), ひび割れ制御用に配筋されている下端筋鋼材の 種類の影響(c図)について考察を行うこととする.

(a)図には、緊張比が 1.0 で曲げ耐力が等しく、せん 断余裕度がそれぞれ 1.3、1.6 である Type 1 と Type 6 に 関する落下高さ h = 17.5 m におけるひび割れ分布を示 している. 図より、Type 6 は静載荷時(図-4)には せん断耐力向上効果によってひび割れが載荷点部に集中 していたのに対して、衝撃荷重載荷時には Type 1 と同 程度の曲げせん断破壊型的な傾向を示していることがわ かる. これより、せん断余裕度は、1.3~1.6 の範囲内で、 衝撃荷重載荷時のひび割れ分布性状に与える影響が小さ いものと判断される.

(b)図には、緊張比のみが異なる Type 1 と Type 7 に 関する各落下高さ毎のひび割れ分布を示している.なお. 緊張比は Type 1, Type 7 でそれぞれ 1.0, 0.5 である. 図より, Type 1 の場合には落下高さh= 17.5 m 時から 明瞭なせん断破壊型のひび割れ性状を示し、 h = 20 m 落下時にはひび割れの分布幅が広がるもののその特性は h = 17.5 m時と類似していることがわかる. h = 22.5 m時には、上縁から下縁方向に貫通するひび割れが大きく 開口し終局に至っている. 一方, 緊張比が 0.5 である Type 7 の場合には,落下高さh = 17.5 m 時にはひび割 れ間隔が Type 1 に比較して若干大きいものの,曲げひ び割れから曲げせん断的なひび割れ性状を示している. h = 20 m の場合には、スパン中央部は Type 1 と同様に せん断ひび割れの傾向を示している.しかしながら、ひ び割れは支点部に渡る桁全体に分散しており、静載荷時 と同様に緊張比を 0.5 に低減したことによる効果が示さ れている. h = 22.5 m の場合においても中央部にひび 割れが集中するものの緊張比を低減したことによって桁 全体で衝撃荷重に抵抗するため、桁全体にひび割れが分 散しており,未だ終局限界に達していないことがわかる. これより,曲げ耐力やせん断余裕度が同程度の場合には, 緊張比を 0.5 程度に低減することによって、耐衝撃性を 向上させることが可能であることが明らかになった.

(c)図には、曲げ耐力とせん断余裕度が同程度で下端筋 鋼材の種類や配筋数の異なる場合(Type 7, 9, 10)と 曲げ耐力がこれらの Type よりも約 50 % ほど大きい Type 8 のひび割れ分布を比較して示している. なお、 Type 8 の落下高さは h=30 m で、他の Type よりも 7.5 m 高い場合の結果である. まず、緊張比が 0.5 であ る Type 7 と緊張比が 0.8 で下端筋鋼材本数が Type 7 の 2 倍配筋されている Type 9 を比較する. 図より、

Type 9 の場合には桁中央部にひび割れが集中する傾向 を示しているのに対して、Type 7 の場合には上述のよ うにひび割れ間隔が大きいもののひび割れが桁全体に分 散分布しており、桁全体で衝撃荷重に抵抗していること がわかる.また、損傷の程度も Type 7 が軽微であるこ とがわかる. Type 10 の場合は、下端筋鋼材として総 ネジ PC 鋼棒を用いて、曲げ耐力を Type 7 と同程度に するために桁高を 65 cm に低減した場合であるが、そ のひび割れ分布性状は Type 7 に比較してひび割れ間隔 も小さく、かつ分散性も向上している.また、載荷点近 傍部でコンクリートの剝落している部分も見られるが、 角折れも生じず、未だ終局限界に達していないことがわ かる.これより、総ネジ PC 鋼棒を用いることにより 断面の小型化が可能となる Type 10 は、Type 7 に比較 してもより効率的な断面であるものと判断される、桁高 が Type 7 と同様で下端筋として Type 10 と同一の総ネ ジ PC 鋼棒を用いる Type 8 の場合には、落下高さが h= 30 m の場合でも、Type 10 と同様に桁全体にひび割 れが分散し桁全体で衝撃荷重に抵抗していることがわかる. 勿論,ひび割れ分布から未だ十分健全であることが 確認できる.

5. まとめ

本研究は, PC 落石覆工への PRC 部材の適用を考慮 し,終局時の残存耐力やエネルギー吸収量の大きい耐衝 撃性および靭性能に優れた PRC 部材を開発することを 目的として, PC 鋼材の導入緊張力や緊張比, せん断余 裕度さらには下端筋鋼材の種類や本数を変化させた実規 模大型 PRC 桁を製作して静載荷実験および衝撃荷重載 荷実験を行い,終局近傍までの耐荷性状について検討を 行った.本研究より得られた結果を要約すると,以下の とおりとなる.

