静的及び繰返し荷重を受ける構造物・地盤系の 変形挙動と推定法

横浜勝司1・三浦清一2・川村志麻3

¹正会員 工修 北海道大学大学院助手 工学研究科 (〒060-8628 札幌市北区北13条西8丁目) ²フェロー会員 工博 北海道大学大学院教授 工学研究科 (〒060-8628 札幌市北区北13条西8丁目) ³正会員 工博 室蘭工業大学助手 工学部建設システム工学科 (〒050-8585 室蘭市水元町27番1号)

波浪のような繰返し荷重を受ける構造物・地盤系の安定性評価法確立のために必要な、地盤の流動変形を 考慮した構造物の変位量の推定法を明らかにすることを目的に、二次元平面ひずみ模型土槽装置を用いた一 連の実験と解析を行った.本研究では、特に構造物の沈下挙動と地盤の側方流動変形挙動を詳細に調べてい る.具体的には、静的及び繰返し荷重場にある地盤の側方流動挙動をFEM解析によって検討し、任意荷重場の 地盤・構造物系の変形挙動を再現できるような解析法を検討している.また、解析から得た側方流動変形挙 動を考慮した構造物変位量の推定式を提案した.推定式は、構造物天端2地点で計測された鉛直変位量から繰 返し荷重場にある構造物の変位量を精度良く推定することが示されている.

Key Words : deformation, settlement, cyclic load, FEM analysis, model test

1. まえがき

波浪などの繰返し荷重を受ける構造物・地盤系で は、両者の相互作用が複雑なためにその安定性を適 切に評価することは極めて難しいと言われている. 筆者らは、波浪のような繰返し荷重及び種々の静的 荷重条件下にある構造物・地盤系の支持力-変形挙動 を一連の模型実験によって詳細に調べてきた^{1),2),3)}. その結果から、繰返し荷重場においても外力・構造 物・地盤の相互作用によって側方流動破壊が起こり うること、沈下挙動と地盤内変形挙動の間にはユニ ークな関係が存在する等の事実が明らかにされてい る⁴⁾.

本研究では、このような種々の外力条件下にある 構造物・地盤系の力学特性を評価するための1つの 方法として、簡易な構成式に基づいたFEM解析およ び模型実験結果に基づいて、特に構造物・地盤系の 変形挙動をシミュレートする方法を検討した.

さらに、構造物・地盤系の安定性を評価する手法 として、支持地盤の側方流動特性を考慮した構造物 の変位量推定法を提案した.これは、構造物の天端 で計測された鉛直変位量と地盤の側方流動変形特性 に関するパラメータを用いて、構造物の沈下量、水 平移動量を推定するものである.提案した推定式よ り得られた結果と、繰返し載荷条件での模型試験結 果とを直接比較することによって、その妥当性を検 討した.

2. 試験装置と試験概要

本試験で用いた模型試験装置³⁰の全体図を図-1 に示 す.この模型土槽の内寸法は幅 2,000mm,高さ 700mm, 奥行き 600mm である.前面には厚さ 20mm の強化ガラ スが設置され,模型地盤および構造物の変形挙動を観 察できる.また,強化ガラスの変形を防止するとと もに,模型地盤の平面ひずみ条件を満足するために 補強桁が設置されている.

模型地盤は、サンドホッパー(高さ 640mm, 頂角 30) から豊浦砂($\rho_s=2.65g/cm^3$, $\rho_{dmax}=1.648g/cm^3$, $\rho_{dmin}=1.354g/cm^3$, $D_{50}=0.18mm$, Uc=1.3)を空中落下させることによって作製した.ホッパー底部には最大 20mmまで可変可能なスリットが取付けられており、ホッパーの移動速度を 20cm/s, 落下高さを 800mm に保持した条件の下でスリット幅を変化させることにより、25%~95%の相対密度が得られるようになっている.本研究では、相対密度 Dr=50%の地盤を作製した.なお本研究では、作製された地盤密度はばらつきが少なく、ほぼ均一であることが確かめられている³¹.

砂層作製後,模型地盤の堆積構造に乱れが生じない ように,土槽底部に設置された8個のポーラスストーン(直径50mm)から動水勾配i=0.01で地盤の堆積

図-1 模型試験装置

構造を乱さないようにゆっくりと通水し、飽和化を計 った^{2),3),4)}. 模型構造物は,幅 100mm,高さ 100mm, 奥行き 580mm, 重量 129.4N の直方体である.構造物底 面には地盤との接触面を完全粗とするためにサンドペ ーパー (G120) が貼付けられている.

載荷装置は,静的載荷装置及び繰返し載荷装置(鉛 直または水平荷重)からなっている.静的載荷装置で は、ベロフラムシリンダーから鉛直ロッドを介し、模 型構造物に鉛直荷重を載荷している。一方、繰返し載 荷装置(鉛直および水平荷重)はそれぞれ2個のベロフ ラムシリンダーを有し,模型構造物に任意の正弦波荷 重を与えることが可能になっている.また,各ロッド にはそれぞれ変位計とロードセルが具備され、変位量 および荷重が計測されている.

地盤内の側方変形量は、スパゲッティ^{4).5)}を模型構 造物の底端点から左右対称に 25mm 間隔で 8 本挿入す ることにより、計測されている. 試験はスパゲッティ の剛性が初期剛性の2%になった時点(模型地盤に通 水後,約8時間静置した後)から開始されている.試 験中、これらのスパゲッティの変形をビデオカメラで 撮影し, 定点測定することにより地盤内の側方流動変 形を把握した.

図-2 は、このような構造物・地盤系の変形特性を 定量化するための変位量の定義を示している.鉛直ま たは水平載荷装置に設置されている変位計により測定 される鉛直方向の左右の変位量を YL, YR, 水平方向の 変位量を X_L, X_Rとして,幾何学的関係⁶⁾から模型構造 物の左右の沈下量 Svl, SvR および水平移動量 SHL, SHR を算出した.また、左右の卓越した方の沈下量および 水平移動量をそれぞれ Simajor および SHmajor と定義して いる.

本研究では、構造物の沈下の進行に伴って発生する スパゲッティの変形量を測定することによって地盤内 の変形を調べている. その変形量を地盤内水平変位量 δとして評価した.

