# 廃棄物最終処分場遮水工模擬カラムによる漏水実験

Experimental study of the leakage from barrier systems in a sanitary landfill

| 室蘭工業大学大学院 | 学生員 | 河村彰一郎(Shouichiroh Kawamura) |
|-----------|-----|-----------------------------|
| 室蘭工業大学    | 正 員 | 吉田英樹 (Hideki Yoshida)       |
| 室蘭工業大学    | 正 員 | 穂積 準 (Hitoshi Hozumi)       |

# 1. はじめに

近年、廃棄物最終処分場からの漏水汚染問題が社会的 な関心事となっており、より一層環境安全な最終処分場 を建設することが必要となってきている。現在、我が国 では、遮水工の基準 1)として、1)遮水シートの2重化、 2) 遮水シートと透水係数10<sup>6</sup> cm/s 以下で厚さ50 cm 以上の地盤、3) 遮水シートと透水係数10<sup>-7</sup>cm/s で厚 さ5cm 以上の地盤、のいずれかになっており、遮水シ ート中心とした遮水構造になっている。しかしながら、 遮水シートは施工中の不備や施工後の劣化により破損を 生じることがあるため、これによる漏水汚染のリスクを 定量的に評価する必要がある。本研究では、このような 最終処分場で起こりうる遮水工からの漏水現象を明らか にすることを目的として、遮水工を模擬したカラムを用 いて実験を行い、漏水特性を明らかにするとともに、こ れまで提案されている理論的推定法および数値計算ソフ トウェアを用いた解析で得られた結果との比較・検討を 行った。

### 2. 実験概要

図 - 1 に実験装置を示した。装置は水供給カラムと試 料充填カラムからなる。水供給カラムは密閉させて、一 定の水圧がかけられるようになっていて、試料充填カラ ムの底部には試料を支持するためのポーラス盤が設置さ れている。試料上部表面には遮水シートを設置し、シー ト中心部には直径10mmの円形の穴を開けることによ リシートの破損を模擬した。また、カラム底部からの流 出水の水量を測定できるようになっている。充填試料と しては、シートの下に透水性の高い地盤がある状況を再 現するため、比較的透水係数の大きい豊浦標準砂(平均 径0.17mm)を用いた。充填された試料は水分飽和状 態で、カラム内の含水率分布が深さ方向にほぼ一定とな るように、重量含水率約20%に調整して充填した。

実験は試料充填後、温度を一定に保った状態で通水 させ、底部からの漏水流量を測定した。

### 3. 実験条件

予備実験として、充填試料の飽和透水係数を求めた 結果、 6.6×10<sup>-3</sup> [cm/s](水温20))が得られた。 実験はシート上の保護土を模擬した砂の厚さを0cm(以 下シートのみ)、2cm、5cm、10cm と変えた場合に ついて、実験を行なった。この実験における充填層に作 用する水圧は90cmとした。



| Į                    | 1 | 実験条件 |  |
|----------------------|---|------|--|
| <ul> <li></li> </ul> |   | ~~~~ |  |

|   | 実験NO. | 水温【 】 | 水位【cm】 | シートの状態        |
|---|-------|-------|--------|---------------|
|   | 1     | 20    | 90     | シートのみ         |
|   | 2     |       |        | シート上に砂層2cm設置  |
|   | 3     |       |        | シート上に砂層5cm設置  |
| Į | 4     |       |        | シート上に砂層10cm設置 |

#### 4. 実験結果

#### シート上の砂層厚さによる漏水流量への影響

図 - 2 はシート上に設置した砂層の厚さの違いによ る漏水流量変化を示している。条件ごとに3回の実験を 行なった。図において、シートのみの条件(砂層厚さ0 cm)は砂層厚0.1cmとして示している。推定値はシー ト上の砂層厚を考慮していないため一定値になっている。

シートのみの実験 NO.1に比べ、シート上に設置した 砂層の厚さを大きくすると漏水流量が減少した。たとえ ば、シートのみの条件(NO.1)に対して上砂10cm (NO.4)では流量が約1/10となった。このような流 量の減少効果はシート上の砂層の厚さがゼロから2cm になったときに最も著しく、約1/6~1/7になる。そ れ以上砂層厚さが大きくなっても漏水量の減少率は小さ くなっている。これは、シート上に砂層があることで、 シートとシート直下の砂充填層上部の密着性が高くなり、 漏水流量が減少すると考えられる。

また、シート上に設置した砂層で圧力損失が発生す ることによって、シート破損部近傍の圧力勾配が小さく なることで漏水流量の減少することが考えられるが、こ れらについては以下の解析を通して明らかにする。







