湿原植生の変化をもたらす 水文要因の解析

ANALYSIS OF HYDROLOGICAL PROCESSES RELATED TO WETLAND VEGETATION

羽山早織¹・中津川誠² Saori HAYAMA and Makoto NAKATSUGAWA

¹正会員 北海道開発土木研究所 環境研究室(〒062-8602 札幌市豊平区平岸1条3丁目) ²正会員 工博 北海道開発土木研究所 環境研究室長(〒062-8602 札幌市豊平区平岸1条3丁目)

In Sarobetsu Mire, the groundwater level has dropped because of drying. There is concern regarding increase in the area occupied by *Sasa* bamboo and displacement of the original vegetation. The mire basin has seen decreases in snowfall and river water level during the snowmelt season. For mire conservation, it is necessary to understand how changes in the hydrological cycle affect the groundwater in the basin.

In this research, to determine how *Sasa* bamboo has spread, we employed remote sensing data collected over the last 23 years as well as ground truth data. We separated river runoff components to clarify water balance in the basin and estimated rates of rainfall and snowmelt water recharge into groundwater. These estimates were used as simulation inputs. The simulation was designed to analyze groundwater responses to changes in rainfall, snowmelt water volume, and river water level, toward revealing a causal relationship with the increase in *Sasa* bamboo-covered area.

Key Words: wetland, groundwater, remote sensing, Sasa bamboo, recharge rate

1. はじめに

環境の保全や復元が注目される中,遊水機能や貴重な 動植物の生息の場となる湿原は面積の減少により保全が 叫ばれている.北海道の北部に位置するサロベツ湿原も 乾燥化に起因するササの侵入によって湿原独自の植生の 喪失が懸念されており.その保全策が望まれている.

サロベツ湿原では昭和36年頃から農業用地の開拓に伴い調査が始められてきたが,その中でサロベツ原生花園 (図-1)におけるササ地の急激な拡大が報告されている¹⁾. この付近では北海道開発局²⁾がリモートセンシングによる植生状況の把握を試みており,広範囲にわたる高層湿 原の分布が特徴として捉えられている.一方,湿原域での ササの侵入については,地下水位の低下が大きな要因と して報告されている³⁾.これを背景に,湿原域の観測データ を反映できる地下水シミュレーション手法が張ら⁴⁾に よって提案された.

地下水の変化に影響を及ぼすものとしては,流域の降 水量や積雪の変化,周辺河川水位や流量の変化等が考え られる.それを評価する上で流域全体の水循環を把握し,

図-1 サロベツ川流域箇所図

地下水への影響をみることが必要となる.

そこで本研究では、過去と現在におけるササの侵入領 域を特定することを目的として、航空写真と衛星画像か らササ地と湿原植生の判読を実施した.一方,数値フィル ターによる河川流出の成分分離に基づき、地下水涵養機 構の推定を試みた.すなわち、水収支的に妥当な形で得ら れた地下水涵養量を地下水シミュレーションに活かすこ 表-1 植生分類に使用した画像

画像	撮影年月日	バンド数	解像度	備考
デジタルオルソ	1977年 10月25~27日	3	lm	カラー (国土 地理院撮 影の空中写真)
IKONOS	2000年10月24日	3	lm	可視光域、パンシャープン化 (日本スペースイメージング社製)

表-2 植生分類の再分類項目

最尤法による分類項目	再分類項目	
トト゛マツ	湿原	
ハンノキ		
ミカス゛キコ゛ケ・イホ゛ミス゛コ゛ケ		
トマリスケ゛・ ミス゛コ゛ケ		
ヌマカ゛ヤ		
ヨシ・イワノカ゛リヤス		
チマキサ゛サ・トマリスケ゛	ササ地	
チマキサ゛サ		
耕作地		
裸地	裸地	
水域	水域	

とを目指す.さらにシミュレーションにより,積雪寒冷地の水循環上重要な融雪期の1)降雨・融雪量および2)河川 水位の変化に対し,地下水の感度を分析するものである.

2. サロベツ川流域の概要

サロベツ湿原は天塩川の支川・サロベツ川周辺に広が り,利尻礼文サロベツ国立公園の一部に指定されている (図-1参照).サロベツ川は流域面積655.4km²を有し,流域内 のサロベツ原生花園ビジターセンターは初夏には観光客 が多く訪れる.