構造物の沈下に伴う地盤の流動変形を定量化するた めに、図-2中の斜線部で示されるように、構造物下 部両端において地盤が側方に変形した部分の単位奥行 き当りの体積を側方流動土量V_a(mm³/mm),構造物が

沈下した部分の単位奥行き当りの体積を沈下土量 /。 (mm³/mm)と定義した^{1),4),7)}. それぞれ, 地盤内水平変 位量δおよび構造物の沈下量を基に算出されるもので ある. さらに、構造物の沈下に対する地盤の流動変形 の程度を示すために、側方流動土量と沈下土量の比 (土量比V_δ/V_δ)を求め、構造物・地盤系の変形評価を 行っている.

3. 載荷方法及び解析方法

(1) 模型試験

本模型試験では以下のような種々の条件の載荷試験 を実施した.

a)静的載荷試験

模型構造物に作用させる載荷応力σ_s(=P_s/A)を毎分 0.3kN/m²の割合で増加させた.ここでPsは鉛直荷重載 荷ロッドからの荷重,Aは構造物と地盤の設置面積で ある. 図-3(a), (b)に中心載荷条件 (Static Central Loading Test;以下SCLと略称)と偏心載荷条件 (Static Eccentric Loading Test;以下SELと略 称)の試験方法を示す.ここで偏心距離e(図-2参 照)は、模型構造物の中心から載荷点までの距離であ り、初期の偏心度e/Bが0.15, 0.3, 0.5になるように 設定されている.

b) 繰返し載荷試験

この試験の載荷方法を図-3(c), (d), (e)に示す. 中心載荷試験(Cyclic Central Loading Test;以下 CCL と略称)では、半正弦波荷重(P_{VL}=P_{VR})を模型構造 物に左右同時に与えている((c)図参照).

また偏心載荷条件では、半正弦波荷重(Pir および Pvp)を左右交互に与えた試験(Cyclic Alternative Loading Test;以下 CAL と略称, (d) 図参照) と 2 本の 鉛直ロッドのうちの片側から荷重 Prを与えた試験 (Cyclic Eccentric Loading Test:以下 CEL と略称, (e) 図参照)の2 ケースの試験を行っている.いずれの ケースも、繰返し載荷の周期は4秒とし、載荷の繰返 しは 2000 回とした. なお,過去の研究より過剰間隙 水圧の若干の蓄積が認められたことから、地盤は部

分排水条件と考えられる 2), 3), 6).

c)波浪場における地盤内応力状態を再現した試験

本研究では、繰返し荷重場にある構造物・地盤系の 変形挙動を調べることを目的として、波浪場にある地 盤の任意要素の応力状態を再現した模型試験³⁾を行っ た.この試験を WRT(Wave Reproduction Test)と略称 する.実際の試験では、構造物に作用する鉛直力、水 平力および構造物周辺に作用する変動水圧を適切に組 合わせて載荷することにより、波浪場のような繰返し 載荷条件下の構造物・地盤系の変形特性を調べること が可能になっている.WRT での載荷方法の基本的な考 え方を以下に示す.

図-4(a)は、実海域を室内試験で再現するためのモ デルを模式的に示したものである.ここで、実海域で 誘発される地盤内の任意点の鉛直、水平、せん断応力 を(σ_z , σ_x , τ_{xz})とし、また模型試験で各々に対応 する応力を(σ_{zm} , σ_{xm} , τ_{xzm})とする.両者の間に以 下のような関係が成り立つように、模型構造物および 地盤に載荷する荷重を決定した³⁾.

$$\left(\frac{\sigma_{Z}}{\sigma_{Z \max}}, \frac{\sigma_{X}}{\sigma_{Z \max}}, \frac{\tau_{XZ}}{\sigma_{Z \max}}\right) = \left(\frac{\sigma_{Zm}}{\sigma_{Zm \max}}, \frac{\sigma_{Xm}}{\sigma_{Zm \max}}, \frac{\tau_{XZm}}{\sigma_{Zm \max}}\right) (1)$$

ここで, σ_{Zmax}, σ_{Zmmax}はそれぞれ実海域および模型 試験で発生する鉛直応力の最大値を示す.

図-4(b)は載荷方法の一例を示している.実波浪場における波高が7m,波の周期が10sに対応する時のものである.図中には、繰返し鉛直荷重(P_{IL} , P_{IR})および繰返し水平荷重(P_{HL} , P_{HR})を繰返し鉛直力の最大値 P_{Imax} で正規化した値と、構造物周辺に作用させる変動水圧 σ_c を示している.

このように、荷重を適切に組合わせて載荷することにより、波浪場にある構造物・地盤系の変形挙動 を調べた^{2),3)}. なお繰返し載荷回数は2000回まで行っている.

(2) 解析方法

a) 解析条件

以上のような繰返し荷重を受ける構造物・地盤系 の変形挙動を、二次元平面ひずみ条件での有限要素 解析⁸⁾により求めた.図-5 は本解析に用いた要素分 割を示している.要素数 630,節点数 2009 である. なお解析範囲は長さ 2,000mm,深さ 400mm であり, 試験で用いた模型地盤と同サイズとしている.構造 物の幅および高さは 100mm である.

境界条件として、地盤の底面および左右側面では鉛 直および水平方向の変位が発生しないように固定端と した.また地盤上にある構造物は剛体としている.本 研究では構造物と地盤との接触面を完全粗条件と仮 定しているため、ジョイント要素等は設けずに解析 を行っている.なお地盤は完全排水条件と仮定した.

本解析で用いた要素は8節点長方形要素であり, Gauss の積分点は4点である.また,有限要素の離散

図-5 要素分割

化には Galerkin 法を用いている. 弾塑性解析におけ る繰返し計算の収束判定として, {R}=[K] {u}-{F} の ように表される残差ベクトル {R} を定義しており, そ のスカラー値が初期値(1 回目の収束計算での値)の 0.1%以下になったときを収束とみなし, 計算を行っ ている. ここで[K] は剛性マトリクス, {u} は変位ベ クトル, {F} は節点に作用する外力ベクトルである.

b) 地盤の構成モデル

地盤は弾塑性体とし,降伏関数 F と塑性ポテンシャル関数 Y に基づく解析を行った.弾塑性解析では, 土の全ひずみ増分ベクトル {dɛ}を,以下のように弾 性ひずみ増分と塑性ひずみ増分の和として計算する.

$$\{d\varepsilon\} = \{d\varepsilon^{e}\} + \{d\varepsilon^{p}\}$$
(2)

ここで{ $d\varepsilon^{*}$ }:弾性ひずみ増分ベクトル, { $d\varepsilon^{\rho}$ }:塑性ひ ずみ増分ベクトルである.

