石狩川流域における水循環の定量化について QUANTITATIVE ANALYSIS OF HYDROLOGIC PROCESS IN THE ISHIKARI RIVER CATCHMENT AREA

臼谷友秀¹・中津川誠²・工藤啓介³ Tomohide USUTANI, Makoto NAKATSUGAWA and Keisuke KUDO

¹正会員 財団法人 日本気象協会 北海道支社(〒064-8555 札幌市中央区北4条西23丁目) ²正会員 工博 独立行政法人 北海道開発土木研究所(〒062-8602 札幌市豊平区平岸1条3丁目) ³正会員 株式会社 ドーコン(〒004-8585 札幌市厚別区厚別中央1条5丁目)

For comprehensive water management and water environmental planning in large river catchment areas, the longterm hydrologic cycle need to be understood. In cold, snowy regions, the snow process (falling, accumulation, and melting) plays an important role on the hydrologic cycle. An understanding of snow cover volume and snowmelt volume is essential. Analysis of the water balance of the catchment area also requires accurate estimation of evapotranspiration, which is affected by soil and vegetation.

This report applies a two-layer model toward estimating the evapotranspiration, snow cover volume, and snowmelt volume of 1-km meshes. The model incorporates heat balance between the air, the vegetation layer, and the ground surface. Observed values for evapotranspiration, snow cover volume, and snowmelt volume were compared with estimates generated by the model. These estimates were used to reproduce long-term runoff, in order to examine the validity of the estimates. The estimates were found to accurately reproduce the measurements. This has enabled the quantification of long-term hydrologic factors for cold, snowy regions.

Key Words : cold, snowy regions, hydrologic cycle, Ishikari river catchment area, two-layer model, long-term runoff

1. はじめに

大規模流域の総合的水管理,水環境計画を考える上で, 長期的な観点での水循環・物質循環の把握が重要となる. 特に積雪寒冷地では,降雪・積雪・融雪といった雪に関 するプロセスが水循環に大きな影響を与えていることか ら,雪の状況を踏まえた定量化が不可欠となる.

これまで、陸ら¹⁰、中山ら²⁰の報告のように、融雪を 考慮した流出モデルの開発やモデルの検証はなされてい る.しかし、長期的に水循環を考える場合には、モデル の計算結果を水収支の面から評価することが必要となっ てくる.

このような背景のもと中津川らは、雪を含む水文諸量 の把握に関する研究を進めてきた^{3),4)}. これまでの研 究では、積雪寒冷地の流域面積100km²程度のダム流域を 対象として、近藤ら⁵⁾が提案している「2層モデル」を 用いて融雪量や蒸発散量などの水文諸量を推定し、この 値を入力として長期的な流出量の推算を可能にしてきた. そこで本研究では、ダム流域で検討してきたこれらの手 法を応用し、大規模流域(石狩川流域、流域面積 14,327km²)の水文諸量を定量的に評価することを目指

している.

大規模流域の水文諸量を定量化する場合,小流域に比 べ流域内の空間変動が大きいことから,分布が重要とな る.そこで本研究では,水文諸量をメッシュ単位で推定 し,その積み上げで流域全体を把握するといった方針で 作業を進めている.具体的な手順は,次のとおりである.

- 1) 点在する観測所の気象データを約1km×1kmのメッシュに展開し、メッシュ単位で蒸発散量や積雪分布・融雪量の水文諸量を、1998年から2001年を対象に推算した.その際、メッシュの諸条件(植生、斜面勾配など)を考慮した.
- 2) 推算した蒸発散量を水収支法で求めた値と比較し、 また、積雪分布を衛星画像などと比較し、手法の妥 当性を検証した。
- 3) 推算した水文諸量から、石狩川支流の雨竜川における流出量の再現を試みた.その結果、4年間を通した流出の傾向を概ね再現できることが分かった.

解析の結果,妥当な推定値が得られ,大規模流域の水 文諸量を把握する上で,本手法は有効な手段であるもの と考えられる.

