矩形 RC 梁の重錘落下衝撃挙動に関するラウンドロビンアナリシス

Round-Robin analysis on impact behavior of RC beam subjected to a falling-weight impact force

岸 徳光* 安藤智啓** 井元勝慶*** 河西良幸**** 香月 智[†] 上林厚志^{††} 桝谷 浩^{†††} Norimitsu KISHI, Tomohiro ANDO, Katsuyoshi IMOTO, Yoshiyuki KASAI, Satoshi KATSUKI, Atsushi KAMBAYASHI and Hiroshi MASUYA

*工博 室蘭工業大学教授 工学部 建設システム工学科(〒050-8585 室蘭市水元町 27-1)
**博(工)防衛庁第四研究所研究員 施設構造研究室(〒229-0006 相模原市渕野辺 2-9-54)
***博(工)(株)大林組技術研究所担当部長 プロジェクト部(〒204-0011 東京都清瀬市下清戸 4-640)
****工博 前橋工科大学教授 工学部 建築学科(〒371-0816 群馬県前橋市上佐鳥町 460-1)
*工博 防衛大学校助教授 理工学部 建設環境工学科(〒239-8686 神奈川県横須賀市走水 1-10-20)
***工修(株)竹中工務店技術研究所研究員(〒270-1352 千葉県町西市大塚 1-5-1)
****工博 金沢大学助教授 工学部 土木建設工学科(〒920-0942 石川県金沢市小立野 2-40-20)

In order to confirm the accuracy of various numerical analysis methods for estimating impact resistant behavior of RC beams, Round-Robin pre/post-analysis for impact behavior of rectangular RC beam subjected to a fallingweight impact force was conducted. Representative six researchers including professors were jointed for this research project, in which analysis methods used here were: two two-dimensional analysis methods using beam element and multi-layered shell element; two-dimensional discrete element methods; and three-dimensional finite element methods. From this research project, it was recognized that all methods used here can be available for evaluating the impact behavior of the RC beam with a good accuracy when a suitable constitutive model, damping factor, and boundary conditions may be used.

Key Words: RC beam, falling-weight impact test, impact behavior, impact response analysis, round-robin analysis キーワード: RC 梁, 重錘落下衝撃試験, 衝撃挙動, 衝撃応答解析, ラウンドロビンアナリシス

1. はじめに

鉄筋コンクリート (RC) / プレストレスコンクリート (PC)構造物等の耐衝撃用途を目的とした土木・建築構 造物の合理的な耐衝撃設計法を確立するためには、実験 のみならず実験結果を補間する意味からも数値解析的な 研究が必要不可欠である.近年、コンビュータの目覚ま しい発展により, RC/PC 構造物やこれらの構成要素で ある梁、柱、版部材の衝撃挙動を精度よく再現できる数 値解析手法の確立に向けた検討が、多くの研究機関で精 力的に行われるようになってきた、しかしながら、これ らの数値解析的研究はこれまで各機関が独自のノウハウ の下に実施した実験結果と比較することによってその妥 当性を評価している。したがって、その妥当性の評価 は、各研究者や技術者の個人的な見解に基づいて行われ ているのが現状である.しかしながら、今後の RC/PC 構造物や構造部材の衝撃挙動に関する数値解析結果を 蓄積・集約して設計工学に発展・反映させるためには、 各解析手法の特徴やそれぞれの解析手法の確からしさを 把握しておくことが重要である。

このような観点より、我が国の各機関で採用している

解析手法の特徴や数値解析結果の精度の現状を把握する ことを目的として、静載荷時に曲げ破壊が卓越する矩形 RC梁に着目し、重錘落下衝撃荷重載荷時の衝撃挙動に 関するラウンドロビンアナリシスを実施した¹⁾. なお、 ラウンドロビンアナリシスには、プレアナリシスとポス トアナリシスの2種類がある. このうち、プレアナリ シスとは、ある想定した現象に対して参加機関が一同 に予備解析を実施し、予め決められた項目に関する解 析結果を解析手法とともに一般に公表するものである. 一方、ポストアナリシスとは、プレアナリシスに参加し た機関が、実験終了後に実験結果をより精度よくシミュ レートするために解析モデルや材料構成則モデルに関す る再検討を行い、必要であれば事後解析を実施してその 結果を公表するものである.

2. ラウンドロビン・プレアナリシスの実施要領

以下の条件のもとに,重錘落下による矩形 RC 梁の衝 撃挙動に関するラウンドロビン・プレアナリシスを実施 することとした.

