論文 ビニロン短繊維混入軽量コンクリートを用いた RC 梁の繰り返し 衝撃載荷実験

竹本 伸一*1・岸 徳光*2・三上 浩*3・栗橋 祐介*4

要旨:本研究では、割裂に対して脆弱性を示す軽量コンクリートを用いた RC 梁の耐衝 撃性能を向上させることを目的に、ビニロン短繊維を混入した場合の軽量コンクリート RC 梁に関する重錘落下衝撃実験を実施した。本研究により、1) ビニロン短繊維を混入す ることによって軽量コンクリートの剥落やひび割れの開口を抑制することができること、 2) 短繊維混入率を 1.5 % 程度まで増大することにより、 RC 梁の破壊形式をせん断破壊型 から曲げせん断破壊型に移行させることができること、等が明らかとなった。

キーワード: RC 梁, 軽量コンクリート, ビニロン短繊維, 重錘落下衝撃実験, 耐衝撃性

1. はじめに

近年、道路橋や鉄道橋等の上部構造の軽量化 を目的として、軽量コンクリートの適用が検討 され¹⁾,一部で実用化されている。軽量コンク リートは、使用する粗骨材の強度が小さいこと から、引張強度やせん断強度が普通コンクリー トに比べて小さくなることが知られている。そ のため, RC 棒部材のせん断耐力は, 普通コン クリートを用いる場合に対して70%に低減する ことが土木学会コンクリート標準示方書(以後, 示方書)²⁾において義務づけられている。一方, コンクリートの靱性能を改善する対策として, 種々の短繊維を混入する方法が考えられている。 最近では、親水性がありセメントペーストとの 付着性能に優れているビニロン短繊維に着目し た研究が盛んに行われている。著者らもビニロ ン短繊維を混入した普通コンクリート RC 梁に 関する静的・衝撃的載荷実験を行い、短繊維の 架橋効果によって梁のせん断耐力が飛躍的に向 上することを明らかにしている³⁾。

このような普通コンクリートを用いる場合の 検討結果から,軽量コンクリートを用いる場合 にも同様の手法を適用することによって部材の 引張靱性やせん断耐力を向上させることが可能 と推察される。また,その効果は引張強度が普 通コンクリートよりも小さい軽量コンクリート においてより顕著であるものと考えられる。

このような観点から、本研究では、軽量コン クリートにビニロン短繊維を混入した場合の耐 衝撃性向上効果を確認することを目的に、RC 梁 を用いた重錘落下衝撃実験を実施した。

本実験では、短繊維を混入しない場合にせん 断破壊型で終局に至る断面を対象として、RC 梁 の耐衝撃性状に及ぼすビニロン短繊維の体積混 入率(以後,短繊維混入率V_f)の影響に着目して

表-1 試験体の一覧

試験 体名	短繊維 混入率 V _f (vol, %)	衝突 速度 V (m/s)	計算 せん断耐力 <i>V_{usc} (kN)</i>	計算 曲げ耐力 P _{usc} (kN)	せん断 余裕度 α
F0	0	1~4	82.5	144.8	0.57
F1	0.5	$1 \sim 4$	77.6	140.9	0.55
F2	1.0	$1 \sim 7$	82.5	144.3	0.57
F3	1.5	$1 \sim 7$	64.0	134.0	0.48

*1 ドーピー建設工業(株)北海道本店設計部部長 (正会員) *2 室蘭工業大学 工学部建設システム工学科教授 工博 (正会員)

*3 三井住友建設(株)技術研究所主席研究員 博(工) (正会員)

*4 北海道開発土木研究所材料研究室研究員 博(工) (正会員)

図-1 RC 梁の形状寸法および配筋状況

表-2 軽量コンクリートの配合

短繊維	W/C	W/C s/a		単位量		混和剤			スランプ	空気量	
混入率		57 a		(kg / m^3)			(kg / m ³)			/ / • /	工べ重
V_f (vol. %)	(%)	(%)	W	C	S	G	高性能減水剤	AE 剤	増粘剤	(cm)	(%)
0	48.7	45.0	152	312	836	481	2.000	0.811	0	18.5	5.4
0.5	48.7	53.0	165	339	954	398	3.940	0.678	0.0330	16.0	4.0
1.0	48.7	58.0	175	359	1018	348	3.375	0.718	0.0875	6.5	5.3
1.5	50.0	63.0	200	400	1043	289	6.000	14.400	0.2000	$58 \times 62*$	8.4
						· · · · · · · · · · · · · · · · · · ·	2 - 1				

