

# Ferromagnetic-phase transition in the spinel-type CuCr2Te4

メタデータ

言語: en

出版者: Elsevier B.V.

公開日: 2008-01-29

キーワード (Ja):

キーワード (En): chromium compounds, copper compounds, Curie temperature, ferromagnetic materials, lattice constants, magnetic moments, magnetic susceptibility, magnetisation, specific heat, spin waves

作成者: SUZUYAMA, Takeshi, 阿波加, 淳司, YAMAMOTO, Hiroki, 戎, 修二, ITO, Masakazu, SUZUKI, Takashi, NAKAMA, Takao, YAGASAKI, Katsuma, 永田,

正一

メールアドレス:

所属: 室蘭工業大学

**URL** 

http://hdl.handle.net/10258/360



# Ferromagnetic-phase transition in the spinel-type CuCr2Te4

| 著者                | SUZUYAMA Takeshi, AWAKA Junji, YAMAMOTO<br>Hiroki, EBISU Shuji, ITO Masakazu, SUZUKI<br>Takashi, NAKAMA Takao, YAGASAKI Katsuma,<br>NAGATA Shoichi |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| journal or        | Journal of solid state chemistry                                                                                                                   |  |  |  |
| publication title |                                                                                                                                                    |  |  |  |
| volume            | 179                                                                                                                                                |  |  |  |
| number            | 1                                                                                                                                                  |  |  |  |
| page range        | 140-144                                                                                                                                            |  |  |  |
| year              | 2006-01                                                                                                                                            |  |  |  |
| URL               | http://hdl.handle.net/10258/360                                                                                                                    |  |  |  |

doi: info:doi/10.1016/j.jssc.2005.10.007

# Ferromagnetic phase transition in the spinel-type CuCr<sub>2</sub>Te<sub>4</sub>

T. Suzuyama<sup>a</sup>, J. Awaka<sup>a</sup>, H. Yamamoto<sup>a</sup>, S. Ebisu<sup>a</sup>, M. Ito<sup>b</sup>, T. Suzuki<sup>b</sup>, T. Nakama<sup>c</sup>, K. Yagasaki<sup>c</sup>, S. Nagata<sup>a</sup>,\*

<sup>a</sup>Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
 <sup>b</sup>Department of Quantum Matter, Graduate School of Advanced Science of Matter, Hiroshima University, Higashi-hiroshima, 739-8526, Japan
 <sup>c</sup>Department of Physics, University of the Ryukyus, Okinawa 903-0213, Japan

#### **Abstract**

Ferromagnetic phase transition in spinel-type  $CuCr_2Te_4$  has been clearly observed.  $CuCr_2Te_4$  is a telluride-spinel with the lattice constant a=11.134 Å, which has been synthesized successfully. The heat capacity exhibits a sharp peak due to the ferromagnetic phase transition with the Curie temperature  $T_c=326$  K. This value of  $T_c$  corresponds exactly to that of the negative peak of dM/dT in low field of 1.0 Oe. The magnetic susceptibility shows the Curie-Weiss behavior between 380 and 650 K with the effective magnetic moment  $\mu_{\rm eff}=4.14$   $\mu_{\rm B}$  per Cr-ion and the Weiss constant  $\theta=357$  K. The low temperature magnetization indicates the spin-wave excitations, where the existence of first term of Bloch  $T^{3/2}$  law and the next  $T^{5/2}$  term are verified experimentally. This spin-wave excitation is detected up to approximately 250 K which is fairly high temperature.

*Key Words*: Spinel-type CuCr<sub>2</sub>Te<sub>4</sub>; Telluride-spinel; Ferromagnetism; Heat capacity; Magnetization; Magnetic susceptibility; Spin-wave excitation.