表-1 解析条件および出力項目

解析対象	両端に 200 mm の張出しを有するピン支持された矩形断面 RC 梁
RC 梁の形状寸法	矩形断面 (200 × 300 mm), 純スパン長 = 3,000 mm, 全長 = 3,400 mm
配筋	主鉄筋比 = 1 % の複鉄筋 RC 梁 (図-1 参照)
コンクリート強度	39.2 MPa
主鉄筋	SD345 D19, 降伏強度 = 392 MPa
せん断補強筋	SD295A D6,降伏強度 = 343 MPa
舌纽	質量 = 400 kg,先端形状 = 高さ 2 mm のテーパ(曲率半径 = 1,407 mm)
<u> </u>	材質:弾性係数 = 206 GPa,ポアソン比 = 0.3,詳細は 図-2 参照
重錘衝突速度	7 m/s
載荷装置	室蘭工業大学に設置されている構造物耐衝撃耐荷力評価試験装置
支点部治具	跳ね上がり防止装置および支点反力測定用治具付きでピン支持状態(図-3 参照)
載荷点位置	スパン中央点
	ー 時間は重錘が RC 梁に衝突する時間を 0 ms として整理する.
出力応答値	1) 重錘衝撃力波形,合支点反力波形,載荷点変位波形; 2) 最大重錘衝撃力値とその発生時間
	3) 最大片側支点反力値とその発生時間; 4) 最大変位とその発生時間

表-2 試験体の設計値一覧

主鉄筋比	せん断スパン比	静的曲げ耐力	静的せん断耐力	せん断余裕度
P_t	a/d	P _{usc} (MPa)	V _{usc} (MPa)	$\alpha (=V_{usc}/P_{usc})$
0.010	5.77	70.8	170	2.40

図-1 RC 梁試験体の形状寸法および配筋状況

2.1 解析条件および出力項目

表-1 の条件のもとに RC 梁に関するラウンドロビン・プレアナリシスを実施することとした.

2.2 RC 梁の設計値一覧

表-2には、用いた試験体の設計値一覧を示している. 表中、静的曲げ耐力 P_{usc} および静的せん断耐力 V_{usc} は、土木学会コンクリート標準示方書に基づいて算定している. このうち、 P_{usc} は断面分割法を適用して算定した. また、本試験体は実構造を想定していないことより、各耐力算定時の部材係数は $\gamma_b = 1.0$ としている. 表より、本試験体はせん断余裕度 $\alpha (= V_{usc}/P_{usc})$ が 1.0以上であり、静載荷時に曲げ破壊が先行する梁であることが分かる.

3. 衝撃載荷実験の実施

3.1 実験の概要

写真-1には、室蘭工業大学において実施した RC 梁

に関するラウンドロビンアナリシスのための重錘落下衝 撃実験の状況を示している.実験は,重錘を衝突速度が V = 7 m/sに相当する高さ 2.5 m から自由落下させるこ とにより実施した.本実験装置は,重錘の落下位置およ び落下姿勢が均一になるように,上下左右および前後が 固定されたリニアウェイレールを介して落下するように 工夫が施されている.

3.2 材料物性值

実験時のコンクリートの材料物性値は材齢が 11 日で 圧縮強度,弾性係数,ポアソン比がそれぞれ 32.3 MPa, 28.3 GPa, 0.19 である.また,鉄筋の規格は D19 が SD345, D6 が SD295A である.各鉄筋の降伏強度,引 張強度は D19 が 379 MPa, 581 MPa であり,D6 が 373 MPa, 518 MPa である.プレアナリシス時の値に比べ て,コンクリート強度は 6.9 MPa 程度,鉄筋降伏強度 は D19 が 13 MPa 程度小さく,D6 が 30 MPa 大きい値 を示している.

図-2 重錘の形状寸法

図-3 支点部治具の形状寸法

写真-1 RC 梁の実験状況

図-4 測定システム

3.3 測定項目および測定システム

実験時の測定項目は、重錘衝撃力波形 P. 合支点反 力波形(以下,支点反力)R, RC 梁軸方向各点における 鉛直方向変位(以下,変位)波形D(載荷点より300mm ピッチに測定)である.Pの測定には容量および応答 周波数がそれぞれ1,470 kN, DC~4.0 kHz の起歪柱型 ロードセル¹⁾を, Rの測定には容量 500 kN, 応答周波 数 DC~2.4 kHz の重錘衝撃力測定用ロードセルと同型 のものを用いている. また, Dの測定にはストローク 200 mm, 応答周波数 915 Hz のレーザ式変位計を用い ている. 各センサは、レーザ式変位計を除き全て歪ゲー ジタイプである. したがって, これらのセンサーに対し ては全て直流増幅器を用いることとした。各センサー からの出力波形は全て広帯域用データレコーダ(応答周 波数 DC~40 kHz) に一括収録し, その後 100 µs/word のサンプリングで A/D 変換を施している. なお, 各応 答波形はフィルター処理をせずに整理することとした. 図-4には、本測定システムの流れ図を示している。

4. 実験結果

実験結果から得られた重錘衝撃力,支点反力および変 位波形に関して,以下に各項目毎に示す.なお,各波形 は,重錘の衝突時間を0msとし,重錘衝撃力,支点反 力,変位は正載荷時の値を正として整理している.

