
A Note on Treatment of Incomplete Information in
Object–Oriented Rough Sets

Yasuo Kudo
Department of Computer Science and

Systems Engineering
Muroran Institute of Technology

Mizumoto 27-1, Muroran 050-8585, Japan
E-mail: kudo@csse.muroran-it.ac.jp

Tetsuya Murai
Graduate School of Information Science

and Technology
Hokkaido University

Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan
E-mail: murahiko@main.ist.hokudai.ac.jp

Abstract— We consider to treat incomplete information in the
framework of object–oriented rough set models proposed by
Kudo and Murai. The object–oriented rough set model treats
structural hierarchies among objects based on is-a relationship
and has-a relationship, however, treatment of incomplete infor-
mation about objects is not illustrated. In this paper, we introduce
null value objects to the object–oriented rough set model, which
illustrate incompleteness of objects that comes from “absence of
parts”. Moreover, we extend Kryszkiewicz’s tolerance relation to
apply to the object–oriented rough sets.

I. I NTRODUCTION

Pawlak’s Rough set theory [3], [4] provides a basic frame-
work of set-theoretical approximation of concepts and reason-
ing about data. Treatment of incomplete information is one of
the most interesting extensions of rough set theory. Various
proposals have been made about semantics of unknown value
that illustrate incomplete information in the framework of
rough sets (for example, [6], [1], [7]). According to Ste-
fanowski and Tsoukiàs [7], interpretations of unknown values
are distinguished in the following two semantics:

• the “missing value” semantics (unknown values allow any
comparison)

• the “absent value” semantics (unknown values do not
allow any comparison)

Kudo and Murai have proposed object–oriented rough set
models [2]. The object–oriented rough set model is an ex-
tension of the “traditional” rough set theory by introduc-
ing object–oriented paradigm used in computer science, and
the object–oriented rough set model illustrates hierarchical
structures between classes, names and objects based on is-
a and has-a relationships. However, in [2], all objects are
assumed to have all parts completely, therefore treatment of
incompleteness of objects is not illustrated.

In this paper, we consider to treat incomplete information in
the framework of object–oriented rough set models. Thus, we
introduce null value objects to the object–oriented rough set
model, which illustrate incompleteness of objects that comes
from “absence of parts”. Moreover, we extend Kryszkiewicz’s
tolerance relation [1] to apply to the object–oriented rough
sets.

II. OBJECT–ORIENTED ROUGH SETS

We briefly review object–oriented information systems pro-
posed by the authors [2]. First, we describe the concept
of class, name and object. Next, we illustrate well-defined
structures as a basic framework of the object–oriented rough
set model. Moreover, we introduce equivalence relations based
on “equivalence as instances”. Note that the contents of this
section are entirely based on [2].

A. Class, Name, Object

An object–oriented information systemconsists of the fol-
lowing three structures: aclass structureC, a name structure
N and aobject structureO, respectively:

C = (C,∋C ,⊇C), N = (N,∋N ,⊇N), O = (O,∋O,⊇O).

EachX ∈ {C, N, O} is a finite non-empty set such that|C| ≤
|N | (|X| is the cardinality ofX). Each elementc ∈ C is called
a class. Similarly, eachn ∈ N is called aname, and each
o ∈ O is called anobject. The relation∋X is an acyclic binary
relation onX, and the relation⊇X is a reflexive, transitive,
and asymmetric binary relation onX. Moreover,∋X and⊇X

satisfy the following property:

∀xi, xj , xk ∈ X, xi ⊇X xj , xj ∋X xk ⇒ xi ∋X xk. (1)

The class, name and object structures have the following
characteristics, respectively:

• The class structure illustrates abstract data forms and
those hierarchical structures based on part / whole re-
lationship (has-a relation) and specialized / generalized
relationship (is-a relation).

• The name structure introduces numerical constraint of
objects and those identification, which provide concrete
design of objects.

• The object structure illustrates actual combination of
objects.