また,弾性ひずみ増分および塑性ひずみ増分は以下 のように算出される.

$$\left\{d\varepsilon^{e}\right\} = \left[D_{e}\right]^{-1}\left\{d\sigma\right\}$$
(3)

$$\left\{d\varepsilon^{p}\right\} = \lambda \cdot \frac{\partial \Psi}{\partial \{\sigma\}} \tag{4}$$

[D_o]⁻¹:弾性状態での剛性マトリクスの逆行列, {dσ}:応力増分ベクトル, {σ}:応力ベクトル, λ: ひずみ硬化・軟化パラメータである.上式より,式 (2)で示される全ひずみ増分は以下のようになる.

$$\{d\varepsilon\} = \{d\varepsilon^{e}\} + \{d\varepsilon^{p}\} = [D_{e}]^{-1}\{d\sigma\} + \lambda \cdot \frac{\partial \Psi}{\partial \{\sigma\}}$$
(5)

なお、後述する繰返し載荷条件下での解析では、 剛性マトリクス[D_e]中の弾性係数を繰返し載荷回数 Nc の関数とし、Nc の増加に伴う弾性係数の変化を 考慮した解析を可能とした.以上の関係をもとに弾 塑性状態の応力増分-ひずみ増分関係を定式化し、計 算している.

本解析では特に Mohr-Coulomb の破壊規準式による 弾塑性解析を試みているので、二次元平面ひずみ条件 下では、降伏関数 F と塑性ポテンシャル関数 Y は以 下のように表現される.

図-6 載荷応力・沈下量比の関係(静的中心載荷試験)

$$F = \frac{\sigma_1 - \sigma_3}{2} - \frac{\sigma_1 + \sigma_3}{2} \sin \phi - c \cdot \cos \phi \tag{6}$$

$$\Psi = \frac{\sigma_1 - \sigma_3}{2} - \frac{\sigma_1 + \sigma_3}{2} \sin \varphi - c \cdot \cos \varphi \tag{7}$$

ここで σ_1 , σ_3 はそれぞれ土要素に作用する最大およ び最小主応力, c は粘着力, ϕ は内部摩擦角である. φ はダイレイタンシー角であって,本解析では $\varphi \neq \phi$ と した非関連流動則を用いている.なおここでは,完 全塑性平衡条件を前提としているため,ダイレイタ ンシー角 φ を 0 として解析を進めた.

c) 設定パラメータ

本解析に必要となるパラメータは弾性領域における 応力-ひずみ関係を規定する地盤の弾性係数 E および ポアソン比 v,降伏関数を決める内部摩擦角ø,粘着 力 c である. なお飽和砂地盤を対象としているので, 粘着力 c は 0 としている.

静的載荷条件に関する解析では,一連の排水三軸圧 縮試験(豊浦砂,相対密度 Dr=55%,拘束圧 196kPa) での偏差応力一軸ひずみ関係の初期接線勾配を弾性 係数 E と定義した.ここでは E=3000kN/m²,内部摩擦 角 ϕ を 35°,地盤のポアソン比 v を 0.3 から 0.38 ま で変化させた場合の解析を行った.なお,過去の模型 試験結果に基づいて各パラメータを決定したので, 拘束圧依存性による影響は考慮していない(⁸⁾.

一方,繰返し中心載荷条件での解析では,内部摩擦 角¢を35°,ポアソン比vを0.3とした.なお,荷重 の載荷-除荷1サイクル毎に地盤の弾性係数を変化さ せ,繰返し弾塑性解析を行っている.この手法を用い ることによって,繰返し載荷に伴なう地盤の剛性変化 を考慮した解析が可能となっている.

4. 模型試験および解析結果と考察

(1) 静的中心載荷試験

図-6 は静的載荷試験(Dr=50%)の解析および模型試 験から得られた載荷応力 σ_sと沈下量比 S_{Vmajor}/B の関 係を示している.ここで載荷応力 σ_sは構造物に載荷 した荷重を構造物底面積で除した値である.

図より, 沈下量比 S_{Vmajor}/B=20%程度までの範囲で, 解析値と実験値が良く一致していることが明らかで ある. なお, 地盤の極限支持力が動員される時の構 造物の沈下量は, 基礎幅の 10%程度であると指摘さ れている⁹⁾.本試験においても S_{Vmajor}/B が 10%に達し た時点でくさびの形成が確認されている^{9),10)}.

このことから、本解析結果は極限支持力が発生す るまでの地盤の挙動を、よく再現できているものと 考えられる.

次に,地盤内の変形挙動を調べるために,沈下量 比 *Simajor/B*=20%における構造物・地盤系の変形図を 図-7 に示した.実線が解析値,点線が実験値を示し ている.図より,解析と実測による地盤内の水平変 位の一致度が高いことが分かる.なお,構造物周辺 の地表面がほぼ左右対称に盛上る挙動が解析および 実測において確認されている⁴⁰.

したがって,ここで用いた弾性係数 E,ポアソン 比vおよび内部摩擦角øは,静的中心載荷条件での 地盤の沈下・側方流動変形を良く表現しているとみ なせよう.

図-9 地盤内の変形特性(静的偏心載荷, e/B=0.3, 実験および解析値)

(2) 静的偏心載荷試験

波浪場にある構造物のように, 偏心荷重を受けて 沈下するような状況は実際に多く存在する¹¹¹.そこ で,構造物が傾斜しながら沈下する場合の地盤の支 持力および流動変形挙動の基本的特性について調べ るために,静的偏心載荷条件での実験および FEM 解 析を行った.なお偏心載荷試験での数値解析に用い たパラメータのうち,弾性係数 *E*=3000kN/m² および 内部摩擦角φ=35°は前述の中心載荷試験と同じであ る.ポアソン比νに関しては,模型試験で実測され た地盤内水平変位δの挙動を再現するような値を用 いて解析を行っている.また比較のために,ν=0.3 での解析結果も併せて示している.

図-8 は静的偏心載荷試験での支持力・沈下量関係 を示している.同一の偏心度において地盤のポアソ ン比を変えた解析結果も併記した.いずれのケース でも解析は実験値を良く説明している.

同様に、地盤の側方流動挙動について検討した. 沈下量比 $S_{Vmajor}/B=20\%$ における、地盤の変形図の一 例(偏心度 e/B=0.3)を $\mathbf{20}-\mathbf{9}$ に示す、解析で用いた地 盤のポアソン比vは 0.35 である、これより、地盤内 水平変位量 δ の分布形状が実験値と解析値で良く一 致していることが分かる、また解析および実測にお いて、地盤内水平変位量が卓越する方の周辺地盤の 盛上りが顕著であることが確認されている.