<sup>\*</sup>Corresponding author. Fax: +81-143-46-5612. *E-mail address*: naga-sho@mmm.muroran-it.ac.jp (S. Nagata)

#### 1. Introduction

Chalcogenide spinels including transition metals have a large variety of physical properties. In particular, much of research for the metal-insulator transition in CuIr<sub>2</sub>S<sub>4</sub> has been extensively done in the last decade (1). Although extensive studies have been made, only just a few telluride-spinel compounds exist, which are CuCr<sub>2</sub>Te<sub>4</sub> (2-23), AgCr<sub>2</sub>Te<sub>4</sub> (24), and FeCr<sub>2</sub>Te<sub>4</sub> (25). The spinel-type structure has cubic symmetry of space group Fd3m (No. 227). For CuCr<sub>2</sub>Te<sub>4</sub>, Cu ions occupy A-site and Cr ions occupy B-site. These cation sites are locate at the center of tetrahedron and octahedron by Te<sup>2-</sup> ions, respectively. Many investigations on crystallographic study, NMR, Mössbauer effect study, and Magnetic properties have been done for CuCr<sub>2</sub>Te<sub>4</sub> by previous workers (2-15). However, detailed study of thermal property has not been provided so far. This paper will present the heat capacity and magnetic properties, which verifies experimentally the clear accurate Curie temperature of  $T_c = 326$  K. The heat capacity exhibits a sharp peak due to the ferromagnetic phase transition at 326 K at which the inflection point of the magnetization is detected as a function of temperature, indicating the negative peak of dM/dT in a very low field of 1.0 Oe. Shchelkotunov et. al. (23) has measured the heat capacity of CuCr<sub>2</sub>Te<sub>4</sub>, however the temperature interval was 5 K then the accurate  $T_c$  was not determined. The basic results of heat capacity and magnetization are obtained and our new results are compared with that estimated by the previous workers. The present work provides the direct evidence of the ferromagnetic phenomena in CuCr<sub>2</sub>Te<sub>4</sub>.

## 2. Eeperimental Methods

## 2. 1. Sample Preparation

The polycrystalline specimens were prepared by a direct solid-state reaction. Mixtures of high-purity fine powders of Cu(purity 99.99 %, melting point 1357.5 K), Cr(99.99 %, 2130 K), and Te(99.999 %, 722.8 K) for the total weight of 2.0 g with nominal stoichiometry were prepared, where excess 2 mg Te was added. These powders were heated in sealed quartz tubes ( $\approx 4 \times 10^{-7}$  Torr) to 773 K with heating rate of 200 K/h and kept at this temperature for 160 hours. Resultant powder specimens were reground, heated again to 773 K and kept for 100 hours, annealed at 673 K for 4 hours, and then cooled in furnace.

#### 2. 2. Measurements

The identification of the crystal structure and the determination of the lattice constant were carried out by the powder X-ray diffraction (XRD) method. XRD data were taken with Cu K $\alpha$  radiation and curved crystal monochrometer on a Bragg–Brentano-type powder diffractometer at room temperature. The heat capacity for 10.60 mg specimen was measured with a Quantum Design PPMS Heat Capacity Option (HC) Model P650 over the temperature range 2.17 to 373 K in zero magnetic field. The obtained data were less accurate above 350 K. The magnetization M and the dc magnetic susceptibility  $\chi$  of the powder specimens were measured with a Quantum Design superconducting quantum interference device (MPMS, rf-SQUID) magnetometer over the temperature range 4.2 to 650 K for various external fields H. Demagnetizing-field corrections were made for the susceptibility.

#### 3. Results and discussion

#### 3. 1. Crystal structure

The color of powder specimen  $CuCr_2Te_4$  is dark gray. Figure 1 shows the powder X-ray diffraction pattern with the cubic spinel-type symmetry of  $CuCr_2Te_4$ . The lattice constant is a = 11.134 Å at room temperature which is in good agreement with data of previous researchers (3, 4, 6). The indices, the comparisons of d spacing between the calculated and the observed values, and observed peak intensities are listed in Table 1. A small amount of unknown impurities are found as weak peaks in Fig. 1, where it was too difficult for us to extinguish these impurities. Kanomata and Ido (3) also reported that three extra lines in X-ray diffraction pattern were observed in  $CuCr_2Te_4$ .

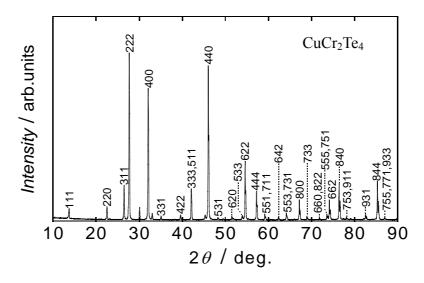



Fig. 1. Powder X-ray diffraction pattern of  $CuCr_2Te_4$  at room temperature with the lattice constant a = 11.134 Å.