Two relations∋X and ⊇X on X ∈ {C, N, O} illustrate
hierarchical structures among elements inX. The relation
∋X is called ahas-a relation, which illustrates part / whole
relationship.xi ∋X xj means “xi has-axj”, or “xj is a part
of xi”. For example,ci ∋C cj means that “the classci has a

SU-D2-3 SCIS&ISIS2006 @ Tokyo, Japan (September 20-24, 2006)

- 2238 -

classcj”, or “ cj is a part ofci”. On the other hand, the relation
⊇X is called anis-a relation, which illustrates specialized /
generalized relationship.xi ⊇X xj means that “xi is-a xj”.
For example,⊇C illustrates relationship between superclasses
and subclasses, andci ⊇C cj means that “ci is a superclass
of cj”, or “ cj is a subclass ofci”.

B. Well–Defined Structures

Each objecto ∈ O is defined as an instance of some class
c ∈ C, and the class ofo is identified by theclass identifier
function. The class identifieridC is a p-morphismbetweenO
and C (cf. [5], p.142), that is, the functionidC : O −→ C
satisfies the following conditions:

1. ∀oi, oj ∈ O, oi ∋O oj ⇒ idC(oi) ∋C idC(oj).
2. ∀oi ∈ O, ∀cj ∈ C, idC(oi) ∋C cj ⇒ ∃oj ∈ O

s.t.oi ∋O oj andidC(oj) = cj ,

and the same conditions are also satisfied for⊇O and ⊇C .
idC(o) = c means the objecto is an instance of the classc.

The object structureO and the class structureC are also con-
nected through the name structureN by thenaming function
nf : N −→ C and thename assignmentna : O −→ N . The
naming function provides names to each class, which enable
us to use plural instances of the same class simultaneously.
On the other hand, the name assignment provides names to
every objects, which enable us to identify objects by names.

Formally, the naming functionnf : N −→ C is a surjective
p-morphism betweenN and C, and satisfies the following
name preservation constraint:

• For any ni, nj ∈ N , if nf(ni) = nf(nj), then
HN (c|ni) = HN (c|nj) is satisfied for allc ∈ C,

whereHN (c|n) = {nj ∈ N |n∋N nj ,f(nj) = c} is the set of
names ofc thatn has. The requirement thatnf is a surjective
p-morphism means that there is at least one name for each
class, and structures between names reflect all structural char-
acteristics between classes. The name preservation constraint
requires that, for any classci, cj ∈ C such thatci ∋C cj , and
any namen ∈ N with nf(n) = ci, all names of the parts of
c are uniquely determined. Thus, the number of names ofcj

is fixed asm = |HN (cj |n)|, and we can simply say that “the
classci hasm objects of the classcj”.

On the other hand, the name assignmentna : O −→ N is
a p-morphism betweenO andN , and satisfies the following
uniqueness condition:

• For anyx ∈ O, if HO(x) ̸= ∅, the restriction ofna into
HO(x):
na|HO(x) : HO(x) −→ N is injective,

where HO(x) = {y ∈ O | x ∋O y} is the set of objects
that x has.na(x) = n means that the name of the objectx
is n. The uniqueness condition requires that all distinct parts
y ∈ HO(x) have different names.

We say thatC, N andO arewell-definedif and only if there
exist a naming functionnf : N −→ C and a name assignment
na : O −→ N such that

idC = nf ◦ na, (2)

that is,idC(x) = nf(na(x)) for all x ∈ O.

In this paper, we concentrate well-defined class, name and
object structures. In well-defined structures, if a classci has
m objects of a classcj , then any instanceoi of the class
ci has exactlym instancesoj1, · · · , ojm of the classcj [2].
This good property enables us the following description for
clear representation of objects. Suppose we haveo1, o2 ∈ O,
n1, n2 ∈ N , andc1, c2 ∈ C such thato1 ∋O o2, andna(oi) =
ni, nf(ni) = ci for i ∈ {1, 2}. We denoteo1.n2 instead ofo2

by means of “the instance ofc2 namedn2 as a part ofo1”.

In object–oriented information systems, attributes and val-
ues of “traditional” information systems are special cases of
classes and objects. Attributes are defined as classes with no
parts, and the set of attributesAT is defined as follows:

AT = {c ∈ C | c ̸∋C c′, ∀c′ ∈ C}. (3)

Values are defined as instances of attributes. We call such
instances of attributesvalue objects. Note that we assume that
we can compare the “values” of null value objects of the same
class.