偏心載荷条件では主応力方向が常に変化するため, また地盤異方性のため静的中心載荷条件時と比べて 側方流動特性が異なる.この挙動を評価するために, 解析で用いる地盤のポアソン比を荷重の偏心度に依 存させること(ここでは v を 0.3 から 0.35 にするこ と)は有用であろう.

このような地盤の側方流動挙動をさらに検討するために、地盤の土量比 V₄/V₆について調べた.この土量

比 *V_a/V_aは*,構造物・地盤系の側方流動変形挙動を 表現できる簡便なパラメータであることが過去の研 究より明らかにされている^{4),12)}.

図-10 には構造物の沈下量 S_{Vmajor}/B が 10%における土量比 V_{δ}/V_{o} と偏心度 e/Bの関係を示した. 図では各偏心度において、実測の V_{δ}/V_{o} を再現するようなポアソン比で解析した結果をプロットした.

図より,解析で用いる地盤のポアソン比 v を偏心 度に応じて変えた場合では,実測値との一致度が高 まるようである.しかしながら,ポアソン比を 0.3 に設定した解析では土量比 V_{δ}/V_{ρ} はほぼ一定値にな り,実験値との差が大きくなった.

そこで、ポアソン比vの偏心度 e/B の依存性を調 べるために、各偏心度における解析でのポアソン比 vを SCL に対するポアソン比 v_0 (=0.3)で正規化し た値 v/v_0 と、偏心度 e/B の関係を図-11 に示した. 図より、荷重の偏心度 $e/B \ge v/v_0$ の間には次式の ような関係がある.

 $\nu / \nu_0 = \alpha + \beta \cdot (\mathbf{e}/B) \tag{8}$

ここに, *α*, *β* は定数であり, ここではそれぞれ 1.0, 0.55 であった. このような関係を用いることが できれば, 比較的簡便に地盤内の変形挙動を推定可能

図-12 載荷応力 σ v と Svmajor/Hsの関係(実測値)

図-13 構造物・地盤系の軟化挙動のメカニズム

と言えよう.

(3) 繰返し載荷を受ける構造物・地盤系の変形特性

ここでは,繰返し荷重が構造物・地盤系の変形挙 動に及ぼす影響を調べる.そのために,まず基本的 な載荷条件である繰返し中心載荷条件(CCL)について 検討を行った.

繰返し荷重を受ける構造物・地盤系の沈下挙動の 一例を示すために、図-12 に繰返し載荷試験(CCL)に おける構造物の沈下量 S_{Vmajor} を模型地盤厚 H_s で除し た値 S_{Vmajor}/H_s (鉛直ひずみと称する)と繰返し載荷応 力 σ_v (繰返し荷重を構造物底面積で除した値とする) との関係を描いている.この試験条件は、繰返し載 荷応力 σ_v が 50kN/m²,繰返し載荷の周期は4秒,地 盤の相対密度は 50%のケースである.

図より,各載荷時の載荷応力増分 $\Delta \sigma_v$ と鉛直ひず み増分 $\Delta (S_{I'major}/H_S)$ の比,つまり地盤の変形係数相 当量 E (以下剛性と称する)が,地盤の鉛直ひずみの 増加に伴って変化していることが分かる.

図-13 には、このような剛性変化と地盤の変形挙動の関係を模式的に示している。剛性が増加する間 (図-12 において鉛直ひずみ S_{l'major}/H_S が約 0.04 まで)では、周辺の地盤の締固め効果による地盤の硬化

図-14 剛性比 E/E_{MAX}と鉛直ひずみ S_{Vmajor}/H_Sの関係

図-15 等価せん断剛性比とせん断ひずみの関係

挙動が誘発されているようである. なお, 繰返し載 荷の初期段階では構造物直下における若干の過剰間 隙水圧の蓄積が見られるが, 地盤の液状化には至ら ないことが過去の研究より確認されている^{21,11}. -方, 鉛直ひずみS_{imalor}/H_Sがさらに増加すると, 地盤 の側方流動変形が卓越し地盤が軟化傾向を示すもの と思われる. そこで, このような構造物・地盤系の 剛性の増加→低下挙動を評価することが求められる.

図-14 は、Eをその最大値 E_{MAX} (図-12 参照)で正 規化した値と鉛直ひずみ S_{Vmajor}/H_S の関係を示してい る.図より、鉛直ひずみの増加に伴う剛性の増加→ 低下挙動が明瞭に確認される.ここで、鉛直ひずみ $S_{Vmajor}/H_S \ge 0.04$ の範囲で見られる地盤剛性の低下傾 向は、室内要素試験で見られるせん断剛性の低下挙 動^{13),13)}に類似している.

このような砂地盤の剛性変化を詳細に調べるため に、図-15 に Dr=50%の豊浦砂に対する非排水繰返し 三軸試験から得た等価せん断剛性比 G_{eq}/G_0 とせん断 ひずみ γ の関係¹³⁾を示す.なお G_0 は γ =10⁻⁶ でのせん 断弾性係数である.これより、せん断ひずみ γ が増加 するにつれて、せん断剛性比が急激に低下する挙動 が見られる.このような砂のせん断剛性比 G_{eq}/G_0 と せん断ひずみ γ の関係は、砂の間隙比、拘束圧および

せん断ひずみの関数として近似可能¹¹であることが 知られている.例えば,そのひずみ依存性は以下の ように簡便な関数形¹⁵⁾で表現可能であることが報告 されている.

$$G_{eq} / G_0 = \frac{1}{1 + (\gamma / \gamma_{0.5})}$$
(9)

ここで $\gamma_{0.5}$ は $G_{eq}/G_0=0.5$ 時のせん断ひずみ γ である.

式(9)が実測の模型実験の変形挙動を再現可能であ るかを確かめるために、図-15 に上式の関係をプロ ットした.これより,式(9)は実測された砂の軟化傾 向を良く再現していると言える.