図-1 解析対象流域(石狩川)

表-1 解析資料

IJ	(目	種別
気象	気温	気象官署3箇所,アメダス25箇所
	湿度	気象官署3箇所,ダム管理所6箇所
	日射量	気象官署3箇所,7メダス25箇所(日照 時間からの推定箇所)
	日照時間	気象官署3箇所,アメダス25箇所
	降水量	気象官署3箇所,アメダス44箇所
	降雪深 (積雪深)	気象官署3箇所, アメダス16箇所
	風速	気象庁RSM, 気象官署3箇所, アメダス 25箇所
地形	標高	·
	地被	 万な[ランドフケープ桂恕(1kmイwシュ)
	メッシュ間の流	
	入・流出関係	
	傾斜	国土数値情報(250mメッシュ)

2. 対象流域,及び,基礎資料

解析対象は、図-1に示す石狩川流域とした.石狩川は、 北海道の中央部の大雪山系石狩岳(標高1,967m)に源を 発し、雨竜川、空知川などの主要支川を含む大小約70の 河川と合流しながら石狩平野を流下し日本海に注ぐ.流 路長は268km(全国第3位),流域面積14,327km²(全国 第2位)であり、全国有数の規模を誇る河川である.流 域の地形は標高1,000m以上の山岳が石狩平野を囲み、平 野の標高は50m以下と低くなっている.

解析に用いた資料を表-1に示す.気象に関しては、気 象官署及びアメダスのデータを基本とし、1998年~2001 年の日単位のデータを収集した.地形に関する資料は、 主に石狩川流域ランドスケープ情報⁶⁾を用いた.なお、 斜面の傾斜については、国土数値情報(250mメッシュ) の標高を用い、1km単位に整理したものを用いた.計算 では、ランドスケープ情報のメッシュを基本とした.

3. 水文諸量の推定

(1) 気象データのメッシュ化

気象データのメッシュ化に用いた手法を表-2に示す. 気温,日射量,日照時間は,観測データの空間構造をバリオグラムで推定し,Kriging法でメッシュ化した.

表-2 要素別補間方法

要素	補間方法	バリオグラム /緯度・経度・標高回帰式		
気温[℃]	<u>بالارام محمد مع الماليات المحمد الماليات المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد</u>	γ (d) =0.0228d +0.4045		
日射量[W/m ²]	ハリオリ 7ムを用いた Kriging法	γ (d) = 6.3049d + 157.52		
日照時間[hr]		γ (d) =0.0289d +0.8621		
降水量r [mm/d]	経度x [°]・緯度y [°]・ 標高z [m]の線形回帰式+ 残差の距離重みによる補 間	r = 484.90 - 1.997x -4.075y +0.012z ^{**1}		
降雪深s[cm/d]		s = 428.73 - 4.686x +5.594y +0.012z ^{**2}		
温度[%]	距離重みによる補間	_		

※1 降水量の回帰係数は、5月~10月の期間で、日雨量50mm以上の日の係数

※平均にある日本になる。の「1070元日に、日内量の加速ステラ日 を平均した値。 ※2 降雪深の回帰係数は、降雪深30cm以上の日の係数を平均した値。 ※3 []内は、単位を表す。

図-2 バリオグラムの推定結果(気温)

メッシュの値は、次に示す式(1)で推定し、その重み は式(2)~式(4)で決める.式(2)はバリオグラム の定義式を表す.

γ

$$z(X_0) = \sum_{i=1}^N \lambda_i z(X_i)$$
(1)

$$(d) = \frac{1}{2N(d)} \sum_{i=1}^{N(d)} \{ z(X_i + d) - z(X_i) \}^2$$
(2)

$$\sum_{i=1}^{N} \lambda_i \gamma \left(X_i - X_j \right) = \gamma \left(X_j - X_0 \right)$$
(3)

$$\sum_{i=1}^{N} \lambda_i = 1 \qquad (i = 1, \cdots, N) \tag{4}$$

ここで、 $z(X_0)$ は推定するメッシュの値、 $z(X_i)$ は地点 X_i の 観測値、 λ_i は重み係数、dは地点とメッシュ間の距離、 $\gamma(d)$ はバリオグラム、N(d)は距離dだけ離れた地点と対 をなすデータ数を表す。