図-5には,重錘衝撃力波形を示している.(a)図は 160 ms 間を,(b)図には 5 ms 間を拡大して示している. 重錘衝撃力波形は衝撃初期に急激に立ち上がり,最大値 に達した後,1 ms 程度で零レベルまで急激に減少して いる.その後,振幅の小さい波動が 30 ms 程度持続し ている.

図-6には合支点反力波形を示している。衝撃初期に は、継続時間が10ms程度の振幅の大きい正弦半波の 波が励起し、その後重錘衝撃力の継続時間と同程度であ る正弦半波状の波形成分と高周波成分が合成された波形 が励起されている。また、衝撃初期には衝撃荷重載荷の 反動により支点部が負載荷状態となっていることが分か る。図-5,6より、最大支点反力値は最大重錘衝撃力 値の1/4~1/5程度であり、支点反力波形の波動の立ち 上がり勾配は重錘衝撃力波形のそれよりも緩やかである ことが認められる.

図-7は、載荷点変位波形を示している.図より、衝 撃荷重載荷後、変位は零レベルまで復元することなく、 60 mm 前後の値を中心に減衰自由振動を示しているこ とが分かる.

図-8には、実験終了後のRC梁のひび割れ分布を示 している.図より、梁全体に渡って下縁から上縁に進 展する曲げひび割れおよび、支点から1/4スパン近傍部 の梁上縁から下縁に向かって進展する曲げひび割れが 発生していることが分かる.また、載荷点部から梁下 縁に45°程度の角度で貫通する斜めひび割れも発生し ている.全般的には、梁中央部で角折れが生じており、 曲げ破壊型の破壊性状を示しているものと判断される.

5. 各研究者が適用した解析手法の概要

表-3には、各研究者が採用した解析手法の仕様を一 覧にして示している。なお、本ラウンドロビンアナリシ スの試みは、前述のように各参加研究者の解析手法の優 劣を判断することが目的ではなく、各解析手法の確から しさや境界条件の設定, 簡略化法を含めた数値解析手法 の適用性を検討することに第1の狙いがある. これよ り、ここではラウンドロビンアナリシスに参加した研究 者名は特定せず、解析法のみを特定して表すこととす る. 表より、ラウンドロビンアナリシスに用いられた 解析手法の構成は、梁要素や積層シェル要素を用いる2 次元有限要素法 (FEM) の適用が2研究者(以後,解析 法-1,2),2次元個別要素法 (DEM) の適用が2研究 者 (等径六角形配置、四角形配置の場合を、それぞれ解 析法-3,4),固体要素を用いた三次元 FEM の適用 が2研究者(支点治具を簡略した場合を解析法-5,支 点治具をモデル化した場合を解析法-6)の6種類であ ることが分かる.

上述のように、3次元解析は2研究者で採用し、他4 研究者が2次元解析を採用している.また、3次元解析 を採用した2研究者は解析モデルが大きく異なるものの いずれも市販の汎用コードである LS-DYNA を採用し ている.2次元解析法を適用した4研究者はいずれも自 社・自作コードを用いている.時間積分法に関しては、2 次元 FEM である解析法-1、2は Newmark β 法を適 用した陰解法であるが、他の4研究者は全て中心差分法 を適用した陽解法を採用している.以下に各研究者が使 用した解析モデルおよび材料構成則について概説する.

5.1 解析法ー]

図-9には解析法-1で採用した梁要素を用いた場合の解析モデルを示している.図に示されているように RC梁と重錘はそれぞれ12,1要素に分割されている.

項目	解析法-1	解析法-2	解析法-3	解析法-4	解析法-5	解析法一6
次元	2 次元	2次元	2 次元	2 次元	3 次元	3次元
離散化手法	FEM	FEM	DEM	DEM	FEM	FEM
時間積分法	陰解法	陰解法	陽解法	陽解法	陽解法	陽解法
使用コード名	自作コード	自社コード	自社コード	自作コード	LS-DYNA	LS-DYNA
解析モデル	full モデル	1/4 モデル	full モデル	1/2 モデル	1/4 モデル	1/4 モデル
コンクリート		積層	等径六角形配置	等径四角形配置	固体要素	固体要素
軸方向筋	梁要素		ばねモデル	ばねモデル	梁要素	固体要素
せん断筋		シェル要素	ばねモデル	ばねモデル	梁要素	梁要素
全節点数	15	78			627	7257
全要素数	14	40	3291	433	456	5996
時間刻み	1 µs	50 µs	0.1 μs	0.54 μs	82.4 µs	0.7 μs
要素分割(Y方向)					2	8
〃 (乙方向)		12	25	9	6	14
〃 (X方向)	10	34	100	49	22	41
要素直径			1.44 cm	3.60 cm		
要素積分点数	1 点積分	4 点積分			1 点積分	1 & 8 点積分
支点境界条件	ピン支持	上下緑ローラー	上下縁ピン	下縁ピン	下縁ピン	治具モデル化
减衰定数	20 %	RC 梁に 5 %	0 %	0 %	0 %	5 %