次に,式(9)のような動的変形特性を考慮し,模型 試験において見られる地盤の剛性低下を再現可能か 検討してみる.まず,模型試験で実測された剛性比 E/E_{MAX} と鉛直ひずみ $S_{I'major}/H_S$ の間に,式(9)と類似 した以下のような関係が成立つと仮定する.

$$E / E_{MAX} = \frac{1}{1 + (S_{Vmajor} / H_S) / (S_{Vmajor} / H_S)_{0.5}}$$
(10)

ここで $(S_{I'major}/H_S)_{0.5}$ は $E/E_{MAX}=0.5$ のときの鉛直ひずみである.なお、上式分母第 2 項の鉛直ひずみ比は、沈下量比 $S_{I'major}/B$ と $E/E_{MAX}=0.5$ での沈下量比 $(S_{I'major}/B)_{0.5}$ との比と同等である.

式(10)で表される地盤の剛性低下挙動および,鉛 直ひずみ S_{Vmajor}/H_S が微小なときの地盤の剛性増加の 挙動について調べるために,図-16 に繰返し回数 N_c を地盤の剛性比 E/E_0 によって正規化した値 $N_c/(E/E_0) \ge N_c \ge$ の関係を示した.ここで E_0 は $N_c=1$ 時の Eの値である.模型試験で得られた剛性比を〇 印で示している.

図より,繰返し回数 N_c が 20 までは繰返し回数 N_c と $N_c/(E/E_0)$ の関係は線形的であることが分かる. しかし, N_c が 20 を越えると $N_c/(E/E_0)$ の増加率が急 増していることが確認される. このことは,ある繰 返し回数 N_c を境に,地盤の剛性 E の変化傾向が異な ることを示している. そこで,地盤の剛性変化を以 下のように評価することとする.

図-18 沈下量比Symajor/Bと繰返し回数Ncの関係

①繰返し載荷の初期段階(ここでは $N_c \leq 20$)では, $N_c/(E/E_0) - N_c$ 関係は直線関係にある.

 ②*N_c*/(*E/E₀*)値が急増する範囲では、式(10)に従う地 盤剛性の変化がある.

まず,載荷の初期段階(ここでは $N_c \leq 20$)で仮定し た直線の勾配および切片値をそれぞれ c および d bする. なお,本ケースでは c=0.93, d=0.07 である. これより,載荷初期段階における地盤の弾性係数 Eと繰返し回数 N_c との関係は以下のように表現されよう.

$$E/E_0 = \frac{N_c}{c+d \cdot N_c} \tag{11}$$

ここで, E_0 は N_c =1 での地盤の剛性, Eは任意の N_c における剛性である.

一方, $N_c/(E/E_0)$ 値が急増しているときの剛性変化 を式(10)に基づいて評価してみた.ここでは, 剛性低 下の挙動を繰返し回数 N_c の関数として表わす.初め に, CCL 試験で実測された鉛直ひずみ S_{Vmajor}/H_S と繰返 し回数 N_c の関係および式(10)を基に $E/E_{MAX} \sim N_c$ 関係 を求めた.次いで得られた $E/E_{MAX} \sim E/E_0$ に換算した 結果を求めた.その結果を図-16 中に実線で示してい る.なお,式(10)中の $(S_{Vmajor}/H_S)_{0.5}$ は模型試験の実測

値をもとに 9.0×10⁻²としている.

以上より,式(10)に基づく評価法は実測された $N_c/(E/E_0)値の変化をよく再現していることが確認$ された.したがって,ここで提案した手法は地盤の剛性変化(剛性増加→低下)を評価可能であると言える.

このような地盤の剛性増加→低下挙動を考慮しなが ら、繰返し中心載荷条件の変形解析を試みるために、 地盤の剛性比 *E/E*₀ 値と繰返し回数 *N*_cの関係を図-17 に示した. CCL 試験での実測値を〇印で,式(10)およ び式(11)による結果を実線および点線によって表示 した. 図より,この評価法は実測の地盤の剛性変化 (図中〇印)を比較的良く再現できていることが明らか である.このことから,繰返し荷重を受ける構造物・ 地盤系の側方流動挙動を評価するためには,提案した 評価法に基づく剛性変化を考慮することが有効である として以下の考察を進めた.

(4) 地盤の剛性変化を考慮した解析

前節では,繰返し載荷を受ける地盤の剛性変化挙動 が,荷重の繰返し回数の関数として表現できることが 示された.そこで,このような力学挙動を考慮した解 析手法が,模型試験での実測の変形挙動を再現可能か どうかを検討してみる.

図-18 は解析および実験で得られた構造物の沈下量 比 S_{Vmajor}/B と繰返し回数 N_c との関係を示している. なお、前述のように地盤の内部摩擦角 ϕ は 35°, ポア ソン比 v は 0.3, E_0 =3000kN/m² として解析を行ってい る. ここで繰返し回数は実測の沈下量の収束傾向が見 られる N_c =100 回を基準として解析を行った.また本 解析の妥当性を検討するために、図中には地盤の剛性 変化を考慮しない解析結果も併記している.

図より,剛性変化を考慮した解析結果は実測の沈下 量を若干過小評価ぎみであるが,その傾向を良く再現 しているようである.一方,剛性変化を考慮しない解

図-20 土量比 V₀/V₀と繰返し回数 N_cの関係

析結果は実測値より非常に小さなひずみを推定している.このケースでは,静的載荷試験から得た極限支持力(図-6 参照)よりもはるかに大きい応力が地盤に繰返し載荷されている.そのため,繰返し載荷が継続されても微小な残留変形が徐々に蓄積され,N_c=100回での沈下量の収束傾向が見られない.このように地盤の剛性変化を考慮しない解析法では,繰返しの初期段階における地盤の圧縮性が卓越するような変形挙動と沈下量が収束する挙動を再現することができない.したがって,本解析法のように繰返し荷重を受ける地盤の剛性変化を考慮することが重要であると考えられる.

次に、本解析法が地盤の側方流動変形挙動を評価可 能か調べる.図-19 は構造物の沈下量比 S_{imajor}/B が 10%時の地盤の側方変形挙動を模式的に示したもので ある.実線は解析値,点線は実験値を示している.

図より,解析値は若干ではあるが地盤の上層部において実測値を過小評価,下層部で過大評価するようである.しかしながら,両者の全体的な傾向は良く対応しているのが見られる.したがって,本解析法は,繰返し載荷条件下の構造物・地盤系の側方流動変形の特徴を把握しうることが示唆されよう.

そこで、繰返し載荷条件下にある地盤の側方流動変 形特性について詳しく調べるために、土量比 V_{δ}/V_{ρ} に ついて検討を行った. **図-20** は、模型試験および解析 で得られた土量比 V_{δ}/V_{ρ} と繰返し回数 N_{c} の関係を示 す.実験値では繰返し回数 N_{c} の増加に伴って土量比 V_{δ}/V_{ρ} が増加し、0.7 程度の値に収束する傾向にある. また解析値においても、繰返し回数 N_{c} の増加に伴い 土量比 V_{δ}/V_{ρ} が急増し、その後一定値に収束する傾向 にあることが見られる.