今回の解析には、北海道開発局で設置されている観測 所における河川水位・流量、積雪深と豊富(とよとみ)アメ ダスと稚内気象官署のデータ(風速、日射量、日照時間,相 対湿度、気温)を用いた.

3. 湿原の植生分類と植生変化

最初に,過去と比較してどの程度ササが湿原内に侵入 しているか把握するために,航空写真と衛星画像を用い

図-2 1977年(左図)と2000年(右図)の再分類結果

表-3 分類項目別の変化した面積と割合 2000 湿原 計 10,244 (0.1%) (0.1% 9,340 838 (0.0% 3,144,384 3,232,091 (35.7% (0.1% <u>1,810</u> (0.0%) 7,525 (0.0%

128

34,699

51.980

59,471

86,500

21,545

4,014,263

12.847

ž†

て植生分類を実施した.画像の選定にあたってはササ地 と湿原域のコントラストが可視的にも比較的明らかであ る10月に撮影された画像を採用した(表-1)、この際の解析 手法としては最尤法5)を用いる.その適用に当たってはま ず平成2~6年で作成された植生図%と現地踏査から植生 とバンド値の尤度(条件付確立)を対応づけるトレーニン グデータを作成する.次に任意地点で.バンド値の尤度が 最大になる植生が何かを判別していく.これを実施した 後、さらにササの侵入範囲を特定するため、湿原が広がる ビジターセンター付近(写真-1)において、農地や牧草地を 除き,再分類をおこなった(表-2).再分類した結果を図-2に 示す.図から、どちらの画像も湿原の西側にササ地(灰色) が.東側に湿原植生(白)が広がっていることが認識された. なお,クロスチェックを兼ねて,バンドのパターンマッチ ングから判別する方法でも植生分類を実施し、ほぼ同様 の結果となることが確認できた、次に再分類した画像を 重ね合わせ、ササ地の変化を判定した.このとき湿原と分 類されたものは1,ササ地は2,裸地は3,水域は4という数値 をデータに与え、下記の式で得られる数値を図-3の凡例 に示すように色分けした.

$$LC_{1977} \times 10 + LC_{2000}$$
 (1)

ここで,*LC*₁₉₇₇は1977年の分類結果,*LC*₂₀₀₀は2000年の分類 結果である.結果は1m×1mの画素毎に5m×5mのフィル ターをかけ,その中に含まれる最多値の画像を示す.

図-3より湿原からササ地に変化した箇所(図中の黒い 部分)はササ地と湿原域の境界部分で明確に現れている. 表-3によると1977年から2000年の間に湿原の面積は 5,455,749m²(全面積の62.0%)から4,690,229m²(全面積の 53.3%)に減少し,そのうちササ地に変化したものは 840,809m²(全面積の9.6%)であり,反対にササ地から湿原 へ変化したものは77,529m²(全面積の0.9%)で,差し引き 763,280m²(全面積の8.7%,湿原面積の14.0%)が湿原植生か らササ地に変化したと推定できた.このことから植生変 化のうち湿原植生からササ地への変化に注目できること がわかった.また,ササが侵入した距離としてはビジター センター付近で,23年間で約30mとなった.環境庁の調査⁷ によるとササの拡大速度には年により違いがあるものの 一年で119cm拡大する報告もあることから今回の結果は ほぼ妥当であると考える.

4. 流域水循環の動向

次に流域水循環の動向について示す.図-4は湿原域に 最も近い開運橋観測所の3-5月の流出高の5年移動平均値 を示しているが,1980年代の後半にかけて減少傾向を示 しているのがわかる.また図から最大積雪深も減少傾向 を示しており,この変化と流出高の変化が対応している のがわかる.このような流出高の低下傾向は融雪時期が 顕著であることが既往検討⁴⁰でわかっている.また,サロベ ツ川流域における融雪期の流出高は,年間流出高の約半 分を占めることからも,積雪量の変化が地下水への涵養 量に大きく影響すると考える.

次に図-5は融雪時期である3-5月の河川水位の5年移動 平均を示したものである.図から湿原上流に位置するサ ロベツ橋,豊富橋で大きな減少傾向を示しており,中流に 位置する開運橋でも1980年代後半にかけて緩やかではあ るが減少傾向を示している.また最大積雪深も河川水位 の変化と対応していることがわかる.