表-3 各解析手法の仕様一覧

図-9 解析法-1の解析モデル

また、重錘-RC 梁間には接触鋼棒を設置し、後述 のように圧縮力のみを伝達するモデルを定義している. なお、支持部は、支点治具を忠実にモデル化せずに梁 の断面重心位置をピン支持としている. 各要素の剛性 特性に関しては、RC 梁要素の場合には 図-10(a) に示 しているように断面方向に 12 分割して断面分割法に より曲げ剛性を評価しトリリニア型にモデル化してい る. 図中の第1, 第2降伏曲げモーメントは M_{v1} = 68.2 $kN \cdot m$, $M_{v2} = 74.2 kN \cdot m$ であり、曲げ剛性は $K_1 = 18.6$ MN·m, $K_2 = 0.25$ MN·m, $K_3 = 0.07$ MN·m $\sigma \delta \delta$. tん断剛性, 軸剛性 は特に規定していない. また, 重錘要 素は弾性体 (断面積 415 cm², 密度 5,820 kg/m³) とし, 軸剛性のみを規定している. 接触鋼棒は長さを 5 cm, 重錘と RC 梁間の接触力と変位の関係を表現するため に、図-10(b)で示すような多折線近似の応力- 歪関係 を仮定している. 図中の各折線の弾性係数は E1 = 8.42 MPa, $E_2 = 40.0$ MPa, $E_3 = 62.0$ MPa, $E_4 = 80.0$ MPa, E₅=120.0 MPa, E₆=192.0 MPa であり, 各折点の歪値 $\epsilon_6 = 0.32$ である.また、除荷勾配は $E_u = 2.0$ GPa と設 定している.

(a) RC 梁要素に関する曲げモーメントー回転角関係

(b) 接触鋼棒要素の応力-歪関係

5.2 解析法-2

図-11 には、解析法-2で採用した積層シェル要素 を用いた解析モデルを示している.本解析では、断面方 向にコンクリート部を10 要素、鉄筋部を2 要素に分割 した梁の完全付着を仮定する積層シェル要素を採用して いる.なお、軸方向には半スパンを34 分割している. せん断補強筋は重量のみを考慮している.重錘および支 点治具はばね要素でモデル化している.支点境界は設定 条件と等しい位置でピン支持としている.図-12には 本解析に適用した材料構成則を示している.重錘-梁間 には引張歪に対して軸剛性を 1/10,000 にした非線形ば ねを設置している.コンクリート要素に関してはひび割 れ発生後の軟化を考慮している.図中、コンクリートの 引張強度 f_t は圧縮強度 f'_c の 1/10 と仮定している.ま た、ひび割れ発生後のポストピークにおけるひび割れ面 と平行方向の引張側応力- 歪関係は、

$$\sigma = f_t \exp\{-1000(\varepsilon - \varepsilon_t)\}$$
(1)

と仮定している.ここで、 ϵ_t はひび割れ発生歪である. 一方、圧縮側の応力- 歪関係は、ひび割れ面と直交方向 に関しては、 $\epsilon \leq \epsilon'_{c0}$ に対して

$$\sigma_1' = f_c' \left\{ 1 - (1 - \varepsilon/\varepsilon_t) \frac{E_{\bullet} \varepsilon_{c0}'}{f_c'} \right\}$$
(2)

と仮定している.また、ひび割れ面と平行方向に関して は低減係数を導入し、 $\lambda = 0.3$ として

$$\sigma_2' = \lambda \, \sigma_1' \tag{3}$$

と設定している. ここで、 ϵ'_{c0} は f'_c 発生時の圧縮歪であり、 $\epsilon'_{c0} = 2,500 \mu$ と仮定している. いずれの場合も最

大応力到達後 0.2 f'_c まで線形に除荷され、その後 0.2 f'_c を保持するものと仮定している.また、鉄筋要素に関しては、 $\alpha_s = 1/1,000$ の歪硬化を考慮するバイリニア型の移動硬化則を適用している.なお、減衰定数は梁要素に対して 5%、重錘要素に 1%を設定している.