Table 1. Indices, observed and calculated values of d spacings and observed peak intensities for  $CuCr_2Te_4$  with the lattice constant a = 11.134 Å.

| h | k | l | $d_{\mathrm{obs}}$ (Å) | d <sub>cal</sub> (Å) | $I_{ m obs}$ |
|---|---|---|------------------------|----------------------|--------------|
| 1 | 1 | 1 | 6.4583                 | 6.4280               | 5<br>7       |
| 2 | 2 | 0 | 3.9483                 | 3.9363               |              |
| 3 | 1 | 1 | 3.3632                 | 3.3569               | 19           |
| 2 | 2 | 2 | 3.2201                 | 3.2140               | 93           |
| 4 | 0 | 0 | 2.7878                 | 2.7834               | 77           |
| 3 | 3 | 1 | 2.5573                 | 2.5542               | 2            |
| 4 | 2 | 2 | 2.2751                 | 2.2727               | 3            |
| 3 | 3 | 3 | 2.1445                 | 2.1427               | 19           |
| 5 | 1 | 1 |                        | 2.1427               |              |
| 4 | 4 | 0 | 1.9698                 | 1.9682               | 100          |
| 5 | 3 | 1 | 1.8835                 | 1.8819               | 1            |
| 6 | 2 | 0 | 1.7616                 | 1.7604               | 1            |
| 5 | 3 | 3 | 1.6990                 | 1.6979               | 3            |
| 6 | 2 | 2 | 1.6795                 | 1.6785               | 39           |
| 4 | 4 | 4 | 1.6081                 | 1.6070               | 20           |
| 5 | 5 | 1 | 1.5599                 | 1.5590               | 4            |
| 7 | 1 | 1 |                        | 1.5590               |              |
| 6 | 4 | 2 | 1.4887                 | 1.4878               | 2            |
| 5 | 5 | 3 | 1.4503                 | 1.4495               | 5            |
| 7 | 3 | 1 |                        | 1.4495               |              |
| 8 | 0 | 0 | 1.3923                 | 1.3917               | 13           |
| 7 | 3 | 3 | 1.3610                 | 1.3602               | 2            |
| 6 | 6 | 0 | 1.3127                 | 1.3121               | 1            |
| 8 | 2 | 2 |                        | 1.3121               |              |
| 5 | 5 | 5 | 1.2862                 | 1.2856               | 4            |
| 7 | 5 | 1 |                        | 1.2856               |              |
| 6 | 6 | 2 | 1.2776                 | 1.2771               | 13           |
| 8 | 4 | 0 | 1.2453                 | 1.2448               | 25           |
| 7 | 5 | 3 | 1.2224                 | 1.2221               | 2            |
| 9 | 1 | 1 |                        | 1.2221               |              |
| 9 | 3 | 1 | 1.1676                 | 1.1671               | 4            |
| 8 | 4 | 4 | 1.1367                 | 1.1363               | 27           |
| 7 | 5 | 5 | 1.1194                 | 1.1190               | 1            |
| 7 | 7 | 1 |                        | 1.1190               |              |
| 9 | 3 | 3 |                        | 1.1190               |              |

# 3. 2. Heat capacity

#### 3. 2. 1. Lattice heat capacity

Figure 2 depicts the molar (formula-unit) heat capacity C for  $CuCr_2Te_4$  as a function of temperature over the temperature range 2.17 to 373 K. The compound  $CuCr_2Te_4$  exhibits a sharp peak due to the ferromagnetic phase transition at 326 K. Figure 3 indicates the lattice contribution  $C_{\text{lattice}}$ , following the Debye  $T^3$  approximation, below 10 K,

$$C_{\text{lattice}} = \left(\frac{12}{5}\right) \pi^4 N_{\text{A}} k_{\text{B}} r \left(\frac{T}{\Theta_{\text{D}}}\right)^3 ,$$

$$= 1943.8 r \left(\frac{T}{\Theta_{\text{D}}}\right)^3 , \qquad (1)$$

where  $N_{\rm A}$  is the Avogadro's number,  $k_{\rm B}$  the Boltzmann's constant,  $\Theta_{\rm D}$  the Debye temperature, T the temperature and r the number of atoms per formula unit, which is found to be r=7 for spinel compound. The Debye temperature  $\Theta_{\rm D}$  is obtained to be 184 K (r=7) and 96.4 K (r=1). The results of Curie temperature by K. P. Belov *et. al.* (20) is  $T_{\rm c}=324$  K. The Debye temperature is  $\Theta_{\rm D}=260\pm5$  K by V. A. Shchelkotunov *et. al.* (23)