以上から,雪の減少と融雪期の河川水位の低下が確認 された.これより地下水への影響要因としては,融雪起源 の涵養量の変化や,融雪期の河川水位の変化に着目する 必要があると考える.

5. 湿原の地下水涵養機構

降水の地下水への涵養は地下水の挙動を把握する上で 一つの鍵となるが,広範囲にわたる涵養量を実測するこ とは困難である.そこで本研究ではサロベツ川流域に位

置する河川流量から成分分離を行い,地下水流出が全流 出に占める割合を用いて開運橋流域の水収支を明らかに し,それをもって地下水への涵養率を推定した.

(1) 河川流量の成分分離

流出現象は降雨や融雪の土壌への浸透や貯留などの作用によって、早い成分(表面・中間流出)と遅い成分(地下水流出)に分離することができる.ここで流出成分の分離 方法として数値フィルターを利用する.日野ら⁹によると 各成分は次のように表せる.

$$\begin{cases} q_s(t) = q(t) - q_g(t) & (q_s(t) \ge 0) \\ - & - \end{cases}$$
(2)

$$\left[q_g(t) = \alpha \sum w(\tau)q(t-\tau)\right]$$
(3)

$$w(\tau) \begin{cases} = c_0 \exp(-c_1 \tau/2) \sinh(\sqrt{c_1^2/4 - c_0 \tau}/\sqrt{c_1^2/4 - c_0}) \\ = 0 \qquad (\tau < 0) \end{cases}$$
(4)

ここで, q_s は表面・中間流出流量(m^3 /s), q_s は地下水流出流量 (m^3 /s),qは実測流量(m^3 /s), α は q_s を負にしないための重み 係数(≤ 1)である.係数 c_0 及び c_1 は次のように示される.

$$\int c_0 = (\delta / T_c)^2 \tag{5}$$

$$\left[c_{1}=\delta^{2}/T_{c}\right]$$
(6)

ここで、 δ は減衰係数、 T_c は時定数(day)である. δ は非振動 条件を勘案して2.1とした.また、時定数 T_c はハイドログラ フの逓減部の解析等から求める.今回の解析にはサロベ ツ川流域内で比較的H-Q式の精度が高く、湿原内に位置 する開運橋で実施した.この際得られた時定数は21(day) であり、成分分離には83',84',97',98'年の融雪時期(3~6月) の日流量データを用いた.

成分分離の結果の一例として98°年の結果を図-6に示 す.また表-4には全流出に占める地下水流出の割合と表 面・中間流出の割合を示す.表-4より,開運橋において地 下水流出が全流出に占める割合は平均で24.0%となり,湿 潤な湿原では表面・中間流出成分が多いことがわかる.

(2) 水収支を考慮した地下水涵養率の推定

地下水への涵養率を算定するため,流出成分分離の結 果に基づき,図-7に示すように地下水解析領域(開運橋流 域と称する図-7の網掛け部)の水収支を整理した.ここで 降雨・融雪量は既報⁸⁾の2層モデルから推算した流域の 年平均値(降水量1,201mm/y-蒸発散量614mm/y)を使用し た.この際,降雨・融雪量のうち表面・中間流出としては 分水嶺より海側にある領域では海へ流れ,それ以外はサ ロベツ川に集水されると考える.一方,地下水流出として は全てがサロベツ川に流出すると仮定している.した がって,開運橋流域での水収支は以下のように表すこと が出来る.

$$Q = Q_0 + q + RA + \alpha' Ra \tag{7}$$

$$Q = Q_s + Q_g \tag{8}$$

ここで,Qは開運橋流域からの流出量(m³/y),Q₆は上流端の サロベツ橋流域からの流入量(m³/y),Q₈は開運橋の表面・ 中間流出量(m³/y),Q₈は開運橋の地下水流出量(m³/y),q 開運橋流域と隣接する他流域からの地下水流入量 (m³/y),Rは(蒸発散を除いた)降雨・融雪量(m/y),Aは地形 上の流域面積(m²),aは海岸部面積(m²),a[']は降雨・融雪量 の地下水への涵養率である.また,5節(1)で推定した地下 水流出の比率α(=0.24)を与え,流出成分ごとの収支を考 えると,

$$Q_s = (1 - \alpha)Q = Q_0 + (1 - \alpha')RA$$
 (9)

$$Q_g = \alpha Q = q + \alpha' R(A + a) \tag{10}$$

となる.上記連立式から未知量qおよびα'を求める と,q=32.3×10⁶m³/y,α'=0.45となった.その結果として推 定されたものを図-7に示す.

