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Stable Time-Domain Boundary Integral
Equation Method for Axisymmetric Coupled

Charge-Electromagnetic Field Problems
H. Kawaguchi

Abstract—In this paper, a stable time-domain boundary integral
equation method for transient electromagnetic wave is presented.
Careful numerical treatments of the integral equation for stable
solution are especially stated. The formulation is given for axisym-
metric electromagnetic field problems. A numerical simulation of
particle accelerator wake field is also given as an example.

Index Terms—Boundary-element methods, electromagnetic
propagation, integral equations, numerical analysis.

I. INTRODUCTION

T IME-DOMAIN numerical simulations of electromagnetic
wave phenomena are popularly performed by using the fi-

nite-difference time-domain (FDTD) method today. The FDTD
method is very powerful simulation scheme, and the required
memory size in FDTD is very small. On the other hand, there
exist some phenomena which cannot be simulated by FDTD.
The coupled problem of electromagnetic wave and charged par-
ticles motion is one of such example. In calculating charge cur-
rent and density from the particle position and velocity, the
particle-in-cell (PIC) method often produces numerical noise
which causes nonphysical simulation results. For this, the PIC
method is not necessary in a boundary integral equation method
such as boundary-element method (BEM). To treat these kinds
of problems, the author has been working on a time-domain
boundary integral equation (TDBIE) method, and presented a
formulation of TDBIE and numerical simulation examples as
well [1], [2]. However, the method still has a problem of nu-
merical instabilities in the long time range. Indeed, there exist
no stable scheme of time-domain BEM except for special cases
(e.g., electromagnetic wave scattering problem from thin wires
[3]). In this paper, a stable TDBIE for long-time range is pre-
sented. Owing to implicit property of the stable scheme, its re-
quired memory size becomes quite larger and three-dimensional
(3-D) simulation is impossible even in a supercomputer. A for-
mulation of axisymmetric systems is presented here.
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Fig. 1. Local coordinate on boundary surface.

II. BOUNDARY INTEGRAL EQUATIONS

There are three unknowns on the (perfect conductor)
boundary surface, i.e., surface charge densityand two com-
ponents of surface current density. Two of these values are
independent because of the continuity equation

(1)

Then the electromagnetic field is described by the following
time-domain boundary integral equation (which is a kind of
Kirchhoff’s equation) [1], [2]:

(2)

where is external magnetic field which is produced by
electric current or incoming wave. The value is the tangen-
tial components of the magnetic field on the boundary surface,
which are directly related to the surface currentby

(3)

(where is unit normal vector on the boundary). Here, we shall
assume that the numerical model has axisymmetric structure. To
explicitly express (2) by using independent components of,
we shall introduce a local coordinate shown in Fig. 1. The unit
vector is oriented to the -direction and lies on the boundary
surface. The vectoralso lies on the boundary and is perpendic-
ular to both and . Then, and are expressed by using
two components as follows:

(4)

(5)
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Fig. 2. System matrix configuration.

The integral equation (2) is then explicitly expressed by two
tangential components of magnetic field as follows:

(6)

where

(7)

For axisymmetric systems, (6) is simplified as follows [4]:

(8)

Owing to the retarded property of (6) and (8), the boundary
values at different time are independent of each other. There-
fore, discretization of (6) or (8) for both of time and spatial
axes yields the matrix equation as in Fig. 2. The valueat
time is then calculated by using the previous values at time

.

III. FORMULATION OF NUMERICAL SIMULATION

In real numerical simulation, the observation pointin (6) or
(8) is moved to each boundary elementand the matrix equa-
tion is constructed according to standard BEM scheme. How-
ever, some practical considerations are required to obtain stable
solutions for long-time range. In FDTD, a simulation is per-
formed on a grid structure. Then Maxwell’s equation are well
expressed in the discretized grid space [5]. On the other hand,
strict expression of Maxwell’s equation is impossible on general
unstructural meshes as in BEM or FEM. This difficulty appears
as a numerical instability for long-time range in the time-do-
main BEM or FEM. Especially strict numerical evaluations of
the conservation law (continuity equation) and causality relation
are needed for stable solution in time-domain BEM.

A. Allocation of Unknown Variables

An allocation of the surface charge and current components
is shown in Fig. 3(a). The values of current components are
assumed to be constant on the edge and the charge density is
also constant on the mesh. This allocation will lead us to natural
evaluation of the continuity equation. This is the same idea as
the finite-volume approximation in the Computational Fluid
Dynamics (CFD). The allocation of the associated magnetic
field components on the boundary surface is shown in Fig. 3(b).
According to this allocation of the magnetic field components,

(a)

(b)

Fig. 3. (a) Allocation of surface charge and current density. (b) Allocation of
associated magnetic field components.