Example 1:We use the same settings with examples of
the object–oriented rough set model in [2]. LetC = (C,∋C

,⊇C) be a class structure withC = {PC, DeskTopPC,
2CPU − DTPC, CPU, Memory, HDD, Clock, MSize, HSize},
and we have the following relationships:

Is-a relation:
DeskTopPC ⊇C PC,
2CPU − DTPC ⊇C DeskTopPC,
2CPU − DTPC ⊇C PC,
· · · .

Has-a relation:
PC ∋C CPU, PC ∋C Memory,
Memory ∋C MSize, HDD ∋C HSize,
· · · .

Suppose moreover thatClock, MSize, and HSize are at-
tributes. By the property (1), these relations illustrate connec-
tions between classes, for example, “2CPU-DTPC is-a PC”
and “PC has-aCPU” imply “ 2CPU-DTPC has-aCPU”.

Next, let N = (N,∋N ,⊇N) is a name structure with
N = {pc, desk top pc, 2cpu dtpc, cpu, cpu2, memory,
hdd, clock, msize, hsize} and the following relationships:

Is-a relation:
desk top pc ⊇N pc,
2cpu dtpc ⊇N desk top pc,
· · · .

Has-a relation:
desk top pc ∋N cpu
2cpu dtpc ∋N cpu, 2cpu dtpc ∋N cpu2,
cpu ∋N clock, memory ∋N msize,
· · · .

Moreover, suppose we have a naming functionnf : N −→ C

- 2239 -

such that

nf(pc) = PC, nf(desk top pc) = DeskTopPC,
nf(2cpu dtpc) = 2CPU − DTPC,
nf(cpu) = nf(cpu2) = CPU,
nf(memory) = Memory, nf(hdd) = HDD,
nf(clock) = Clock, nf(msize) = MSize, nf(hsize) = HSize.

Note that we haveHN (CPU|2cpu dtpc) = {cpu, cpu2},
and HN (Clock|cpu) = HN (Clock|cpu2) = {clock}. Thus,
for example, 2CPU-DTPC class has two objects of the
CPU class, called “cpu” and “cpu2”, respectively, one object
“memory” of theMemory class, and one object “hdd” of the
HDD class.

Finally, let O = (O,∋O,⊇O) be an object structure with
the following is-a and relationships:

Is-a relation:
x ⊇O x, ∀x ∈ O, and pc3⊇O pc1, pc3⊇O pc2.
Has-a relation:
pci ∋O ci, pci ∋O mi, pci ∋O hi, i ∈ {1, 2, 3},
pc3∋O c4,
ci ∋O 2.4GHz,i ∈ {1, 3, 4}, c2∋O 3.0GHz,
m1∋O 512MB, mi ∋O 1GB, i ∈ {2, 3},
hi ∋O 40GB, i ∈ {1, 2}, h3∋O 80GB.

Moreover, let na : O −→ N be the following name
assignment:

na(pc1) = na(pc2) = desk top pc,
na(pc3) = 2cpu dtpc,
na(c1) = na(c2) = na(c3) = cpu, na(c4) = cpu2,
na(m1) = na(m2) = na(m3) = memory,
na(h1) = na(h2) = na(h3) = hdd,
na(2.4GHz) = na(3.0GHz) = clock,
na(512MB) = na(1GB) = msize,
na(40GB) = na(80GB) = hsize.

We define the class identifieridC : O −→ C by idC = nf◦na.
This object structureO illustrates the following situation:

There are three objects pc1, pc2 and pc3. pc1 and pc2 are
instances of theDeskTopPC class, and pc3 is an instance of
the the2CPU-DTPC class. pc1 and pc2 have one instance of
the CPU class, c1 = pc1.cpu and c2 = pc2.cpu, respectively.
On the other hand, pc3 has two instances of theCPU class,
c3 = pc3.cpu and c4 = pc3.cpu2, respectively. Moreover, each
pci (i = 1, 2, 3) has just one instance mi of the Memory
class, and just one instance hi of the HDD class. Each cpu
has its clock (2.4GHz or 3.0GHz), each memory has its size
(512MB or 1GB), and each hard disk drive has its size (40GB
or 80GB).