気温は、観測値を気温減率(0.51℃/100m)で標高0m の値に補正した後Kriging法で補間し、再度標高に応じ た値に戻した.気温減率は、標高と気温の回帰分析によ り求めた.図-2に、気温のバリオグラムを示す.横軸は 地点間の距離、縦軸はバリオグラムである.図によると、 距離とバリオグラムには直線関係があり、距離が100kmを 越える当たりから点の散らばりが大きくなっている.こ の結果から、メッシュ化には距離100km以内の観測所の データを用い、式(2)に示したバリオグラムには距離 との線形相関式を用いることとした.日射量、日照時間 についても同様な判断のもと、距離70km以内の観測所の データを用いメッシュ化を行った.なお、日射量・日照 時間のバリオグラムは表-2のとおりである.

一方,降水量と降雪深をメッシュ化する際,Kriging 法を用いると,平滑化によって標高が高い箇所で過少評 価されることが分かった. そこで,標高の影響を考慮す るため,次の手順でメッシュ化を行った.

- 各観測所の降水量(または降雪深)を目的変数,緯 度・経度・標高を説明変数として回帰式を作る.
- 2)各観測所の降水量を、1)で作成した回帰式で計算し、計算値と実測値の差を求める.この差を、次式で距離を重みとしてメッシュ化する(残差メッシュ値).

$$z(X_0) = \left\{ \sum_{i=1}^N z(X_i)/d_i \right\} \left/ \left(\sum_{i=1}^N 1/d_i \right) \right.$$
(5)

ここで, *z*(*X*₀)は推定するメッシュの値, *z*(*X*_i)は, 地点*X*_iの観測値, *d*_iは観測地点とメッシュ間の距離 を表す.

- 3) 1)で作成した回帰式を用いて、各メッシュの緯度・経度・標高から降水量を推定する(回帰メッシュ値).
- 2) で求めた残差メッシュ値に、3) で求めた回帰 メッシュ値を加え、その値を当該メッシュの値とす る.
- 5) この処理を日々行い,対象とする全期間の値を求め る.

回帰式は各日で異なるが、降水日と降雪日の回帰係数 の平均値を参考として表-2に示した。

図-3は、Kriging法(推定法A)と、上述した1)~5) の手順(推定法B)で求めた値をプロットしたものであ る.また実測値として、石狩川流域内のダム(定山渓ダ ム)流域において2001年3月に実施された積雪調査の結 果を合わせて示した.横軸は標高、縦軸は積雪相当水量 (水量換算値)である.実測値は調査で得られた積雪調 査日までの降雪量の合計を積雪相当水量とした.図のと おり、推定法Bでは実測値に近い値が得られた.標高 1,100m付近の誤差は、観測所の最大標高が540mであり、 高い所に観測所がないことが理由と考えられる.

湿度は、距離とバリオグラムには明瞭な関係が見られ なかったことから、式(5)を用いてメッシュ化した.

風速は、観測値を用いてメッシュ化したところ、平滑 化されすぎた風速分布が推定され現実的ではないと考え た(図-4).そこで、気象庁RSMとアメダスを用い、マ スコン法¹¹で1kmメッシュ値を作成した.手法の概略は、 まず上空の風にRSM(時間値)、地上風にアメダス(時 間値)を用いて流れの場を仮定する.その仮定した場を、 質量保存則を満足するように変分法によって修正するも のである.以降の計算では、対数則を用いて地上高2mの 風速に換算したものを用いた.この処理を日々行って、 日メッシュデータとする.風速は熱収支への影響が大き い要素であることから、この方法を採った.