Fig. 4. Boundary element and causality lines.

the calculation of value of should be properly evaluated
in (6) or (8).

B. Causality Relation

The following condition should be satisfied for short-time
range stability [1]

(9)

where is the unit time step and is the maximum mesh
size (the inequality is opposite direction to that of the standard
FDTD stable condition). In addition to the condition (9),
should be almost the same size as. Therefore, there exists a
time difference in the value of between one corner and
another corner of a mesh (see Fig. 4). In that case, the Gauss–Le-
gendre-type numerical integral cannot be applied for (6) or (8).
Then subdiscretization of the mesh should be done along to the
causality lines in the numerical integration (see Fig. 4).

C. Implicit Scheme

In addition to careful evaluation of the conservation law and
causality relation, an implicit scheme in time evolution calcula-
tion is necessary for stable simulation. This implicit scheme is
expressed in the form of a big matrix equation of Fig. 5. Each
line of the matrix is just corresponding to the matrix equation
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Fig. 5. Matrix expression of implicit scheme.

of Fig. 2. Then many iteration calculations should be performed
until converged solutions are obtained. Accordingly, the calcu-
lation is of a very large size, and CPU time is very big even in
axisymmetric simulations.

IV. REDUCTION OF THE3-D PROBLEM TO A 2.5-D PROBLEM

A full 3-D simulation of (6) is almost impossible even in any
present-day supercomputers from the viewpoint of CPU time
and memory capacity. If the number of nodes for one dimen-
sion size of an object is , the number of boundary elements
of the numerical model is of the order . Then, the required
memory is , when the number of matrices in Fig. 2 is

. For example, the required memory is 40 GB for
and . This amount is much bigger than memory ca-
pacity of any present-day supercomputers. On the other hand,
the number of nodes is of order , when the system is
axisymmetric (2-D). In this case, the memory requirement is
4 MB, which is small enogh even for PCs. Furthermore, a big
memory reduction can be done even in 3-D field calculation if
the object has an axisymmetric structure. When the numerical
model is axisymmetric, the relation betweenand or in
Fig. 6(a) is the same as that ofand or . Then the matrix
is partially symmetric. Line 2 in the matrix of Fig. 6(b) is just
a rotational right shift of line 1 by one element, and we do not
need to store line 2 in the memory. This is so-called 2.5-dimen-
sional (2.5-D) simulation. In this case, the required memory is

, and it becomes 500 MB for and .
This is small enough for the memory capacity of easily avail-
able high-performance computers.

V. NUMERICAL EXAMPLES

In this section, a numerical example based on the formu-
lation in the previous section is shown. A typical example of
coupled problems of a charged particle and an electromagnetic
wave is the wake field in particle accelerators. Fig. 7(a) shows
the cross section of a particle accelerator disk load structure. It
is assumed that the charged particle has Gaussian bunch shape
of 3-mm size, and is running with 99.994% of light velocity.
Then, the electromagnetic fields produced by charged particles
are trapped by the cavity structure after the particle has passed
though the cavity. When the charged particle motion lies on the
center axis, the electromagnetic field is axisymmetric and (8)
can be used for simulation. Fig. 7(b) shows a 3-D numerical
model of the dotted line part in Fig. 7(a). In this case, one di-
mension size is about 200 and the required memory size is

(a)

(b)

Fig. 6. (a) Rotational symmetry in an axisymmetric structure. (b) Symmetry
in matrix of an axisymmetric object.

(a)

(b)

Fig. 7. (a) Cross section of an axisymmetric accelerator cavity. (b) 3-D
numerical model of an accelerator cavity.

about 2 GB. The most important value in this simulation is the
time evolution of surface current and density. Fig. 8 shows the
time evolution of current density distribution on the cross sec-
tion boundary [A-B-C-D-E-F-G-H-A in Fig. 7(b)]. The nota-
tions A to H on the axis in Fig. 8 are corresponding to specified
positions on the cross section in Fig. 7(b). A-H-G-F is then a
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Fig. 8. Time evolution of surface current density.

cavity part. It is well simulated that the electromagnetic field is
trapped by the cavity for a long time in Fig. 8.

VI. SUMMARY

This paper has presented a stable TDBIE for 2- and 2.5-D
electromagnetic fields. Numerical example of 2-D simulation
has been also presented for a particle accelerator wake field. The
numerical simulation for 2.5 dimensions is possible from the
viewpoint of memory capacity, but it takes a very long compu-
tation time (about several days by a supercomputer). The 2.5-D
simulation by a parallel computing machine is now under con-
sideration, and will be presented in the near future.
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