C. Indiscernibility Relations in the Object – Oriented Rough
Sets

All equivalence relations in object–oriented rough set mod-
els are based on the concept of equivalence as instances. In [2],
to evaluate equivalence of instances, an equivalence relation

∼ on O are recursively defined as follows:

x ∼ y ⇐⇒
x andy satisfy the following two conditions:
1. idC(x) = idC(y), and,

2.

{
x.n ∼ y.n, ∀n ∈ HN (na(x)) if HN (na(x)) ̸= ∅,
V al(x) = V al(y) otherwise,

(4)
whereHN (na(x)) is the set of names thatna(x) has.V al(x)
is the “value” of the “value object”x. BecauseC is a finite
non-empty set and∋C is acyclic, there is at least one class
c such thatc has no other classc′, that is, c ̸∋C c′ for any
c′ ∈ C. We call such classc anattribute, and denote the set of
attributes byAT . For any objectx, if idC(x) = a anda ∈ AT ,
we call such objectx a value objectof the attributea. The
value objectx as an instance of the attributea represents a
“value” of the attribute.

x ∼ y means that the objectx is equivalent to the objecty as
an instance of the classidC(x). Using the equivalence relation
∼, we propose the following binary relation with respect to a
given subsetB ⊆ N of names as follows:

x ∼B y ⇐⇒
x andy satisfy the following two conditions:
1 B ∩ HN (na(x)) = B ∩ HN (na(y)), and,
2 ∀n[n ∈ B ∩ HN (na(x)) ⇒ x.n ∼ y.n].

(5)

x ∼B y means thatx and y are equivalent as instances of
the classidC(x) in the sense that, for alln ∈ B∩HN (na(x)),
x and y have equivalent instances of the classidC(x.n).
Equivalence classes[x]∼B

by ∼B are usually defined. Note
that, in the “traditional” rough set theory, all equivalence
classes concern the same attributes. On the other hand, each
equivalence class of the object–oriented rough set model may
concern different classes. In particular, ifB∩HN (na(x)) = ∅,
the equivalence class[x]∼B

is the set of objects that are not
concerned any classnf(n), n ∈ B at all.

Example 2:This example is continuation of example 1.
SupposeB = {cpu}. Using the equivalence relation∼ defined
by (4), we construct the equivalence relation∼B by (5), and
the resulted equivalence classes by∼B are as follows:

[pc1]∼B
= {pc1,pc3}, [pc2]∼B

= {pc2},
[c1]∼B

= O − {pc1,pc2,pc3}.

The equivalence classes[pc1]∼B
and [pc3]∼B

correspond to
the set of personal computers that have “2.4GHz CPU” and
the singleton set of the personal computer that has “3.0GHz
CPU”, respectively. On the other hand,[c1]∼ represents the
set of objects that have no CPU.

III. I NCOMPLETE INFORMATION IN THE

OBJECT–ORIENTED ROUGH SETS

In this section, we extend the object–oriented rough set
model to treat incomplete information. There are many kinds
of interpretation of incomplete information, however, we
concentrate incompleteness of information about objects that
comes from “absence of parts”. Informally, absence of parts il-
lustrates the following situation: Suppose we have two classes

- 2240 -

ci and cj such thatcj is a part ofci, and an instanceoi of
the classci, however, there is no “actual” instanceoj ∈ O
such thatoj is an instance ofcj and also is a part ofoi. For
example, “a personal computer that its CPU was taken away”.
has no instance ofCPU class, even though any instance of
DeskTopPC class should have one instance ofCPU class.
To illustrate incompleteness we mentioned the above, we
introducenull value objectsinto the object–oriented rough set
model.

A. Null Value Objects

We introduce null value objects and an incomplete object
structure to illustrate “absence of parts” as follows.