6. 地下水シミュレーションによる感度分析

前節で涵養率が設定されたので,それに基づく地下水 シミュレーションを実施する.シミュレーションは1)融 雪期の降雨・融雪涵養量(融雪+降雨-蒸発散)のみが変化 した場合と,2)河川水位のみ変化した場合,3)その両方が 変化した場合について地下水位の応答をみた.

(1) 地下水解析モデルの概要

シミュレーションは、次式に示す二次元定常モデルを 図-1に示す解析範囲に適用しておこなう.

$$\frac{\partial}{\partial x}\left(T\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(T\frac{\partial h}{\partial y}\right) + q = 0 \tag{11}$$

ここで,hは地下水位(m),Tは帯水層の透水量係数(m²/s),q は涵養量または揚水量(m/s)である.サロベツ湿原での揚 水量は地下水利用がほとんどないものと考えてゼロとし ている.涵養量は5節(2)で求めた涵養率(0.45)を降雨・融 雪量にかけたものを使用する.

境界条件のひとつは解析対象範囲の河川水位である. ここでは,主要河川の天塩川とサロベツ川,湖沼について 実測水位を内挿し,定水頭境界として与える.また,解析対 象範囲外からの流入については,5節(2)で推定したqに基 づき,流量依存の水頭境界として与える.このほか,海域境 界は定水頭境界として0mを与える.

初期水位は,張ら⁴⁾が提案しているROKMT法 (Residual Ordinary Kriging with Modified Trend)を用いて1997年の一 斉地下水調査の結果から推定したものを使用した.計算 に用いた三角形要素数は1,903個,節点は1,051個である.な お,透水量係数は二次元定常地下水流動モデルにGauss-Newton法を適用し,節点ごとに同定したものに基づく.具 体的には2000~2002年の年平均の降雨・融雪量および河 川水位を与え,そのときの地下水位が再現できる最適値 として推算した.2000~2002年の平均地下水位の計算結 果を図-8に示す.また図-9は地下水観測点(図-8参照)での 計算結果と実測値の比較を示す.図-9から推定された透

水量係数で地下水位がよく再現されていることがわかる.

(2) 降雨・融雪量の変化による地下水への影響

上記モデルを使用して,まずは降雨・融雪量の変化に よる地下水の応答をみる.条件設定に先立ち,図-10に2層 モデルから推算したサロベツ川流域の融雪期(3~5月)降 雨・融雪量を5年移動平均したものを示す.これを勘案し, 図-10の1985年の値(83'~87'平均値116.8mm/mon)と2000 年の値(98'~02'平均値110.8mm/mon)を,河川水位は2000 年~2002年の平均水位を入力値として設定した.図-11は 1985年と2000年の条件による地下水位計算結果の差を表 したものである.

図からサロベツビジターセンター付近では,地下水位 が過去と比較して16cmほど低下しており,2~4cmと変化 が小さい他の箇所と比較して最も影響を受けていること がわかる.このことからサロベツビジターセンター付近 では他の箇所よりも降雨・融雪涵養の影響を受けやすい

図-11 降雨・融雪量の変化による地下水変化

表-5 使用した実測の河川水位とその変化

3-5月平均水位	83'-87'平均(m)	98'-02'平均(m)	水位変化(m)
サロベツ橋	7.76	7.48	-0.28
豊富橋	7.73	7.62	-0.11
開運橋	1.22	1.17	-0.05
音類橋	0.63	0.54	-0.09
浜里	0.54	0.54	0
天塩大橋	0.84	0.61	-0.23
王慎河口	0.32	0.31	-0.01

地下水水理構造となっていると推察される.

(3) 河川水位の低下による地下水への影響

次に年間で最も木位が高くなる融雪期(3~5月)に,河川 木位が低下することで地下木にどのような影響があるか をシミュレーションする.このときの河川水位は表-5に 示す.計算条件としては図-5の1985年(83'~87'年の平均 値)と2000年(98'~02'年の平均値)の河川水位を与え,6節 (2)と同様に,両者の結果を比較した.なお,ここで用いた 降雨・融雪量はいずれも2000~2002年の平均値とした.