G:膨張頁岩人工軽量骨材

表-3 軽量コンクリートの力学的特性値

短繊維混入率	圧縮強度	弾性係数	ポアソン比	比重
V_f (vol. %)	f_c' (MPa)	E_c (GPa)	v_c	μ
0	49.4	21.2	0.23	1.8
0.5	38.9	18.8	0.29	1.9
1.0	47.9	20.5	0.21	2.0
1.5	21.8	14.5	0.23	1.7

表-4 ビニロン短繊維の寸法と材料特性値

長さ	径	アスペ	弾性	引張	破断	
RC	114	クト比	係数	強度	歪	比重
l (mm)	<i>d</i> (mm)	l/d	(GPa)	(GPa)	(%)	
30	0.66	45	29.4	0.88	7.0	1.3

検討を行っている。

2. 実験概要

2.1 RC 梁の形状寸法および静的設計値

表-1には、本実験に用いた試験体の一覧を 示している。試験体は短繊維混入率 V_f を4種 類(V_f = 0, 0.5, 1.0, 1.5%)に変化させた軽量コン クリートを用いた RC 梁である。試験体名は短 繊維混入率の少ない順に F0, F1, F2, F3 として 示している。表中のせん断余裕度 α は、計算曲 *スランプフローを示す。

げ耐力 P_{usc} に対する計算せん断耐力 V_{usc} の比と して算出している。ここで、 P_{usc} 、 V_{usc} は後述に 示す力学的特性値を用いて示方書に準拠し、短 繊維を混入していない RC 梁として算定してい る。なお、各梁の V_{usc} は、示方書に基づき普通 コンクリートの場合の 70 % に低減して評価し ている。いずれの梁も $\alpha < 1.0$ であることより、 設計的に静載荷時にはせん断破壊することが予 想される。

図-1には, RC 梁の形状寸法および配筋状況 を示している。本実験に用いた試験体は,断面 寸法(幅×高さ)が200×300mm,純スパン長 が2mでせん断補強筋のない複鉄筋矩形 RC 梁 である。軸方向鉄筋には D22を用い,上下方向 に2本ずつ配置している。なお,軸方向鉄筋の 降伏強度は402 MPaであった。

表-2には、軽量コンクリートの配合一覧を 示している。短繊維混入軽量コンクリートの配 合は、 $V_f = 0$ %の配合 (スランプ 18 cm, 空気量 5.5 % 程度)を基準に、各 V_f に対して、材料分 離がなくかつ十分なコンシステンシーが得られ るような配合となるように調整した。なお、粗 骨材には膨張頁岩人工軽量骨材⁴⁾を使用してい

る。**表**-3には、各コンクリートの力学的特性 値を示している。表より、 V_f =1.5%の場合には 圧縮強度が他のコンクリートの半分程度以下と なっていることが分かる。これは、コンクリー トの配合設計にあたり、 V_f の増加に伴って細 骨材率s/aを大きくする必要があったこと、空 気量が多くなったこと等によるものと考えられ る。本研究では、このように大きな強度差があ る条件下で比較検討を行うものとする。**表**-4 には、本実験に用いたビニロン短繊維の寸法と 材料特性値の一覧を示している。

2.2 実験方法

衝撃実験は、跳ね上がり防止用治具付の支点 治具上に RC 梁を設置し、所定の高さから重錘 をスパン中央部に自由落下させることにより実 施している。なお、支点治具全体は RC 梁の回 転のみを許容するピン支持に近い構造となって いる。用いた重錘は質量が 300 kg で載荷点部 の直径が 150 mm の円柱状鋼製重錘であり、そ の底部には衝突時の片当たりを防止するために 高さ2mmのテーパが施されている。載荷方法 は、単一載荷時における終局となる最大入力エ ネルギーの特定が困難であることより、初速度 および増分速度を1m/sと設定して、終局に至 るまで繰り返し重錘を落下させる漸増繰り返し 載荷とした。なお、本実験における梁の終局は、 梁側面にせん断破壊型に特有な明瞭なアーチ状 のひび割れが発生し試験体が著しく損傷した場 合,あるいは累積残留変位が純スパン長の2% (40 mm) に達した時点を終局と定義⁵⁾ し実験を 終了している。測定項目は, 重錘衝撃力 P, 合 支点反力 R (以後,支点反力) および載荷点変位 δ (以後,変位) 波形である。なお、これらの測 定方法は文献 3) と同様である。また、実験終了 後には、RC 梁側面に生じたひび割れをトレー スしてひび割れ分布図を作成している。