(2) 日射量の斜面補正(日平均受光係数)

日射量は水平面で観測される値であり、斜面が実際に

図-5に示すようなXYZ座標を考える. 原点Oから太陽
を指すベクトル
$$n_{sc}$$
は,赤緯 δ (rad) と時角 H (rad) を

図 - 5 XYZ座標の設定

受ける日射量とは異なる. そこで、日射量をメッシュの

傾斜角で補正することとした.

用いて次のように表される.

抛球

$$n_{es} = \left[\cos\delta\cos H - \sin\delta\sin H \sin\delta\right]^T \tag{6}$$

ここで、*T*は転置を表す.一方、斜面の法線ベクトルを $V (= [V_x V_y V_z]^T)$ とすると、 n_{es} とVのなす角 θ (rad) は 次式で求まる.

$$\cos\theta = n_{es} \cdot V \tag{7}$$

式(7)を、日の出から日の入りまで積分し、2 πで割 ると、日平均受光係数が次のように求まる.

$$\overline{\cos\theta} = \frac{1}{2\pi} \left\{ A(\sin H_2 + \sin H_1) - B(\cos H_1 - \cos H_2) + C(H_2 + H_1) \right\}$$
(8)

ここで、 $A=V_x\cos\delta$, $B=-V_y\cos\delta$, $C=V_z\sin\delta$ であり, H_I (rad) と H_2 (rad) は、次式で得られる.

$$H = \cos^{-1}\left\{ \left(-AC \pm B\sqrt{A^2 + B^2 - C^2} \right) / \left(A^2 + B^2 \right) \right\}$$
(9)

H₁は,式(9)のプラスの値であり南中と日の出のなす角,H₂はマイナスの値で南中と日の入りのなす角である.

なお、斜面の法線ベクトルルは、東西方向の傾斜角 θ_1 (rad) と南北方向の傾斜角 θ_2 (rad) から次のように 求まる8).

$$V = \begin{bmatrix} V_X \\ V_Y \\ V_Z \end{bmatrix} = \begin{bmatrix} k_y \sin \omega \sin \phi + \cos \omega \cos \phi \\ -k_x \sin \omega \\ -k_y \sin \omega \cos \phi + \cos \omega \sin \phi \end{bmatrix}$$
(10)

なお,

$$\omega = \tan^{-1} \left(\pm \sqrt{\tan^2 \theta_1 + \tan^2 \theta_2} \right)$$
(11)
$$k_x = \tan \theta_2 / \tan \omega , \quad k_y = \tan \theta_1 / \tan \omega$$

である.

ところで、太陽光に直行する面が受ける日射量と、水 平面及び斜面が受ける日射量には、次の関係がある.

$$S_1 = \alpha_1 S_s \quad , \quad S_2 = \alpha_2 S_s \tag{12}$$

ここで、 S_1 は水平面の日射量(W/m^2)、 S_2 は斜面の日射 量(W/m^2)、 S_s は太陽光に直行する面が受ける日射量 (W/m^2)であり、それぞれ日平均値である.また、 α_1 と α_2 は、水平面、斜面の日平均受光係数を表す.観測さ れる日射量は、式(12)の S_1 に相当し、この式より、 S_1 と S_2 の関係は次の通りとなる.

$$S_2 = (\alpha_2 / \alpha_1) S_1 \tag{13}$$

この日平均受光係数の比を用いて、観測される日射量から斜面の日射量を求めることとした.

(3) 水・熱収支法による水文諸量の推定方法

蒸発散量は地被や植被の状態に左右される.より高い 精度で熱フラックスを推定するため、土壌もしくは積雪 面(以下、地表面と呼ぶ)、及び、植被層の熱収支を、 近藤ら⁵⁾によって提案されている2層モデルに基づき、 次式のように定式化した.

$$f_{\nu}R \downarrow + (1 - f_{\nu})\sigma T_{\nu}^{4} - Q_{G} + Q_{R} = \varepsilon \sigma T_{g}^{4} + H_{g} + lE_{g}$$
(14)

$$(1 - f_v) \left(R \downarrow + \varepsilon \sigma T_e^{-4} \right) = 2(1 - f_v) \sigma T_v^{-4} + H_v + l(E_v + I)$$
(15)