図 - 3 砂層厚さによる漏水流重変化による 実験値、推定値の比較

# <u>5. Giroud らによる理論推定式</u>

欧米の遮水工からの漏水流量を推定する際に使われている Giroud らの提唱している方法から漏水推定値を 求めた。シート下の地盤の透水係数 k<sub>um</sub>の値により以下 に示す式<sup>2)</sup>を用いる。

$$Q = 0.976 \cdot C_{qo} \left[ 1 + 0.1 \cdot \left( \frac{h}{t_{UM}} \right)^{0.95} \right] d^{0.2} \cdot h^{0.9} \cdot k_{UM}^{0.74}$$

 $\log Q = 0.3195 + 2\log d$ 

$$+0.5\log h - 0.74 \left(\frac{5 + 2\log d - \log k_{UM}}{n}\right)^{\prime}$$

$$n = 5.554 - 0.4324 \log d + 0.5405 \log h$$

$$+1.3514\log C_{qo} + 1.3514\log \left[1 + 0.1 \left(\frac{h}{t_{UM}}\right)^{0.95}\right]$$

Q:漏水流量[m<sup>3</sup>/s]、C<sub>qo</sub>:シートと地盤の密着特性係数[-]、d:円孔の直径[m]、h:シート上の水位 [m]、t<sub>UM</sub>:充填試料の厚さ[m]、k<sub>UM</sub>:充填試料の 飽和透水係数[m/s]、a:穴の面積[m<sup>2</sup>]、g:重力加 速度[m/s<sup>2</sup>]、但し、C<sub>qo</sub>=0.21(密着性が高い場合)と する。



図-4 漏水シミュレーションの計算条件



図 - 5 砂層厚さの変化による、実験値、 推定値、解析値の比較

| 表 - | 2 | 理論推定式でのパラメータ | _ |
|-----|---|--------------|---|
|-----|---|--------------|---|

| 直     |
|-------|
| m]    |
| m]    |
| m]    |
| [m/s] |
| 1     |
|       |

実験値と推定値との比較を行なった結果を図 - 3 に示し た。シートのみの条件(NO.1)で比較すると、推定値 (2) は実験値の約5倍の大きさを与えているが、漏水汚染リ スク評価から考えると安全側にある。そして、シート上 に設置した砂層厚さが増加した場合の実験値と比較する と、最大で推定値が実験値の約45倍になり、誤差が極 (3) めて大きくなる。

したがって、Giroud らの推定式では、漏水汚染リス ク評価から考えると安全側の推定値を与え、また浸出水 調整池のようにシート上に直接浸出水が貯留されている ような場合での漏水問題ではほぼ精度良く漏水流量を推 定できると考えられる。

## 6.漏水解析方法と解析結果

次に、有限要素法(FEM)を用いたモデリングにより、 シート破損部を含めたミクロな漏水シミュレーションを 行った。解析の条件を図 - 4のように設定した。

解析は円筒2次元座標系で行い、図はカラムの中心か ら右半分のみを示している。まず、砂層内部で定常状態 を仮定し、次式のようにダルシー則と連続の式が成り立 つとした。

$$div\left(-\frac{\kappa}{\mu}\nabla p\right) = 0$$

ここで、 は比透水係数 $[m^2]$ 、 $\mu$ は粘性係数 $[Pa \cdot s]$ 、p はゲージ圧力[Pa]を示している。

境界条件として、シート上の砂層の上面に大気圧 pa と水圧 gh( は密度[kg/m<sup>3</sup>]、gは重力加速度[m/s<sup>2</sup>]、 h はカラムに加わる水頭[m])が加わり、砂層の下部が 大気圧 po になっていると仮定した。

図 - 4 は、実験値と FEM 解析値の漏水流量の比較を 行ったものを示している。この比較では、シートのみの 条件(NO.1)では解析値が実験値の約1/25と低い値 となっている。そして、砂層厚さが増えると、その差は 小さくなっているが、依然として。4倍から6.5倍の 差が生じている。これは、FEM 解析においては、遮水シ ート砂層上面が完全に密着している(完全に隙間がない) 状態)と仮定しているが、実際は実験ではシートと砂層 上面には隙間が生じているため、漏水流量が増大し、こ のような差が生じていたと思われる。

そこで、シートのみの条件(NO.1)で砂層上面に1 mm の隙間があり、シート直下の砂層上面に水圧が加わ っていると仮定して計算した結果を図 - 5 に示している。 実験値と FEM 解析値はほぼ一致し、シートと砂層の隙間 の発生により、漏水流量が増大していることが説明でき た。

さらに FEM 図解析結果について、シートの上に設置 した砂及び遮水シートの密着性の変化により、充填カラ ム内、特に遮水シート破損部付近の圧力勾配と流速ベク トルがどのように変化しているかを図 - 6 に示した。