静載荷実験結果:

- せん断余裕度を現行設計と同程度とし、PC 鋼材の 緊張比を 0.5、下端筋鋼材を高強度総ネジ PC 鋼棒 とする場合には、最大荷重を 50 % 程度増加すると ともに、エネルギー吸収量も 60 % 程度向上する。
- 2) 曲げ耐力,せん断耐力を現行設計と同程度とし、PC 鋼材の緊張比を 0.5 とする場合,緊張比を 0.8 とし 下端異形鉄筋を 2 段配筋とする場合,さらには緊張 比を 0.5 とし下端筋鋼材を高強度総ネジ PC 鋼棒と する場合には、エネルギー吸収量が 50 % 以上向上 する.
- 3) PC 鋼材の緊張比を 0.5 とし下端筋鋼材を高強度総 ネジ PC 鋼棒とすることによって、ひび割れの分散 性を格段に向上させることができる。

衝撃荷重載荷実験結果:

- 静的なせん断余裕度を現行設計と同様に 1.3 とした 場合においても、落下高さの大きい場合には支点反 カー載荷点変位履歴曲線が鋭角な二等辺三角形状分 布となり、せん断破壊型の傾向を示す.その性状は ひび割れ図からも確認できる.
- 2) 緊張比を 0.8 とし、下端異形鉄筋を 2 段配置とする 場合にはひび割れが桁中央部に集中するが、緊張比 を 0.5 とし下端筋鋼材を高強度総ネジ PC 鋼棒とす ることにより、ひび割れが桁全体に分散して耐衝撃 性が向上する、
- 3) 現行設計による PRC 桁に対して、せん断余裕度を 同程度とする条件下で、PC鋼材の緊張比を0.5程度 に低減し下端筋鋼材を高強度総ネジ PC 鋼棒とする ことにより、桁高が同じ場合にはより大きな落石に 対応可能である.また、同じ落石荷重に対しては桁 高を縮小できるためコスト縮減が可能である.

謝辞:本論文の作成に当たり,室蘭工業大学建設システ

ム工学科松岡健一教授には、その都度適切なご指導を戴 きました.また、同大学院構造力学研究室の武井信雄君、 小坂剛君,他の学生諸君には多大なご協力を戴きました. ここに記して謝意を表します.

参考文献

- 1) 佐藤昌志,岸 徳光,松岡健一:三層緩衝構造の伝 達衝撃力算定式の定式化,構造工学論文集,Vol.42A, pp.1337~1346,1996.3
- 2) 土木学会:ロックシェッドの耐衝撃設計,構造工学 シリーズ8,1998.9
- 3) 菅田紀之, 中野 修, 岸 徳光, 三上 浩: PC 多 主桁上に設置した新素材を用いた RC 版を有する緩 衝構造の緩衝特性, コンクリート工学年次論文報告 集, Vol.15, No.2, pp.941~946, 1993
- 4) 西 弘明,佐藤昌志,岸 徳光,松岡健一:敷砂緩 衝材を用いた実規模 PC 落石覆工の衝撃挙動,コン クリート工学年次論文報告集,Vol.17,No.2, pp.691 ~696,1995
- 5) 佐藤昌志,西 弘明,岸 徳光,松岡健一:実規模 PC 覆工模型の耐衝撃性に関する実験的研究,構 造工学論文集,Vol.44A, pp.1851~1860,1998.3
- 竹本伸一,岸 徳光,佐藤昌志,三上 浩:各種 PRC梁の静的及び衝撃耐荷性状, コンクリート工 学年次論文報告集, Vol.19, No.2, pp.1155~1160, 1997
- 7)岸 徳光,竹本伸一,三上浩,今野久志:T型
 PRC梁の静的・衝撃耐荷性状に関する実験的研究, 構造工学論文集,Vol.44A, pp.1827~1838, 1998.3
- (4) 今野久志,岸 徳光,池田憲二,竹本伸一:各種大型 PRC 桁の耐衝撃挙動に関する実験的研究,構造工学論文集,Vol.46A, pp.1819~1830, 2000.3
- 9) 今野久志,池田憲二,岸 徳光,竹本伸一:せん断 余裕度を変化させた大型 PRC 桁の静載荷実験、コ ンクリート工学年次論文報告集, Vol.23, No.3, pp.631~636,2001
- 10)岸 徳光、今野久志,竹本伸一,武井信雄:各種大型 PRC 桁の重錘落下衝撃実験,土木学会北海道支部講演概要集,2001
- 11)北海道土木技術会 コンクリート研究委員会:PC 道 路防災構造物マニュアル, 2001.3
- 12)佐藤 勉,山住克己,渡邊忠明:プレストレストコ ンクリートはりのせん断強度,鉄道総研報告,Vol.2, No.8, 1988.8
- 13)安藤智啓,岸 徳光,三上 浩,松岡健一,蟹江俊
 仁:スターラップを有しないせん断破壊型 RC 梁の
 単一載荷実験,構造工学論文集,Vol.46A, pp.1809
 ~1818, 2000.3

(2001年9月14日受付)