5.3 解析法-3

図-13には、解析法-3で適用した2次元個別要素 法に基づいた解析モデルを示している.本解析では、半 径 0.72 cm の円形個別要素を等径六角形配置にして RC 梁の断面高さ方向に25 段配置している.要素間には、 隣り合う要素の間に作用する軸力および接線方向力を評 価するために各方向に対してばねとダッシュポットを配 置している.なお、要素間ばねのばね定数はK = 4.03GN/m と仮定している.また、主鉄筋は、図-14に示 すように隣り合う要素を繋ぐ軸ばねとして配置し、せん 断補強筋は上端筋と下端筋を3分割する要素間を繋ぐ 軸ばねとして配置している.支点部は RC 梁の上下端

図-13 解析法-3の解析モデル

部に各一要素を配置してピン支持としている. 材料物性 値に関しては基本的に設定値を採用している他、コンク リートの引張強度,弾性係数,ポアソン比,密度を,そ れぞれ $f_t = 3.32$ MPa, $E_c = 27.9$ GPa, $v_c = 0.20$, $\rho_c = 2,400$ kg/m³ としている. また,主鉄筋およびせん断補 強筋の破断歪は,局所的な効果を考慮して,それぞれ $\epsilon_{ua} = 0.234$, $\epsilon_{us} = 0.208$ と設定している.

5.4 解析法-4

図-15には、解析法-4の個別要素法を用いた場合 の2次元解析に関する解析モデルを示している。個別 要素は直径が 3.6 cm であり、等径四角形状に配置して いる。同一材料間の法線方向、接線方向のばね定数 K,, K。は梁の断面幅 20 cm と修正係数 (α = 0.7) を考慮し て,決定している. コンクリート要素の場合は Kn = 3.97 GN/m, K_c = 1.68 MN/m, 軸方向鉄筋要素の場合は K_n = 3.30 GN/m, $K_s = 0.14 \text{ MN/m}$ と決定している. また, コンクリート要素の法線方向,接線方向のカー変位関係 は、図-16に示された構成則に従うこととしている. ここで F, δ はコンクリート要素間に作用する軸方向力 および相対変位, 0 は接線方向力である。また、内部 摩擦角は $\theta = 37^{\circ}$ と設定している.一方,鉄筋要素の カー変位関係は、軸方向、接線方向共に完全弾塑性のバ イリニア型にモデル化している.ここで、接線方向の降 伏応力は軸方向降伏力を F_{c} として $F_{c}/\sqrt{3}$ と仮定してい る。降伏の判定には von Mises の降伏条件を適用してい る、また、引張限界伸びも規定しており、引張限界歪と

2 要素間の距離の積として定義している. なお, コンク リート要素,鉄筋要素には歪速度効果を考慮している. コンクリート要素に関しては,引張歪に対して 3.0,圧 縮歪に対して 2.0 であり,鉄筋要素に関しては引張,圧 縮歪共に 1.2 としている.減衰定数は考慮していない. 支点反力波形に関しては高周波成分が卓越することより 1 msの矩形移動平均を施している.

5.5 解析法-5

図-17 には、解析法-5の3次元弾塑性有限要素法 を用いた場合の解析モデルを示している。本解析法で は、重錘先端部要素とRC梁の載荷点部要素には、重錘 のリバウンド現象を再現するために接触・剥離を伴う滑 りを考慮した接触面を定義している。材料構成則に関し ては、コンクリート要素には歪速度依存性を考慮した山 ロー藤本モデル²⁾、軸方向鉄筋要素には、歪速度依存性 を考慮したバイリニア型の弾塑性体モデルを適用してい る。鉄筋要素の歪硬化係数は初期弾性係数の1/100 と している。なお、重錘衝撃力および支点反力には1kHz のローパスフィルター処理を施している。

5.6 解析法-6

図-18には解析法-6の3次元弾塑性有限要素法を 適用した場合の解析モデルを示している。解析モデル は. RC 梁のみならず, 重錘, 支点治具, ロードセル等 の形状寸法を忠実にモデル化している。要素はコンク リート, 重錘, 支点治具, ロードセル, 軸方向鉄筋部に は 8/6 節点固体要素を、せん断補強筋要素には梁要素を 適用している。RC 梁への衝撃荷重は解析法-5の場合 と同様に重錘モデルの全節点に 7 m/s の初速度を付加す ることにより与えている. 重錘-梁間, 梁-支点治具間 には面と面の接触ー剥離を伴う滑りを考慮した接触面を 定義し、重錘や梁のリバウンドを考慮している。また、 鉄筋とコンクリート要素間は全て完全付着を仮定してい る. 図-19には本解析に採用したコンクリートと軸方 向鉄筋に関する構成則モデルを示している。コンクリー ト要素に関しては、弾性係数を 20.6 GPa、引張強度を 圧縮側に対しては圧縮強度を降伏強度とする完全弾塑性 のバイリニア型に、引張側は引張強度に到達後にカット オフされるものとしている。鉄筋要素に関しては塑性硬 化係数を弾性係数の 1/100 とするバイリニア型の等方硬 化則を適用している。なお、その他の重錘、せん断補強 筋、支点治具要素は全て弾性体と仮定している。また、 荷重に比例する粘性減衰定数は RC 梁の最低時固有振動 数に対して5%を設定することとしている.