以上のように,解析値と実験値の一致度が比較的良 好なことから,本解析法は繰返し載荷を受ける構造 物・地盤系の側方流動挙動を把握する上で,有効であ ることが示された.なお,地盤の側方流動変形挙動を さらに正確に評価するためには,地盤剛性の拘束圧依 存性を考慮する等の手続きが必要であると考えられる.

5. 変位推定法

(1) 変位量推定式の誘導

種々の載荷を受ける構造物・地盤系の側方流動変形を 考慮しながら, 簡便な位置での測定結果のみを用いて, 構造物・地盤系の沈下量および水平移動量を推定できる ことは, 繰返し荷重条件下での設計および安定性評価に 関して有用である.そこで, 地盤の流動変形特性を考慮 した構造物の変位量推定法を検討した.

初めに、地盤の変形と構造物の変位量の関係を調べた.まず、沈下土量 V_{ρ} および側方流動土量 V_{δ} について、以下のような関係^{12),16),17),18)}が成り立つものと仮定した.

$$V_{a} = C_{a} \cdot B \cdot S_{Vmajor} \tag{12}$$

$$V_{\delta} = C_{\delta} \cdot H_S \cdot S_{Hmajor} \tag{13}$$

ここで, *C_a*, *C_a*は沈下および側方流動に関する変形 パラメータである. *H_s*は地盤深さ(400mm)である.

また構造物変位と図-2に示す計測値 Y_L , Y_R , X_L , X_R との幾何学的関係は次式(14)~(17)によって表 される⁶⁾.

$$S_{\nu R} = D \cdot (1 - \cos \frac{|Y_R - Y_L|}{2e}) + (Y_R + a) \cdot \cos \frac{|Y_R - Y_L|}{2e} + (\frac{B}{2} - e + X_R) \cdot \sin \frac{|Y_R - Y_L|}{2e}$$
(14)

$$S_{1'L} = D \cdot (1 - \cos \frac{|Y_R - Y_L|}{2e}) + (Y_R + a) \cdot \cos \frac{|Y_R - Y_L|}{2e} + (X_R - e - \frac{B}{2}) \cdot \sin \frac{|Y_R - Y_L|}{2e}$$
(15)

$$S_{IIR} = X_R - \mathbf{a} \cdot \tan \frac{|Y_R - Y_L|}{2e}$$
(16)

$$S_{HL} = B \cdot (1 - \cos \frac{|Y_R - Y_L|}{2e}) + X_R - \mathbf{a} \cdot \tan \frac{|Y_R - Y_L|}{2e}$$
(17)

ここで B は模型構造物幅, D は構造物高さ, a は水 平変位測定点と模型地盤表面との距離, e は鉛直載 荷ロッドの偏心距離である(図-2 参照).

ここで $Y_R > Y_L$ が成り立つと仮定すると,式(14)~(17)から, $S_{V_{major}}$ および $S_{H_{major}}$ を以下のように誘導した.

$$S_{V_{major}} = \frac{Y_{R} + (\frac{B}{2} - e)(\frac{Y_{R} - Y_{L}}{2e}) + a(\frac{Y_{R} - Y_{L}}{2e})^{2}}{1 - (\frac{V_{\delta}}{V_{\rho}})(\frac{C_{\rho}}{C_{\delta}})(\frac{B}{H_{s}})(\frac{Y_{R} - Y_{L}}{2e})}$$
(18)

$$S_{Hmajor} = \left(\frac{V_{\delta}}{V_{\rho}}\right)\left(\frac{C_{\rho}}{C_{\delta}}\right)\left(\frac{B}{H_{S}}\right)$$

$$\times \frac{\left[Y_{R} + \left(\frac{B}{2} - e\right)\left(\frac{Y_{R} - Y_{L}}{2e}\right) + a\left(\frac{Y_{R} - Y_{L}}{2e}\right)^{2}\right]}{1 - \left(\frac{V_{\delta}}{V_{\rho}}\right)\left(\frac{C_{\rho}}{C_{\delta}}\right)\left(\frac{B}{H_{S}}\right)\left(\frac{Y_{R} - Y_{L}}{2e}\right)}$$
(19)

過去の研究^{4),11),18)}より,式中の土量比V₀/V₀は構造

物の沈下量との双曲線関数で表わせることが明らか にされている.ここでは、これらの研究を基に、土 量比 V_{δ}/V_{ρ} と構造物の鉛直変位測定値 Y_{R} を構造物幅 Bで正規化した Y_{R}/B の関係を次のように仮定した.

$$V_{\delta} / V_{\rho} = \frac{Y_R / B}{(\varsigma + \eta \cdot Y_R / B)}$$
(20)

ここで、 ζ および η は初期および $Y_R \rightarrow \infty$ 時での土量比の逆数である.

式(20)を式(18)および式(19)に代入すると以下の 推定式が誘導される.

$$S_{V_{impjor}} = \frac{Y_{R} + (\frac{B}{2} - e)(\frac{Y_{R} - Y_{L}}{2e}) + \mathbf{a} \cdot (\frac{Y_{R} - Y_{L}}{2e})^{2}}{1 - (\frac{Y_{R} / B}{\zeta + \eta \cdot Y_{R} / B})(\frac{C_{\rho}}{C_{\delta}})(\frac{B}{H_{S}})(\frac{Y_{R} - Y_{L}}{2e})}$$
(21)

$$S_{Hmajor} = \left(\frac{Y_R / B}{\zeta + \eta \cdot Y_R / B}\right) \left(\frac{C_{\rho}}{C_{\delta}}\right) \left(\frac{B}{H_S}\right)$$

$$\times \frac{Y_R + \left(\frac{B}{2} - e\right) \left(\frac{Y_R - Y_L}{2e}\right) + a \cdot \left(\frac{Y_R - Y_L}{2e}\right)^2}{1 - \left(\frac{Y_R / B}{\zeta + \eta \cdot Y_R / B}\right) \left(\frac{C_{\rho}}{C_{\delta}}\right) \left(\frac{B}{H_S}\right) \left(\frac{Y_R - Y_L}{2e}\right)}$$
(22)

以上のように,構造物天端における任意の2点での 実測沈下量(Y_L,Y_R)を基に,構造物の沈下量 S_{Fmajor} および水平移動量 S_{Hmajor} を推定した.次に,式中の

(b) V _δ−S_{Hmajor}・H_S 関係

パラメータ C_{μ}, C_{δ} および ζ, η について詳しく検討する.