3. 実験結果および考察

3.1 ひび割れ分布性状

図-2には、各梁の実験終了後におけるひび 割れ分布性状を示している。図より, F0 梁の場 合には右側スパンにおいてアーチ状のひび割れ が大きく開口するとともに、上縁および下縁の かぶりコンクリートが広範囲にわたって剥落し ていることが分かる。F1 梁の場合には, F0 梁 に見られたようなかぶりコンクリートの剥落は 見られないものの、アーチ状のひび割れや割裂 ひび割れが大きく開口していることが分かる。 一方, F2/3 梁の場合には、せん断補強筋が配筋 されている場合と同様な曲げせん断ひび割れお よび下端鉄筋に沿う割裂ひび割れが見られ、最 終的には載荷点近傍部においてアーチ状のひび 割れが卓越し、曲げせん断的な破壊により終局 に至っている。また、これらの試験体は最終衝 突速度が F0/1 梁の場合よりも大きくなっている ことから、Vf の増大に伴って破壊モードが曲げ せん断破壊型に移行し,耐衝撃性状が向上した ものと考えられる。なお、最終衝突速度がV= 4 m/s から V = 7 m/s に増大していることから, 入力エネルギーから見た耐衝撃性は3倍程度以 上に向上したと言える。

以上のことより、短繊維の混入によりコンク

図-3 重錘衝撃力,支点反力および変位波形

リートの剥落やひび割れの開口が抑制され,ま た短繊維混入率を増加することにより,RC梁 の破壊形式がせん断破壊型から曲げせん断破壊 型に移行することが明らかになった。

3.2 重錘衝撃力,支点反力および変位波形

図-3には、各梁の重錘衝撃力 P,支点反力 Rおよび変位 δ に関する各応答波形を V = 3 m/s 以降について示している。なお、時間軸は重錘 衝撃力が励起した時刻を 0 ms として整理した。

重錘衝撃力波形 P は,衝撃初期の振幅が大き く周期の短い第1波とその後の振幅が小さく周 期の長い第2波から構成されている。また,第 2波目の波形性状を見ると,いずれの梁も最終 衝突速度時には,それ以前の衝突時における性 状と異なり,振幅がさらに小さく,かつ周期が さらに長くなっていることが分かる。これは, 第1波目における衝突衝撃によって梁が既に著 しい損傷を受けて剛性が低下し終局に近い状態 となったことによるものと考えられる。

支点反力波形 R は,各梁とも最終衝突速度時 まで継続時間が 10 ~ 30 ms 程度の三角形波と周 期が 3 ms 程度の波形が合成した波形を示してい る。F0 梁の最終衝突速度 (V = 4 m/s)時には,V= 3 m/s 時の値の 1/2 程度の値となっており著し い損傷を受けていることが分かる。F1 梁の最終 衝突速度 (V = 4 m/s)では,F2/3 梁よりも継続 時間が長くなっていることから,この時点で塑 性化が著しく進行していることが分かる。F2/3 梁の最終衝突速度 (V = 7 m/s)における波形性状 は,V = 6 m/s の場合とほぼ同様であることより, 脆性的な破壊には至っていないことが分かる。

変位波形δは,各梁とも最終衝突速度以前で は減衰振動的な性状を示し,振幅は衝突速度V の増大に伴って増加する傾向を示している。V

図-4 支点反力一変位履歴曲線

=4 m/s では, F0 梁において応答変位,残留変位 が急激に増大していることから, 脆性的な破壊 により終局に至っていることが分かる。また, F1 梁は F2/3 梁に比べて周期が長くなっている ことから,塑性化が進行していることが分かる。 一方,F2/3 梁の場合には,衝突速度の増加とと もに残留変位が大きく示される傾向にあるもの の,最終載荷時においても未だ減衰自由振動を 示していることより,F0/1 梁に比較して曲げ変 形が卓越する状況にあることが確認できる。こ のことから,短繊維混入率の増大によって脆性 的な破壊が抑制され,靭性に富んだ曲げ変形が 卓越する破壊性状に移行していることが分かる。

3.3 支点反力一変位履歴曲線

図-4 には、V = 3 m/s 以降についての、各梁 の支点反力 (R) — 変位 (δ) 履歴曲線を示してい る。図より、V = 3 m/s の場合には、F0 梁で多 少塑性化の傾向が見られるものの、いずれの梁 も弾性に近い挙動を示していることが分かる。

V = 4 m/s の場合には, F0 梁は最大支点反力 到達後,除荷とともに変位が急増していること から脆性的な破壊性状を示していることが分か る。また,F1 梁はF0 梁の場合ほど顕著ではな いものの,除荷時に変位が増大していることよ り塑性化が進行していることが分かる。一方, F2/3 梁の場合には,弾性に近い挙動を示してい る。V = 5 m/s 以降の場合には,F2/3 梁は三角形 状の分布から徐々に吸収エネルギーの大きい平 行四辺形状の波形分布に移行する傾向にあるこ とが分かる。ひび割れ分布からは,曲げせん断 破壊的な性状を示していたが,履歴曲線からは 曲げ破壊型特有の分布性状を示していることが 分かる。