ここで、式(14) は地表面、式(15) は植被層の熱収支 式である. また、f,は放射に対する植被層の透過率、 $R \downarrow$ は下向きの正味放射量(W/m^2)、 Q_c は地表面に供給される 熱フラックス(W/m^2)、 Q_R は降雨によって供給される熱フ ラックス(W/m^2)、 H_g および H_v は各々地表面および植被層 からの顕熱フラックス(W/m^2)、 IE_g および IE_v は各々地表 面および植被層からの潜熱フラックス(W/m^2)、IIは植被 層からの遮断蒸発に伴う潜熱フラックス(W/m^2)、IIは植被 圏からの遮断蒸発に伴う潜熱フラックス(W/m^2)、 Γ_g およ び T_v は各々地表面および植被層の代表温度(K)、 ε は射 出率(土壤面=1.00、積雪面=0.97)、 σ はStefan-Boltzmann定数(=5.67×10⁻⁸ $W/m^2/K^4$)である.

以上により,各層の代表温度T_gおよびT_vを求め,顕 熱・潜熱フラックスをバルク法より求める³⁾.降水によ る遮断蒸発潜熱は,近藤ら⁵⁾の知見に基づき推定し,降 雪も降雨と同様に遮断蒸発を推定する.アルベドは口澤

表-3 用いたバルク係数及び蒸発効率

+14 242	植被層		地表面		
<u>че ту</u>	パル係数	蒸発効率	いが係数	蒸発効率	
森林	0.005	0.10	0.001	0.10 (1.00)	
畑・牧草地・ 水田	0.001	0.20	(0.002)		
水面	0.0001	0.001	0.0013 (0.002)	1.00 (1.00)	
市街地・裸地	0.0001	0.001	0.0015 (0.002)	0.10 (1.00)	

※ () 内は, 積雪時の設定値

ら³⁾ が定山渓ダムを対象に解析した結果を引用した.バルク輸送係数と蒸発効率は、収集した1kmメッシュ毎の地被に基づき、メッシュ毎に値を設定した.各地被のバルク輸送係数と蒸発効率は、文献値^{3),5)}を参考にしつつ、流域全体の水収支が合うよう、試行錯誤で表-3のように決めた.

積雪のない状態の地表面に供給される熱フラックスは、 解析の対象が日平均状態の場合には微小項となることか ら、本解析では $Q_{G}=0$ W/m²とした.一方、積雪がある場合、 積雪面に供給される熱フラックスは、次式とした.

$$Q_G = Q_M + Q_B \tag{16}$$

ここで、 Q_M は積雪面の融雪に使われる熱量(W/m^2)、 Q_B は土壌から積雪底面に供給される熱量(W/m^2)を表す、 なお Q_B は、1nm/dの融雪に相当する熱量($-3.86W/m^2$)を 与えた、

式(16)は、融雪の規模で Q_M が変化するため、一意的には決まらない、そこで、以下の手順で Q_G を求めた⁴⁾.

- 積雪面で融雪が起きないものと仮定し(Q_M=0W/m², Q_G=-3.86W/m²),式(14),(15)を解く.得られ たT_eを積雪温度(仮値)T_sとする.
- 2) $T_s \leq 0$ Cのときは、積雪表面での融雪は起きないものとし、1) で仮定した値が求めるべき Q_G となる.
- 3) $T_s > 0$ のときは、 $T_g = T_s = 0$ ℃とする. このときの植被 層温度 T_v は式(15)で求める. これら $T_g \cdot T_v$ から、 式(14)を用いて Q_c が得られる.