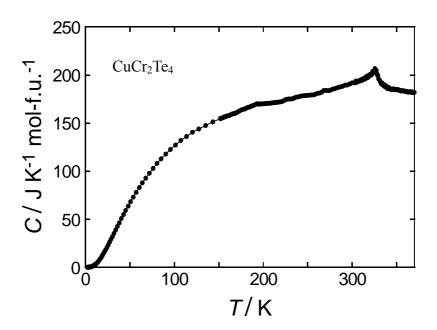



Fig. 2. Molar heat capacity of CuCr<sub>2</sub>Te<sub>4</sub> over a wide tempera ture range 2.17 to 373 K.

#### 3. 2. 2. Magnetic heat capacity

Figure 4 shows the temperature dependence of the magnetic heat capacity  $C_{\rm m}$  of CuCr<sub>2</sub>Te<sub>4</sub>. The magnetic heat capacity is obtained after the subtraction;  $C_{\rm m}$ =C- $C_{\rm lattice}$ . However, the accurate subtraction of the lattice contribution was unable for us. The lattice heat capacity was assumed to be straight line, for the simplicity, from 200 to 373 K, here all the value comes from the lattice heat capacity at 200 and 373 K. The experimental observation of the magnetic entropy change  $S_{\rm m}$  over the temperature range 200 to 373 K is presented in Fig. 4 using the following expression,

$$S_{\rm m} = \int_0^T \frac{C_{\rm m}}{T} dT \,. \tag{2}$$

The calculated total magnetic entropy change is small in comparison with the expected value for S=3/2 ( $Cr^{3+}$  ion). Presumably, the magnitude of subtraction on lattice heat capacity is over estimated, therefore, the magnetic entropy change would be underestimated as shown in Fig. 4. Consequently Fig. 4 provides only the qualitative feature of the magnetic heat capacity without the accuracy for the absolute value. In addition, the ratio of the magnetic entropy change below and above  $T_c$  is evaluated to be  $\Delta S_m$  (200 K<  $T < T_c$ ) = 80 % and  $\Delta S_m$  ( $T_c < T < 373$  K) = 20 %.

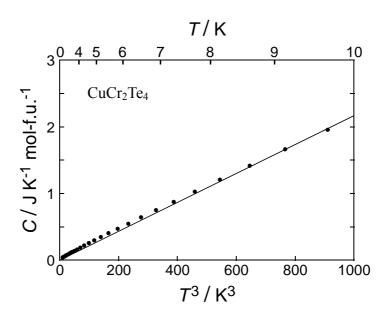



Fig. 3. The Debye  $T^3$  approximation of low temperature lattice heat ca pacity for  $CuCr_2Te_4$ .

#### 3. 3. Magnetic Properties

#### 3. 3. 1. Magnetization and Magnetic Susceptibility

Figure 5 displays the temperature dependence of magnetization in an applied field H=10.0 kOe for polycrystalline specimens of CuCr<sub>2</sub>Te<sub>4</sub>. Figure 6 indicates the result of the magnetization near the Curie point in a very low field of 1.00 Oe and presents the temperature derivative of M, dM/dT, as a function of the temperature. This negative peak temperature of dM/dT corresponds to that of the sharp peak of the capacity. The accurate Curie temperature has been now determined for CuCr<sub>2</sub>Te<sub>4</sub> for the first time.

It should be noted that the difference of value of magnetization between Fig 5 and Fig. 6 is critically important to discuss precise  $T_c$ . In Fig 6, the magnetization was measured in extremely low magnetic field of 1.0 Oe, the temperature variation of dM/dT in low field enables us to determine the accurate  $T_c$  because of avoiding a great influence of domain structure in ferromagnetic phase.



Fig. 4. Magnetic molar heat capacity of CuCr<sub>2</sub>Te<sub>4</sub> as a function of the temperature. (a) After the subtraction of lattice contribution, see text. The Curie temperature is 326 K. (b) Magnetic entropy change as a function of the temperature, using above figure (a).