上の図は遮水シートのみを敷設した実験 NO.1の条件 での計算結果、下の図は遮水シートの上に2 cm の砂層 を設置した上砂2cm(実験 NO.2)の条件の計算結果を それぞれ示したものである。等圧線は水頭で5 cm ごと の間隔で示しあり、圧力勾配の大きいところが間隔狭く、 小さいところが間隔広くなっている。矢印は流速ベクト ル分布及び流速ベクトルの方向を示したもので流速ベク トルが大きいところは矢印が大きく、流速ベクトルが小 さいところは矢印も小さくなっている。また、右下に遮 水シートの破損部周囲を拡大して示した。

左上の間隔が狭い部分に最大圧力  $p_0+$   $gh(p_0=0)$ が加わり、破損部の付近で大きな圧力勾配が生じている ことがわかる。シートのみ(実験 NO.1)と上砂2cm (実験 NO.2)を比較すると、NO.2ではシート上に砂 層が2cm あるためにそこで圧力損失が起こり、シート 破損部付近での圧力勾配はシートのみ(実験 NO.1)よ リ小さくなっている(つまり、等高線の間隔が大きくな っている)。このように、シート破損部近傍の圧力勾配 の大小が漏水流量を決める律速条件になっていることが わかる。このように、シート上に砂層を設置することに よって、シート破損部近傍の圧力勾配が小さくなり、結

果として漏水流量を低減している。たとえば、処分場底 部のシート上には廃棄物層の土圧が作用するが、シート とシート直下の地盤の密着性を向上するために砂層を敷 設する、あるいは浸出水調整池の底部のシート上に砂層 を敷設することにより、シート破損時の漏水流量を低減 することが可能であると考えられる。本実験装置の条件 でみると、例えば、90cm の水圧が加わっている条件 では、シートのみを敷設した場合よりシート上に砂層を 設置した場合では最大で約1/10に漏水流量を低減で きる可能性がある。

次に図 - 7 はシートと砂層上面に 1 mm の隙間が存在 する場合のシミュレーションの図である。図からわかる ように、充填層内で圧力勾配、流速ベクトルがほぼ一定 となっていることがわかり、シート破損部近傍での圧力 勾配が生じないため、漏水流量が大きくなることがわか る。

このように、遮水シートとシート直下の地盤との密 着条件によって、破損部近傍の圧力勾配が大きく変化す ることで、シート破損部からの漏水流量は大きな影響を 受けることが定性的・定量的に説明することができた。

# 等高線:圧力 アロー:速度フィールド





半径 [m]

# 等高線:圧力 アロー:速度フィールド



半径 [m]

図 - 6 実験NO.1(上図)、実験NO.2(下図)での 漏水シミュレーション(等高線:5cm水頭間隔、 流速ベクトル)

等高線:圧力 アロー:速度フィールド 深さ[m]





# <u>7.まとめ</u>

本実験装置での漏水実験、漏水流量の理論推定式の 適用・有限要素法による数値シミュレーションを行った 結果をまとめると以下のようになる。

1)漏水実験を行った結果、シート上の砂層厚さを大き くすると、漏水流量が大きく低減した。シート上の砂層 厚さ2cmでは、シートのみの条件(NO.1)より、漏水 流量が約7分の1となった。ただし、それ以上砂層厚さ が大きくなっても低減効果は比較的小さい。したがって、 浸出水調整池のようにシート上に直接浸出水が貯留され ている場合では、シート上に砂層を設置することにより 漏水流量を大きく低減できると考えられる。

2)Giroud らにより提案されている理論による漏水量推 定値と実験値を比較した結果、シートのみ(NO.1)の 条件では実験値の約5倍の値を与えるが、シート上に砂 層を設置した場合では約45倍と誤差が大きくなった。 ただし、この推定値は推定値は漏水リスク評価では安全 側にある。浸出水調整池からの漏水流量を推定する場合 は精度の良い値を与えると思われる。

3)有限要素法を用いた漏水シミュレーションによって 得られた漏水流量の解析値と実験値を比較した結果、解 析値はいずれの条件でも実験値より小さい値を示した。

しかし、シートと砂層上面に1mmの隙間があると仮 定して解析すると、シートのみの条件では解析値と実験 値がほぼ一致した。さらに、漏水シミュレーションによ る圧力分布及び流速ベクトル図から、シートと砂層の密 着条件が変化することで、破損部近傍の圧力勾配が変化 して、漏水流量が変化することが説明することができた。

#### 謝辞

本研究は科学技術振興調整費「最終処分場の有害物 質の安全・安心保障」(代表:小野芳朗)の補助を受け ました。ここに謝意を表します。

## 参考文献

- 1) 全国都市清掃会議:廃棄物最終処分場整備の計画・ 設計要領, p.214~215, 2001
- Giroud, J.P. Bonaparte, R. Leakage through a composite liner due to geomembrane defects, Geotextiles and Geomembranes, Vol.11, No.1, pp.1~29, 1992.