6. 実験結果とプレアナリシス結果の比較

図-20 には、各解析法に基づいたプレアナリシス結 果の重錘衝撃力波形、支点反力波形および載荷点変位波 形を実験結果と比較して示している. なお、各波形は重 錘の衝突した時点を 0 ms とし、160 ms までを整理して いる.

解析法-1の場合には、重錘衝撃力波形の分布は実験 結果と大きく異なっていることが分かる.支点反力波形 は最大値に差異が見られるものの、全体的な分布性状は 両者で比較的対応している.載荷点変位波形に関して は、最大値は実験結果より若干大きく、また振動周期は 若干短く示されている.しかしながら、全体的な分布性 状は比較的よく実験結果と対応しているものと判断さ れる.

解析法-2の場合には、重錘衝撃力波形は後述の解析 法-3の場合と同様に、波形の立ち上がりから減衰に至 るまで両者でよく対応していることが分かる.支点反力 波形に関しては、低周波成分の分布性状は解析結果の振 幅が若干小さいものの両者でほぼ対応しているようであ る.一方、高周波成分に関しては解析結果の周期が実験 結果と比較して若干大きく評価されている.載荷点変位 波形に関しては、解析結果の最大値が大きくかつ振動周 期が長く示されているものの、最大値の差異は 10 %程

(a) コンクリート (b) 軸方向鉄筋 図-19 解析法-6 で採用した各材料の構成則モデル

度と小さい.

解析法-3の場合には、重錘衝撃力波形に関しては、 最大値や荷重継続時間等の分布性状が解析結果と実験結 果でよく対応している.支点反力波形に関しても、衝撃 初期の第1波とその後の継続時間の長い第2波から成 る分布性状は両者で類似している.しかしながら、第2 波目の最大値や継続時間には差異が見られる.載荷点変 位波形に関しては、解析結果の最大値が大きくかつ振動 周期が長く示されている.しかしながら、最大値に関す る両者の差異は15%程度である.

解析法-4の場合には、重錘衝撃力波形の分布性状が 実験結果と大きく異なっている.すなわち,解析結果の 最大値は小さく,荷重の継続時間は長い.支点反力波形 は、衝撃初期の高周波成分が励起していない.これは, 応答波形に対して矩形移動平均処理したことによるもの と推察される.しかしながら,低周波成分の分布性状は 概略対応しているようである.載荷点変位波形に関して は、前述の解析法-3の場合と同様に解析結果の最大値 が大きく,振動周期も長く示されている.しかしなが

図-20 各解析法によるプレアナリシス結果と実験結果の比較

ら,ここでも最大値に関する両者の差異は 10 %程度で ある.

解析法-5の場合には、重錘衝撃力波形における衝撃 初期の正弦半波の継続時間は実験結果と大略等しいこと が分かる.しかしながら、最大振幅値や第1波目以後 の波形性状は実験結果と異なっている.すなわち、解析 結果の衝撃初期における最大振幅値は小さく評価され、 かつ後続の波形は減衰自由振動的な性状を示している. 支点反力波形に関しても、最大値は実験結果に比べて小 さく、かつ荷重の継続時間も短く、重錘衝撃力波形と同 様に減衰自由振動状態と類似した性状を示しており、実 験結果を精度よくシミュレートするには至っていない. また、載荷点変位波形に関しても最大値が実験結果の 1/2程度であり、除荷後の振動周期が実験結果の 1/2 以 下と短く評価されている.

解析法-6の場合には、重錘衝撃力波形および支点反 力波形とも、解析結果と実験結果はよく対応している ことが分かる.しかしながら、載荷点変位波形に関し ては、振動周期は大略実験結果と対応しているものの、 振動の振幅は小さく評価されている.

7. ポストアナリシス

ラウンドロビン・プレアナリシス結果と実験結果の比 較を公開後、プレアナリシス結果と実験結果の差異に ついて検討を行い、ポストアナリシスを試みた.なお、 プレアナリシス結果が十分の精度であるとして特に修正 を行わない研究者 (解析法-2,3)もある.以下にプ レアナリシス後の変更点について、その概要を述べる.