The inverse magnetic susceptibility in an applied magnetic field H of 10.0 kOe is indicated in Fig. 7. The susceptibility of CuCr<sub>2</sub>Te<sub>4</sub> is well fitted to a modified Curie-Weiss law over the temperature range 450 to 650 K,

$$\chi = \frac{C}{T - \theta} + \chi_0 \quad , \tag{3}$$

where C is the Curie constant, the Weiss constant  $\theta$  and  $\chi_0$  a temperature independent term, T the temperature. The experimental result of  $\chi_0$  is found to be -2.89 × 10<sup>-3</sup>

emu mol-f.u.<sup>-1</sup>. The amount of diamagnetic contribution caused by the atomic core electrons for CuCr<sub>2</sub>Te<sub>4</sub> is evaluated to be  $\chi_{\rm dia} \approx -3.1 \times 10^{-4}$  emu mol-f.u.<sup>-1</sup> (26). The Weiss constant  $\theta$  is + 357 K, the Curie constant C is 4.28 K emu mol-f.u.<sup>-1</sup>. The magnitude of the effective magnetic moment  $\mu_{\rm eff}$  is evaluated to be 4.14  $\mu_{\rm B}$  Cr-ion<sup>-1</sup>, which is close to the spin only value 3.87  $\mu_{\rm B}$  expected for S = 3/2 (Cr<sup>3+</sup> ion). In addition, this evaluated magnitude of  $\mu_{\rm eff}$  is equivalent to 5.85  $\mu_{\rm B}$  mol-f.u.<sup>-1</sup>

Figure 8 shows the magnetization curve at 5.0 K up to  $H = \pm 10.0$  kOe. The value of magnetization at H = 10.0 kOe is  $2.85 \times 10^4$  emu mol-f.u.<sup>-1</sup>, which leads to the value of the magnetic moment  $n_{\rm B}$  ( $n_{\rm B} = gS$ , where g is the Lande's g-factor) at H = 10.0 kOe is  $n_{\rm B} = M/(N_{\rm A}\mu_{\rm B}) = 2.55~\mu_{\rm B}$  per Cr-ion. The value of  $n_{\rm B}$  is much less than the effective Bohr magneton number  $p_{\rm eff} = 4.14$  per Cr-ion. The magnetization is not saturated at 10.0 kOe. A possible mechanism may be a non-collinear spin alignment (27, 28).

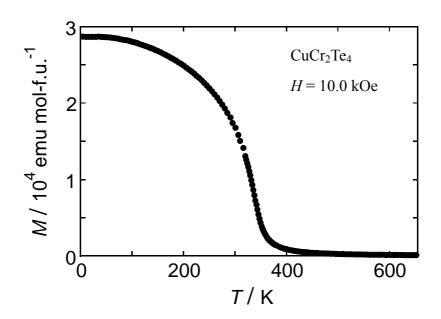



Fig. 5. Magnetization versus temperature for CuCr<sub>2</sub>Te<sub>4</sub> per formula unit at constant magnetic field of 10.0 kOe.

# 3. 4. Spin-wave excitation

The low-lying elementary excitations due to the spin wave have been examined for  $CuCr_2Te_4$ . The spin-wave dispersion relation for the long-wave ( $k \sim 0$ ) takes the form

$$\varepsilon_k = D k^2 + E k^4, \tag{4}$$

where D is the stiffness constant and E is the constant of proportionality for the  $k^4$  term.

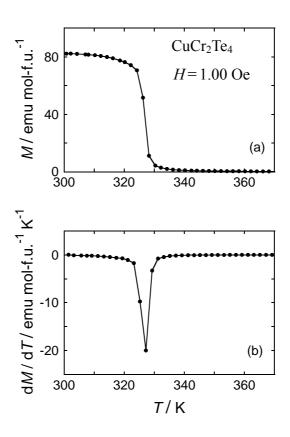



Fig. 6. Determination of the Curie temperature using the inflection point in the magnetic data. (a)Magnetization versus temperature for  $CuCr_2Te_4$  in very low magnetic field of 1.00 Oe. (b) Temperature derivative of M, dM/dT, as a function of temperature. This negative peak temperature corresponds to the sharp peak of the heat capacity.