このようにして得られた Q_{c} より式(16)で Q_{M} が決ま り,融雪量が求まる.積雪水量にあたっては時刻tの積 雪水量を次のように定式化する⁴.

$$S_{w}(t) = S_{w}(t-1) - \{m(t) + e(t)\} + (\rho_{sf} / \rho_{w})S_{f}(t)$$
(17)

また,積雪深,積雪密度は下式から求める.

$$S_{d}(t) = \left[S_{d}(t-1) - (m(t) + e(t))\frac{\rho_{w}}{\rho_{s}(t-1)} + S_{f}(t)\frac{\rho_{sf}}{\rho_{s}(t-1)}\right]\eta_{s}$$
(18)
$$\rho_{s}(t) = \left\{S_{w}(t)/S_{d}(t)\right\}\rho_{w}$$
(19)

ここで、 S_w は積雪水量(nm)、 S_d は積雪深(nm)、 S_f は降雪 深(nm)、mは融雪量(nm)、eは蒸発散量(nm)、 ρ_w は水の 密度(=1,000kg/m³)、 ρ_s は積雪密度(kg/m³)、 ρ_s は積雪密度(kg/m³)、 ρ_s は全層沈下率である.本解析では降雪 密度は160kg/m³、全層沈下率は積雪密度に関係すると考え、最小積雪密度309kg/m³で0.999、最大積雪密度

流域	石狩川	雨竜川	空知川	夕張川	千歳川
基準地点	石狩大橋	雨竜橋	赤平	清幌橋	裏の沢
流域面積[km ²]	12,697	1,661	2,531	1,116	1,142
平均標高[m]	386	276	504	381	185
森林の占める 割合[%]	70	75	81	80	56
平均気温[℃]	4.7	4.9	4.9	5.7	6.7
平均風速[m/s]	2.1	2.1	2.0	2.1	2.1
降雨量[mm/yr]	1,012	992	1,031	1,058	1,000
降雪水量 [mm/yr]	761	917	702	655	597
流出高[mm/yr]	1,289	1,471	1,278	1,219	1,201
水収支法蒸発 散量[mm/yr]	484	438	455	494	396
2層モデルによる 蒸発散量 [nm/yr]	543	501	590	563	392
蒸発散の差 [mm/yr]	59	63	135	69	-4

表-4 流域水収支の検証結果

※4ヵ年(1998年~2001年)の平均

700kg/m³で0.985という値を按分し,積雪密度に応じて 与えた.

(4) 水文諸量の推定結果

a) 流域水収支の検証

水文諸量をメッシュ単位で推定し、流域毎に蒸発散量 を整理し検証した.表-4は、石狩川流域の主な支川と、 石狩川の基準地点(石狩大橋)の流域水収支の検証結果で ある. 値は1998年~2001年の4ヵ年の平均値で示した. 表には水収支法で求めた蒸発散量と本章で示した手法で 求めた蒸発散量を比較して示してある.2層モデルによ る蒸発散量は水収支法による値に比べやや多いものの, 差は年間60mm程度であり、概ね妥当な推定値が得られた. 千歳川流域の蒸発散量は、水収支法、2層モデルとも 400mm/yr程度となっている. ランドスケープ情報の地被 データから整理した流域に占める森林の割合(表-4)を 見ると、各流域とも70~80%であるものの、千歳川流域 だけが約50%と少なく、この点が千歳川流域の蒸発散量 が少ない一つの理由と考えられる. このように、2層モ デルで推算される蒸発散量は、地被状態を反映した実態 に即した値が得られた.

b) 積雪の再現結果

図-6は、札幌で観測された積雪深と、観測所を含む メッシュの計算積雪深を時系列で示したものである.積 雪の開始・終了時期、また、最深積雪深が出現する時期 もよく再現できている.また図-7は、計算で求めた積雪 ◆2001年4月28日

図-7 積雪分布の検証結果

深分布と衛星画像(NOAA AVHRR バンド1)から判断した 積雪域を,時間を追って比較したものである.図には, 2001年4月28日,5月13日の2日分を示した.衛星画像の 積雪域は白い部分であり,計算値は図中の凡例に従って いる.図によれば,計算結果と衛星画像の積雪域が一致 しており,また,積雪域の減少パターンもよく再現され ていることが分かる.