(2) 推定式中のパラメータ

a) 沈下・側方流動に関する変形パラメータ C_a, C_a

 C_{ρ} および C_{δ} の特性を調べるために、**図**-21 (a) および (b) に、それぞれ静的載荷試験 (SCL, SEL) における V_{ρ} - $S_{I'major}$ ·B関係および V_{δ} - S_{Hmajor} · H_{S} 関係を示した. (a) 図より、荷重の偏心度e/Bが大きくなると、 C_{ρ} が低下することが分かる.一方、(b) 図においても偏心度の増加に伴って、 C_{δ} が小さくなることが確認される.なお各偏心載荷試験 (SEL) において S_{Hmajor} · H_{S} が 1000 (mm²) に至ると V_{δ} が急増するのが見られるが、これは地盤が破壊され、地盤内での側方流動変形が急激に発生したためである^{17).18)}.

ここでは、地盤が破壊する直前つまり側方流動土 量 V_s が急増するまでの挙動について注目しているの で、曲線の勾配が急増する直前までの範囲の C_s を採 用することにする.また静的中心載荷(SCL)では、構 造物の水平変位量 S_{Hmajor} が常に0であるため、 $C_s = \infty$ であるとみなした.

繰返し載荷試験(CCL, CAL)での V_{ρ} - $S_{V_{major}}$ ·B 関係 および V_{δ} - S_{Hmajor} · H_{δ} 関係を図-22(a), (b)に示す. 繰返し載荷においても、CCL とその他の載荷方法の 場合では、これらのパラメータの値に違いが生じて

いることが確認され、荷重の偏心度が存在する時の C_nおよび C_oは、中心載荷条件での値より小さくな ることが理解される.このことより、静的および繰 返し載荷においてパラメータ C_oおよび C_oを決める 際には、荷重の偏心すなわち構造物の不同沈下を考 慮する必要があることが指摘されよう.

次に,式(21)および式(22)に用いられている C_{ρ}/C_{s} について調べた. C_{ρ}/C_{s} と荷重の偏心度 e/B の関係を 図-23 に示している.これより,偏心度 e/B が高くな るにつれて C_{ρ}/C_{s} も大きくなっていることが分かる. また,繰返し載荷試験での C_{ρ}/C_{s} は静的載荷条件で の値に比べて小さい値となるようである.このよう に構造物の変位量の推定には,静的および繰返しの ような載荷条件の違いや,偏心度 e/B の違いに応じ て C_{ρ}/C_{s} を適切に設定する必要がある.

b) 土量比 V_{δ}/V_{ρ}

図-24 は、静的載荷(SCL および SEL, e/B=0.3)試験および繰返し鉛直載荷試験(CAL)から得られた (Y_R/B)/(V_a/V_a)- Y_R/B 関係を示している.これより、 いずれの試験条件においても直線関係が成り立つようであり、土量比 V_a/V_a を Y_R/B の関数として表現可能であることが分かる.そこで、この直線の切片を ζ 、 直線の勾配を η として以下考察を進める.

図より,偏心度 e/B が増加すると η が小さくなる傾向 が確認できる.しかし,静的および繰返しのような 載荷方法の違いによる η の相違は明確ではない.し たがって, η は偏心度 e/B のみに影響されるものであ り,地盤の側方流動特性を表すことができる重要な パラメータであると言える.一方, ζ は載荷方法お よび偏心度に関わらず,この試験条件では一定値(こ こでは 0.02)を示している.過去の研究より,土量 比の初期の発生状況は載荷方法によらないことが実 験的に示されている^{10.12)}.したがって本試験のよう な条件では, ζ は偏心度 e/B に影響されないパラメー タとみなすことができる.

(3) 本推定式と FEM 解析の結果の比較

ここでは本推定式による計算結果の有効性を調べるために,推定式とFEM 解析結果について比較を行った.まず,本推定式で用いられている土量比 V_{δ}/V_{ρ} を調べる.推定式では,式(20)のように構造物の鉛 直変位量 Y_R の双曲線関数として仮定した.そこでこのような評価法の妥当性を調べるために,図-26 に は静的中心および偏心載荷試験で得られた鉛直変位 量 Y_R をもとに式(20)を用いて得られた土量比 V_{δ}/V_{ρ} の推定結果とFEM 解析による結果を比較したものを示した.なお,鉛直変位量 Y_R は 10mm である.式 (20)による検討では,荷重の偏心度 e/B を考慮した パラメータζ, η を用いて計算を行った(図-25 参照).

図から,式(20)の結果と FEM 解析から得られた土 量比の一致が見られる.これより,式(20)による土 量比と鉛直沈下量 Y_R の関係は FEM 解析によって得ら れた側方流動挙動を再現できるとみなせよう.

さらに、本推定式の妥当性を調べるために、図-27 に、静的中心および偏心載荷試験結果における、鉛 直変位量 Y_R =10mm での沈下量 $S_{I_{imajor}}$ の推定値(式(21) 参照)と FEM 結果を示している.静的中心および偏心 載荷試験での構造物の沈下量 $S_{i_{imajor}}$ は、本推定式お よび FEM 解析結果と良い対応関係にある.したがっ て、解析から得られた側方流動挙動を考慮した本推 定式によって、構造物の変位量を簡易に推定するこ

とが可能であると言えよう.

(4) 本推定式と WRT 試験結果の比較

本推定式の有用性を検討するために、ここでは波浪 のような繰返し鉛直および水平荷重を受ける構造物の 変位量の推定を試みた.

図-28 は、WRT 試験で得られた構造物の変位量と、 式(21)および式(22)によって推定された構造物の沈 下量 S_{Vmajor} および水平移動量 S_{Hmajor} を示したものであ る. ここで、 C_o は CAL 試験で得られた 0.95 を採用し ている. また C_o は,構造物の沈下が卓越する場合で は CAL 試験で得られた値(=2.5)を用いたが、構造物 の滑動量が卓越する場では側方流動土量 V_{δ} が CAL 試 験での約 1/20 になっていること $^{6).8)}$ を考慮 して 0.125 としている. さらに式(20)の V_{δ}/V_{ρ} に関するパ ラメータく、 η はそれぞれ 0.02 および 1.25 としてい る.