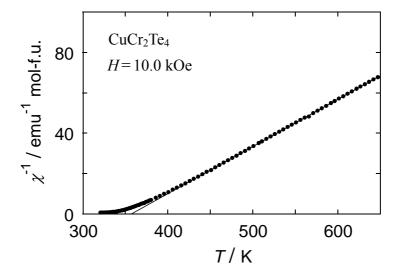



Fig. 7. Inverse magnetic susceptibility for  $CuCr_2Te_4$  as a function of tem perature in a magnetic field of 10.0 kOe.

At low temperatures, the magnetization is expected to follow the Heisenberg-model theoretical prediction as,

$$\frac{M(0) - M(T)}{M(0)} = \alpha T^{\frac{3}{2}} + \beta T^{\frac{5}{2}},\tag{5}$$

where  $\Delta M = M(0) - M(T)$  indicates the fraction of the magnetization,  $\alpha$  and  $\beta$  are constants.

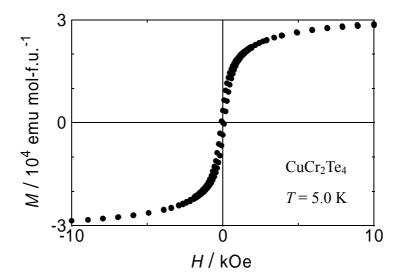



Fig. 8. Magnetization as a function of magnetic field H for CuCr<sub>2</sub>Te<sub>4</sub> at 5.0 K in the range -10  $\leq$  H  $\leq$ 10 kOe.

Figure 9 shows the experimental result on the basis of equation [5]. In the presence of magnetic field, the formula [4] and [5] must be changed a little. Nevertheless, we neglected the influence of the applied magnetic field of 10 k Oe. The low temperature magnetization is found to fit the equation [5]. The first term indicates the Bloch  $T^{3/2}$  law. In order to obtain the values of  $\alpha$  and  $\beta$ , Fig. 9 presents  $\Delta M/M(0) \times T^{-3/2}$  versus T. It is noted that the value  $\alpha$  is not zero in the Fig. 9, corresponding to the value of ordinate at the extrapolated abscissa to T=0 K. The straight line is observed up near 250 K. The low temperature data below 50 K are not given in Fig. 9 because the results of magnetization were not accurate in our samples, because of the sample dependence. The values of  $\alpha$  and  $\beta$  are evaluated to be  $\alpha = 1.29 \times 10^{-6}$  K  $^{-3/2}$  and  $\beta = 2.40 \times 10^{-7}$  K  $^{-5/2}$ , respectively. It is pointed out that the more precise analysis for the spin wave excitation should be made taking into account the external magnetic field, see Ref (29).

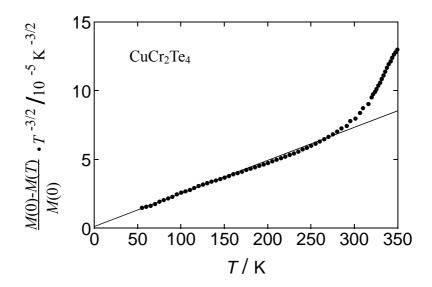



Fig. 9. A spin wave ferromagnetic excitation analysis. The fractional change of the magnetization  $\Delta M/M(0) = \alpha T^{3/2} + \beta T^{5/2}$  is detected up near 250 K, where  $\Delta M = M(0) - M(T)$ . The first term indicates the Bloch  $T^{3/2}$  law. It is noted that the value  $\alpha$  is not zero, corresponding the value of ordinate at the extrapolated abscissa to T = 0 K.

# Acknowledgments

The present work was supported financially by the Asahi Glass Foundation (H17-2, 2005, Tokyo).

#### References

- [1] S. Nagata, Chinese J. Phys. **43** (2005)722 and references therein.
- [2] K.-H. Hellwege, A. M. Hellwege (Ed.), Magnetic and Other Properties of Oxides and Related Compounds. Part b: Spinels, Fe Oxides and Fe-Me-O Compounds Landolt-Börnstein, New Series, Group 3, Crystal and Solid State Physics vol. **12**, Springer, Berlin, 1980, p. 54.
- [3] T. Kanomata, H. Ido, T. Kaneko, J. Phys. Soc. Jpn. 29 (1970) 332, T. Kanomata, H. Ido, J. Phys. Soc. Jpn. 36 (1974) 1332.
- [4] F. K. Lotgering, Proc. the Int. Conf. on Magnetism, Nottingham (Institute of Physics and Physical Society, London, 1964) 533.
- [5] Von E. Riedel and E. Horvath, Z. anorg. allg. Chem. **399** (1973) 219.
- [6] Von H. Hahn, C. de Lorent, and B. Harder, Z. anorg. allg. Chem. 283 (1956) 138.