7.1 ポストアナリシスの仕様および修正点

表-4には、最終的に採用したポストアナリシスにおける解析手法の仕様を各解析法毎に示している.表中、網掛け部がポストアナリシスにおける変更点である.網掛け部のない解析法-2,3に関しては、プレアナリシスの場合と同様であることを示している.表より、解析法-1,6の場合には、減衰定数をそれぞれ20%から5%、5%から2%に変更している.また、個別要素法を採用している解析法-4の場合には要素直径を3.6 cm

から 2.5 cm として、要素数を 441 から 898 に増加させ ている.また、解析法-5の場合には解析法-6と同様 に治具に固体要素を用いて詳細にモデル化している.そ の他、解析法-1の場合には接触鋼棒の長さを 5 cm か ら 1 cm に変更している.さらに RC 梁の剛性特性およ び接触鋼棒の応力-歪特性値を以下のように修正してい る.すなわち、RC 梁の断面の各降伏曲げモーメントは $M_{y1} = 62.2$ kN·m, $M_{y2} = 70.6$ kN·m, $M_{y3} = 17.70$ kN·m である.また、接触鋼棒の各弾性係数は $E_1 = 0.08$ MPa, $E_2 = 61.9$ MPa, $E_3 = 149$ MPa, $E_4 = 192.0$ MPa, $E_5 =$ 192.0 MPa, $E_6 = 192.0$ MPa であり、各折点の歪値は ε_1 $= 0.05, \varepsilon_2 = 0.10, \varepsilon_3 = 0.15, \varepsilon_4 = 0.20, \varepsilon_5 = 0.25, \varepsilon_6$ = 0.50 である.また、除荷時の剛性勾配は $E_u = 192.0$ MPa としている。解析法-4、6の場合には、実験時 の材料試験結果に基づき各材料定数を修正している.

7.2 ポストアナリシス結果と実験結果との比較

図-21 には各機関におけるポストアナリシスおよび プレアナリシス結果と実験結果との比較を, プレアナ リシス時と同様の各波形について示している.

解析法-1に関する検討結果を見ると、重錘衝撃力波 形分布はプレアナリシス時より改善していることが分 かる.すなわち、衝撃初期の立ち上がり勾配や荷重の 継続時間が実験結果により対応した傾向を示している. 支点反力波形に関しては、低周波成分がプレアナリシス 結果と類似の性状を示しているものの、高周波成分は励 起されず、実験結果やプレアナリシス結果と大きく異 なっている.載荷点変位波形は、実験結果とよく対応し ていることが分かる.このように、梁要素を用いた解析 においても、RC 梁や接触鋼棒に用いるパラメータを適 切に同定することによって比較的よい精度で実験結果を シミュレート可能であることが明らかとなった.

解析法-2,3に関しては,解析者がポストアナリシ スが必要ないとの判断より解析を実行していないため, プレアナリシス結果と同様の分布を示している.

解析法-4に関しては、重錘衝撃力波形の最大値が実 験結果に比べて小さいものの、その周波数特性は実験結 果に対応していることが分かる.支点反力波形に関して は、低周波成分はプレアナリシス時と同様に大略実験結

項目	解析法-1	解析法-2	解析法-3	解析法-4	解析法-5	解析法-6
全節点数	15	78	н. 1		2178	7257
全要素数	14	40	3291	898	1914	5996
時間刻み	1 μs	50 µs	0.1 μs	0.376 µs	82.4 μs	0.7 μs
要素直径			1.44 cm	2.5 cm		
支点境界条件	ピン支持	上下緑ローラー	上下縁ピン	下縁ピン	治具モデル化	治具モデル化
減衰定数	5%	RC 梁に 5 %	0 %	0 %	0 %	2 %

表-4 ポストアナリシスにおける各機関の解析手法の仕様一覧

部はプレアナリシスとの変更点

Ж

図-21 ポストアナリシスとプレアナリシス結果および実験結果との比較

果を再現している. 載荷点変位波形に関しては,最大 応答値が実験結果と大略類似している. しかしながら, 2 波目の振幅は若干大きく示されている. 全体的にはポ ストアナリシスによって解析精度が向上していると判断 される. これより個別要素法を適用する場合において, 要素数が精度に大きく影響することが明らかになった.

解析法-5の場合には、支点治具部を解析法-6と同 じく固体要素でモデル化している.重錘衝撃力波形に関 しては最大値が未だ実験値に比べて小さく示されてい る.しかしながら、除荷後の波形は実験結果と同様ほぼ 零レベルを持続しており、実験結果とよく対応している ことが分かる.支点反力波形に関しても、最大値は未だ 実験結果とよく対応しており、ポストアナリシスによっ て解析精度が向上していることがうかがえる.載荷点変 位波形に関しては、最大値が未だ実験結果より小さく 示されているが、プレアナリシス時に比べると改善が 図られている.特に振動周期は実験結果とよく対応し ていることが分かる.これより解析法-5の場合には、 実験に即して支点治具をモデル化することにより、より 精度の高い解析が可能であることが明らかになった.