図より、CAL試験で得られたパラメータを一部修正 して用いると、沈下量および水平移動量に関して、 実測値と推定値の一致度は極めて良好である.この ことより、CAL試験に比べて側方流動変形がそれほど 顕著に発生しないWRT試験^{1),2),6)}の場合、すなわち構 造物の滑動量が卓越するような場合では、側方流動 に関するパラメータC₄を適切に設定することが必要

である.

このように、荷重条件(ここでは偏心度 e/B)に対応 したパラメータを用いると、提案した推定式によっ て波浪場のような載荷条件下にある構造物・地盤系 の変位量を精度良く推定できる.

6 結論

本研究で行った2次元平面ひずみ条件の解析およ び模型試験より次のような結論を得た.

- (1) 模型試験およびFEM解析結果から,静的載荷試 験での側方流動変形は,解析に用いる地盤のポ アソン比を適切に
- (2) 設定することで評価できることが示された.
- (3) 繰返し載荷条件では、地盤の剛性を荷重の繰返し回数の関数として評価し得る.
- (4) FEM解析に基づいて、側方流動挙動を考慮した 沈下量推定式が提案された.模型試験より、本 推定式は構造物の変位量を簡易にかつ精度良く 推定していることが明らかにされた.
- (5)本解析および模型試験の条件において、荷重の 偏心度を考慮した地盤の流動変形推定式は、波 浪のような繰返し荷重を受ける構造物の変位量 を推定可能である.

謝辞:本研究における解析,実験及びデータの整理 に宮浦征宏(元北海道大学大学院),高橋朋代,飯田 和弘(元室蘭工業大学大学院)各氏の協力を得た.記 して深甚なる感謝の意を表します.

参考文献

- 三浦清一,横浜勝司,川村志麻,田中則男:波浪場にある 消波構造物を支持する砂地盤の流動特性とその防止に関す る研究,海岸工学論文集,Vol.44, pp. 921-925, 1997.
- 2) 川村志麻,三浦清一,横浜勝司,宮浦征宏:繰返し力を受ける構造物支持地盤の破壊とその防止策に関する実験,土 木学会論文集,No.624/Ⅲ-47,pp.77-89,1999.

- 川村志麻,三浦清一,横浜勝司,宮浦征宏:波浪のような 繰返し力を受ける構造物・地盤系の動的力学挙動,土木学 会論文集, No. 624/Ⅲ-47, pp. 65-75, 1999.
- 4) 宮浦征宏,三浦清一,川村志麻,横浜勝司:載荷条件の相 違による砂地盤の支持カー変形挙動の変化とその評価,土 木学会論文集,No.673/Ⅲ-54,pp.121-131,2001.
- Tani, K. : Stability of skirted gravity foundations on very soft clay, Ph.D. Thesis, Dept. of Engineering, Manchester Univ., 1990.
- 三浦清一,川村志麻,田中則男:波浪を受ける消波構造物・地盤系の流動破壊とその評価,海岸工学論文集, Vol. 46, pp. 1016-1020, 1996.
- 7) 柴田徹,関口秀雄:軟弱地盤の側方流動,土木学会論文集, No.382/Ⅲ-7, pp.1-14, 1987.
- 横浜勝司,三浦清一,川村志麻:静的および繰返し鉛直荷 重を受ける砂地盤-構造物系の変形挙動に関するFEM解析, 応用力学論文集, Vol.3, pp. 513-520, 2000.
- 9) 建築基礎構造設計指針:日本建築学会, 1988.
- 三浦清一,瀧本聖吾,川村志麻,萩原淳平:二次元平面ひ ずみ模型土槽による飽和砂層の流動化条件に関する研究, 土質工学会北海道支部技術報告集, Vol.34, pp.194-201, 1994.
- 川村志麻,三浦清一,横浜勝司:消波構造物・地盤系の破壊とその評価に関する実験的研究,海岸工学論文集, Vol. 44, pp. 936-940, 1997.
- 12) 宮浦征宏,三浦清一,横浜勝司,川村志麻:地盤の変形特

性を考慮した海洋構造物の変位量推定法,海岸工学論文集, Vol.46, pp.936-940, 1999.

- 13) 阿曽沼剛,三浦清一,渡辺則仁,前宗孝:室内及び原位置 試験から推定した火山灰地盤のせん断弾性係数(その2),地 盤工学研究発表会発表講演集, Vol. 36, pp. 443-444, 2001.
- 14) Iwasaki, T., Tatsuoka, H. and Takagi, T.: Shear moduli of sands under cyclic torsional shear loading, *Soils* and *Foundations*, Vol. 18, No. 1, pp. 39-56, 1978.
- 15) 孔憲京, 龍岡文夫, プラダンテージ,田村重四郎:極低圧下 での砂の動的変形特性Ⅲ,東京大学生産技術研究所報告, Vol. 38, No. 3, pp. 133-136, 1986.
- 16) 川村志麻,長谷一矢,三浦清一,宮浦征宏,飯田和弘: 種々の載荷条件下にある構造物・地盤系の変形特性とその 評価,地盤工学会北海道支部年次技術報告集,Vol.39, pp.29-36,1999.
- 17) 川村志麻,飯田和弘,長谷一矢,宮浦征宏,三浦清一:静 的・繰返し荷重を受ける構造物・地盤系の変位量推定法, 第34回地盤工学研究発表会発表講演集,pp.1043-1044, 1999.
- 18) Yokohama, S., Miura, S., Kawamura, S. and Miyaura, M. : Mechanical behavior of sand bed- coastal structure system subjected to cyclic loading. *Proc. of Conf. on Geotechnical and Geological Engineering* (GeoEng2000), p. 555, 2000.

(2001.10.16 受付)

DEFORMATION BEHAVIOR OF STRUCTURE-GROUND SYSTEM SUBJECTED TO STATIC AND CYCLIC LOADINGS AND ITS PREDICTION

Shoji YOKOHAMA, Seiichi MIURA and Shima KAWAMURA

In order to evaluate the stability of structure-sand ground system subjected to cyclic loadings such as wave force, a series of FEM analysis based on Mohr-Coulomb formula with non-associated flow rule and model tests were carried out under cyclic and static loading conditions. From test results and analyses, it is found that (1) the deformation behaviors of sand ground subjected to various cyclic loadings can be estimated by the simplified FEM analysis taking account of the dependency of rigidity modulus on stress history and (2) the predicted structure displacements by the proposed method agree well with the results of the model test.