- [7] V. P. Kononov, A. S. Komalov, S. A. Gavrichkov, and G. P. Popov, Izv. Akad. Nauk SSSR, Neorg. Mater. **22** (1986) 687.
- [8] P. R. Locher, Solid State Commun. 5 (1967) 185.
- [9] J. F. Ullrich, D. H. Vincent, Phys. Lett. **25A** (1967) 731.
- [10] F. K. Lotgering, R. P. van Stapele, Mater. Res. Bull. 3 (1968) 507.
- [11] S. B. Berger, J. I. Budnick, T. J. Burch, Phys. Lett. **26A** (1968) 450.
- [12] M. Pasternak, H. De Waard, Phys. Lett. 28A (1968) 298.
- [13] M. M. Ballal, C. Mande, Solid State Commun. 19 (1976) 325.
- [14] M. M. Ballal, C. Mande, J. Phys. Chem. Solids 8 (1977) 843.
- [15] Yu. D. Tretyakov, I. V. Gordeev, Ya. A. Kesler, J. Solid State Chem. **20** (1977) 345.
- [16] V. N. Berzhansky, N. A. Drokin, V. I. Ivanov, V. P. Kononov, I. S. Edelman, S. A. Havrichkov, V. K. Chernov, A. G. Shishkov, A. M. Pirogova, Thin Solid Films 190 (1989) 199.
- [17] H. Yokoyama, R. Watanabe, S. Chiba, J. Phys. Soc. Japan 22 (1967) 659.
- [18] H. Yokoyama, R. Watanabe, S. Chiba, J. Phys. Soc. Japan 23 (1967) 450.
- [19] K. Kamigaki, T. Kaneko, H. Yoshida, H. Ido, S, Miura, Proc. Int. Conf. Ferrites, Kyoto 1970, University of Tokyo Press, Tokyo (1971) 614.
- [20] K. P. Belov, I. V. Gordeev, L. I. Koroleva, A. V. Ped'ko, Yu. D. Tret'yakov, V. A. Alferov, E. M. Smirnovskaya, Yu. G. Saksonov, Phys. Met. Metallogr 34 (1972) 189.
- [21] Yu. D. Tretyakov, I.V. Gordeev, Yu. A. Kesler, J. Solid State Chem. **20** (1977) 345.
- [22] C. Colominas, Phys. Rev. **153** (1967) 558.
- [23] V. A. Shchelkotunov, V. N. Danilov, Ya. A. Kesler, V. K. Kamyshova, I. V. Gordeev, Yu. D. Tret'yakov, Mosk. Gos. Univ., Moscow, USSR, Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 13 (1977) 1716.
- [24] A. Payer, A. Kamlowski, R. Schöllhorn, Journal of Alloys and Compounds **185** (1992) 89.
- [25] S. Methfessel, D. C. Mattis, Handbuch der Physik, Vol. **XVIII/I**, Magnetismus, (Springer-Verlag, Heidelberg/Berlin/New York 1968) 389.
- [26] K.H. Hellwege, A.M. Hellwege (Eds.), Landolt-Börnstein, Group II vol. 8, Springer, Berlin, 1976, p. 27.
- [27] Y. Iijima, Y. Kamei, N. Kobayashi, J. Awaka, T. Iwasa, S. Ebisu, S. Chikazawa, and S. Nagata, Philos. Mag. **83** (2003) 2521 and references therein.
- [28] S. Iikubo, Y. Yasui, K. Oda, Y. Ohno, Y. Kobayashi, M. Sato, and K. Kakurai, J. Phys. Soc. Jpn. **71** (2002) 2792.
- [29] S. Nagata, S. Ebisu, E. Fujita, M. Miyazaki and S. Taniguchi, Jpn. J. Appl. Phys, **26** (Supple) (1987) 825.