以上のことより、 V_f を増加させることにより 終局時の衝突速度も増加し、破壊性状がせん断 破壊型から曲げ破壊型に移行して、曲げ破壊型 の RC 梁に特有なエネルギー吸収能が大きい平 行四辺形状の履歴曲線を示す傾向にあることが 明らかになった。

3.4 各種応答値の比較

図-5には,最大重錘衝撃力 *P_{ud}*,最大支点反 力 *R_{ud}* および最大応答変位 *δ_{max}* と衝突速度 *V* と の関係を示している。

(a) 図より,最大重錘衝撃力 Pud は,各梁と もV=3m/sまでは線形的に増大していること が分かる。また, FO 梁では V = 4 m/s における 増分が小さくなっている。これは、梁上部のコ ンクリートが著しく損傷したことによるものと 考えられる。これに対し、F1 梁の場合にはV= 4 m/s においても Pud は線形的に増大している。 このことは, 図-2から分かるように, F1 梁は 最終衝突速度時においても載荷点部の損傷が軽 微であることと対応している。一方, F2/3 梁で は $V = 5 \sim 6 \text{ m/s}$ までは P_{ud} が増大しているもの の、V=7m/sでは大きく低下していることが分 かる。これは両梁ともに載荷点部のコンクリー トが著しい損傷を受けたことによるものと推察 される。なお,F3 梁は他の梁に比べて同一速度 における重錘衝撃力が小さい。これは, F3 梁の コンクリートの圧縮強度や弾性係数が他の梁に 比べて小さいことによるものと考えられる。

(b) 図より,最大支点反力 R_{ud} は最大重錘衝

図ー5 各種応答値

撃力 P_{ud} と同様に, V = 3 m/s までは線形的に増 大していることが分かる。その後, F0/1 梁の場 合はともに V = 4 m/s において R_{ud} が低下して いる。ただし, F1 梁の低下割合は F0 梁のそれ よりも小さい。これは, F1 梁の破壊性状が F0 梁に比べて脆性的でないことを示している。一 方, F2/3 梁は V = 6 m/s で R_{ud} が急激に低下し ていることが分かる。これは, V = 5 m/s で斜め ひび割れが若干開口したことを確認しているこ とから, このひび割れの開口に起因して低下し たものと推察される。

(c) 図より,最大応答変位 δ_{max} は V = 3 m/s までは短繊維混入率にかかわらず,ほぼ同様の値を示していることが分かる。V = 4 m/s では,F0 梁の δ_{max} が急激に増大している。また,F1 梁の δ_{max} の増加割合も多少大きくなっている。F2/3 梁の場合には F1 梁よりも δ_{max} が小さく,V = 5 m/s 以降も両試験体ともに 2 次放物線状の増加 傾向を示している。

以上から,短繊維混入率の増大により脆性的 な破壊が抑制されること,最大支点反力は F2 梁 で最も大きいこと, F2/3 梁の応答変位は曲げ変 形が卓越するため急激には増大しないこと,等 が明らかになった。

4. まとめ

本研究では,ビニロン短繊維の混入による軽 量コンクリート RC 部材の耐衝撃性能向上効果 を検討することを目的として,ビニロン短繊維 を混入した軽量コンクリート RC 梁の重錘落下 衝撃実験を行った。本研究で得られた知見をま とめると,以下の通りである。

- ビニロン短繊維を混入することによりコン クリートの剥落やひび割れの開口を抑制す ることができる。
- 2) 短繊維混入率を 1.0 ~ 1.5 %とすることで RC 梁のせん断耐力を飛躍的に向上させるこ とができ,破壊形式をせん断破壊型から曲 げせん断破壊型に移行させることができる。

参考文献

- 二羽淳一郎、岡本享久、前堀伸平:高品質軽 量コンクリートの構造部材への適用、コンク リート工学、Vol.38, No.12, pp.3-9, 2000.12
- コンクリート標準示方書 (2002 年制定)構 造性能照査編,土木学会,2002
- 3)岸 徳光,田口史雄,三上 浩,栗橋祐介: ビニロン短繊維を混入した RC 梁の耐衝撃 性に及ぼす短繊維混入率の影響,構造工学 論文集, Vol.50A, pp.1337-1348, 2004.3
- 4) 人工軽量骨材アサノライト、太平洋マテリアル(株)
- 5)岸 徳光,三上 浩,松岡健一,安藤智啓: 静載荷時に曲げ破壊が卓越する RC 梁の耐 衝撃設計法に関する一考案,土木学会論文 集,No647/I-51,177-190,2000.4