4. 流出量の再現

前章の結果(メッシュ単位の水文諸量)を用いて,流 出量の再現を試みた.対象とした河川は、石狩川支川の 雨竜川(流域面積:1,661km²)とした(図-8).

計算は、入力値となる雨量・融雪量・蒸発散量に対応 させ、メッシュ単位で行うこととした。一つのメッシュ では、上流側のメッシュからの流量を河道追跡し、また、

メッシュ内で生じる流出を計算し、これらの合計をメッシュの流出量とした。河道追跡には、kinematic wave式を変形した次の式を用いた⁹.

$$\frac{\partial Q}{\partial t} + \frac{5}{3} \frac{i^{0.3} Q^{0.4}}{n^{0.6} B^{0.4}} \frac{\partial Q}{\partial x} = 0$$
 (20)

ここで、Qは流量、iは勾配、nは粗度係数、Bは川幅を表 す. 勾配iは、ランドスケープ情報から計算対象メッ シュとその流下側メッシュの最低標高を抽出し標高差か ら決定した. 粗度係数nは0.05とし、川幅B(m)は、山 口ら¹⁰⁾の報告を参考に、流域面積A(km²)から次のよう に求めた.

$$B = 3.476A^{0.435} \tag{21}$$

メッシュ内での流出計算には、図-9に示すタンクモデ ルを用いた.モデルパラメータは、石狩川流域内のダム で同定したパラメータ⁴⁾を基に、微修正を加えた値を 使った.

図-10に、再現結果を示す.図によると、4月から6月の融雪期の出水、また降雨に伴う出水の傾向が概ね再現されており、前章で示した推定手法が妥当なものであることを裏付けている.しかし、融雪が終了する6月頃の計算流量が実測値に比べ大きくなる傾向が見られ、今後の検討を要する.

5. おわりに

本報告で得られた結果を以下にまとめる.

- 1) 2層モデルを用いて、蒸発散量や積雪分布・融雪量を メッシュ単位で推定した.実測値などから検証した 結果,妥当な推定値であることが分かった.
- 2)推算した水文諸量から、流出量の再現を試みた結果、 流量の長期的傾向を概ね再現でき、推定手法の妥当 性を裏付ける結果が得られた。

これらの結果から,石狩川流域における降水・融雪・ 蒸発散量を定量化することができた.今後は,流域全体 を対象として,流出量の把握,更には物質循環の定量化 を目指す.

図-9 タンクモデルの構成

謝辞:本研究の一部は、北海道開発局受託研究費によって実施したものである.ここに記して謝意を表す.

参考文献

- 1) 陸旻皎,小池俊雄,早川典生:アメダスデータと数値地理 情報を用いた分布型融雪解析システムの開発:水工学論文 集 第42巻, pp.121-126, 1998.
- 2)中山恵介,伊藤哲,藤田睦博,斎藤大作:融雪を考慮した 山地流出モデルに関する研究:土木学会論文集 No.691/II-57,pp25-41, 2001.
- 口澤寿,中津川誠:熱・水収支を考慮した流域スケールの 積雪と蒸発散の推定,北海道開発土木研究所月報,588, pp.19-38,2002.
- 4) 中津川誠、濱原能成,星清:積雪変化を考慮した長期流出 計算,第47回水理講演会論文集,pp.157-162,2003.
- 5) 近藤純正編著:水環境の気象学,朝倉書店,1994.
- 6) 財団法人 北海道河川防災研究センター:石狩川流域ランド スケープ情報,1998.
- 7) 横山長之編:大気環境シミュレーション,白亜書房, 1992.
- Paul, P. P: Robot Manipulators, MIT Press (Cambridge), pp. 25-29, 1981.
- 9)品川守,山田正,豊田康嗣:洪水ハイドログラフ形成過程 と治水対策の効果に関する研究,水文・水資源学会第5巻3 号,1992.
- 10)山口甲,新庄興,三田村一弘,上野順也:豊平川の生産
 土砂について:土木学会北海道支部 論文報告集 第55号
 (B), pp. 268-271, 1998.

(2004.9.30 受付)