解析法-6に関しては、重錘衝撃力波形の分布性状は プレアナリシス時と同様に実験結果とよく対応してい る.支点反力波形は、荷重の継続時間がより実験結果 に対応している.載荷点変位波形に関しては、最大値 が若干小さく示されているものの振動周期や残留変位 は非常によく実験結果をシミュレートしており、解析 精度の改善が図られている.これより、減衰定数は RC 梁の変位波形に大きく影響することが明らかとなった. また、本検討結果によって曲げ破壊が進行する RC 梁の 場合には最低次固有振動に対して 2 %の減衰定数を仮 定することにより、RC 梁の衝撃挙動が精度よくシミュ レーション可能であることが明らかになった.

8. まとめ

本研究では,我が国における RC 構造を対象とした 衝撃応答解析に関する解析精度の現状を把握し,かつ 標準的な解析方法の確立に向けての資料収集を目的に, 静的に曲げ破壊が卓越する矩形 RC 梁の重錘落下衝撃荷 重載荷時の衝撃挙動に関するラウンドロビンアナリシス を実施した.その結果,

1) プレアナリシスにおいて、重錘衝撃力波形に関しては、梁要素を用いた有限要素解析の場合には衝撃初期の波形性状が大きく異なるものの、他の解析手法の場合には大略実験結果と類似したものとなる。支点反力波形に関しては、支点治具を詳細にモデル化せずに3次元有限要素解析を用いた解析法の場合には低周波成分の周期が1/2程度と小さい結果となるが、その他の解析手法の場合の低周波成分は類似

の結果を示している.載荷点変位波形に関しては, 3次元有限要素法を用いた解析結果はいずれもが過 小評価となっているが,他の2次元解析手法によ る解は実験結果と大略類似した性状を示している.

- 2) ポストアナリシスに関しては、解析手法にかかわらず、いずれの場合も実験結果と大略類似の結果を得ることが出来た.これより RC 梁の衝撃挙動は解析の次元、離散化手法、時間積分法にかかわらず適切なモデルや材料構成則、減衰定数を設定することにより、比較的精度のよい評価が可能である.
- 3)特に個別要素法の場合には一要素の大きさが、また 3次元有限要素法の場合には支点治具のモデル化の 有無や質量に比例する減衰定数の大きさが RC 梁の 衝撃挙動に大きく影響することが明らかになった。

以上より, RC 構造物の耐衝撃挙動を解析するための 1 つの指標を示すことが出来たものと判断される.しか しながら,本検討は単純な断面形状でかつ曲げ破壊が先 行する RC 梁を対象として実施したものである.今後は 各解析法に対する汎用性の高い指針を提示することが出 来るように継続的に検討して行きたいと考えている.

謝書 本ラウンドロビンアナリシスへの参加研究者(機関)は,井元勝慶氏(大林組技術研究所),河西良幸氏(前 鹿島建設技術研究所,現前橋工科大学),香月智氏(防 衛大学校),上林厚志氏(竹中工務店技術研究所),岸徳 光氏(室蘭工業大学),桝谷浩氏(金沢大学)である.

実験は 2000年3月10日に室蘭工業大学に設置され ている耐衝撃耐荷力評価実験装置を用いて,大野友則氏 (防衛大学校),小林治俊氏(大阪市立大学),三上隆氏 (北海道大学))の他,岸徳光氏,桝谷浩氏,河西良幸 氏,三上浩氏(三井建設),今野久志氏(北海道開発局), 川瀬良司氏(構研エンジニアリング),松野進氏(日立造 船)の立ち会いのもとに実施された.また実験を実施す るにあたり室蘭工業大学大学院建設システム工学専攻の 栗橋祐介君(現北海道開発土木研究所研究員)をはじめ とする大学院生には多大なる御支援を頂いた.ここに記 して感謝の意を表する.

参考文献

- 1) 土木学会構造工学委員会、衝撃実験・解析法の標準化 に関する研究小委員会:第II編委員会経過報告、5.ラ ウンドロビン・プレアナリシスの実施要領および経過 報告、第5回構造物の衝撃問題に関するシンポジウム 論文集, pp.82-111, 2000.
- 山口 弘,藤本一男,野村設郎:高速荷重を受ける鉄筋コンクリート梁の動的応答解析,構造工学論文集,Vol.33B, pp.189-199, 1986.

(2002年9月13日受付)