得られた地下水位変化量の結果を図-12に示す.図より 河川に沿って地下水位が低下しており,河川水位の低下 が大きい上流で22cmと低下が顕著で、下流に行くほどその影響は小さくなる.またビジターセンター付近では6cm の地下水位の低下がみられるが、これはビジターセン ターの西側をサロベツ川が流れているために影響を受け ているものと考える.

(4) 降雨・融雪量と河川水位の変化による地下水変化

さらに降雨・融雪量と河川水位の両者を変化させてその影響をみる.前節の解析で設定した1985年の降雨・融雪量(116.8mm/mon)と河川水位(表-5の83'-87'平均値)による計算結果と,2000年の降雨・融雪量(110.8mm/mon)と河川水位(表-5の98'-02'年平均値)による計算結果について,地下水位の差を示したのが図-13,14である.

図-13から降雨・融雪量と河川水位どちらも変化させたことで図-11と図-12よりも全体的に地下水位が下がっていることがわかる.影響としては河川上流部で24cmの低下,ビジターセンター付近で22cmの低下となっている.

図-14にビジターセンター付近の拡大図(図-13参照)を 示すが、ビジターセンターは降雨・融雪涵養の影響を受 けるだけでなく、河川からの影響も受けるため、他の箇所 に比べると地下水位の感度が大きい箇所ともいえる.

この原因として、当該箇所はビジターセンター東側の 台地(図-14丸山東側:標高約10m)と、西側のサロベツ川(図-14開運橋付近:標高約3m)に挟まれ、地形標高が急に低く なる箇所にあるため、地下水が変化しやすいことが考え られる.実際、リモセン解析の結果(図-3参照)から、南北方 向に広がるササ地が西から東に向かって拡大しつつあり、 本シミュレーションはそれと一致するような地下水位の 低下傾向を表せていると考える.

7. まとめ

本研究ではサロベツ湿原周辺を対象として,植生分類 と地下水のシミュレーションを実施した.本研究で得ら れた知見を下記に示す.

- 1)リモートセンシングデータから過去約20年で解析範囲 内(約880ha)において湿原面積の14%がササ地に変化し たことを判読した.
- 2)河川流量の成分分離から湿原域の涵養率を推定し,降 雨・融雪量の45%が地下水へ寄与していると推定した.
- 3)降雨・融雪量と河川水位の変化が地下水に及ぼす影響 を計算し,これらがリモセンで推定されたササ地の拡 大を促す地下水位の低下に関与することを示唆した. 今後は,地下水の非定常解析を通じて季節的な地下水 位の動向を把握していきたい.

謝辞:本研究は国土交通省北海道開発局からの受託研究による補助を受けて行なったものである.また,山梨大学の竹内教授,石平助教授及び中国水利省計画局の張祥

偉氏には多くのご指導をいただいた.記して謝意を表す.

参考文献

1) 富士田裕子: サロベツ湿原の変遷と現状, 財団法人自然保護助 成基金1994・1995年度研究助成報告書, pp.59-71, 1997.

2)北海道開発局:サロベツ総合調査報告書-泥炭地の変遷-,1978.

- 3)梅田安治,辻井達一,井上京,清水雅男,紺野康夫:サロベツ泥炭地 の地下水位とササ,北海道大学農学部邦文紀要,第16巻第1 号,pp.70-81,1988.
- 4)張祥偉,山本直樹,竹内邦良,石平博,中津川誠,羽山早織:情報不 足条件下での広域地下水の非定常流動解析手法に関する研究 -サロベツ湿原を例として-,水文・水資源学会誌,Vol.16.No.4,pp.349-367,2003.

5)日本測量協会:図解リモートセンシング,1992.

6)北海道開発局:サロベツ川流域自然環境調査総合報告書,1999. 7)環境庁自然保護局,第2期調査報告書,1998.

8)羽山早織,中津川誠,張祥偉:サロベツ湿原における水循環の把 握と地下水への影響,水工学論文集,第47巻,pp.175-180,2003.

9)日野幹雄,長谷部正彦:水文流出解析,森北出版,1985.

(2003.9.30 受付)