Definition 1: Let NO be a finite non-empty set. Anincom-
plete object structureIO is the following triple:

IO = (O ∪ NO,∋I ,⊇I), (6)

whereO is the (finite and non-empty) set of objects,NO is
a finite set such thatO ∩ NO = ∅, the relation∋I is an
acyclic binary relation onO ∪ NO, and the relation⊇I is a
reflexive, transitive, and asymmetric binary relation onO ∪
NO. Moreover,∋I and ⊇I satisfy the property (1) and the
following condition:

∀x ∈ NO, ∀y ∈ O ∪ NO, x ̸∋I y. (7)
We call each objectx ∈ NO a null value object. On

the other hand, each objecty ∈ O is called an actual
objects. We intend that null value objects have the following
characteristics:

1) All null value objects have no objects.
2) Each null value object is an instance of some class.

The characteristic 1) means that each null value object is
a special case of value objects, and it corresponds to “null
value”. The characteristic 2) means that each null value object
is also an object of some class. This intends that we can
compare null value objects and any other (null value) objects
if and only if these objects are instances of the same class.

B. Well-defined structures with null value objects

To illustrate the above characteristics of null value objects,
we refine the definition of the class identifier. However, we
can not directly extend the domain of the class identifieridC

to O∪NO with keepingidC a p-morphism, and therefore we
need to weaken the definition of p-morphism.

Definition 2: Let IO = (O∪NO,∋I ,⊇I) andC = (C,∋C

,⊇C) be an incomplete object structure and a class structure,
respectively. We call a functionidC : O ∪NO −→ C a class
identifier of incomplete objectsif idC satisfies the following
conditions:

1. ∀oi, oj ∈ O ∪ NO, oi ∋I oj ⇒ idC(oi) ∋C idC(oj).
2. ∀oi ∈ O, ∀cj ∈ C, idC(oi) ∋C cj ⇒ ∃oj ∈ O ∪ NO

s.t.oi ∋I oj andidC(oj) = cj ,

and the same conditions are also satisfied for⊇I and⊇C .
idC(o) = c means that the (null value) objecto ∈ O ∪

NO is an instance of the classc. Note that the condition 2

is weakened from the condition of p-morphism to agree with
the characteristic of null value objects by (7).

We also need to extend the domain of the name assignment
na to O ∪ NO as follows.

Definition 3: Let IO = (O ∪ NO,∋I ,⊇I) and N =
(N,∋N ,⊇N) be an incomplete object structure and a name
structure, respectively. We call a functionna : O∪NO −→ N
a name assignmentif na satisfies the following conditions:

1) na satisfies the condition 1 and 2 appeared in Definition
2.

2) na satisfies the followinguniqueness condition:

• For anyx ∈ O, if HI(x) ̸= ∅, the restriction ofna
into HI(x):
na|HI(x) : HI(x) −→ N is injective,

whereHI(x) = {y ∈ O ∪ NO | x ∋I y} is the set of
“actual” and “null value” objects thatx has.

na(x) = n means that the name of the objectx is n.

Similar to the case of “complete” object–oriented rough
set model, we introduce a naming functionnf : N −→ C
as a p-morphism betweenN and C that satisfies the name
preservation constraint. Moreover, we say thatC, N andIO
are well-definedif and only if there exist a naming function
nf : N −→ C and a name assignmentna : O ∪ NO −→ N
such thatidC = nf ◦ na, that is, idC(x) = nf(na(x)) for
all x ∈ O ∪ NO. Hereafter, we concentrate well-defined
incomplete object, name and class structures.

Now, we can explain incompleteness by “absence of parts”
correctly. Suppose that any instancex of a classci should have
m objects of a classcj , that is, there arem namesn1, · · · , nm

for the classcj andm instancesx.n1, · · · , x.nm of the classcj

such thatx ∋O x.nj (j = 1, . . . ,m). Here, if we havex.nk ∈
NO for some namenk, the notionx ∋O x.nk illustrates that,
even though any instance ofc should havem “actual” objects
of cj , there are justm−1 objects ofcj as parts ofx, and there
is no “actual” object that corresponds tox.nk. This situation
illustrates “incompleteness” of the objectx as an instance of
ci, which is triggered by “absence of parts” ofx. Note that
there are exactlym instances ofcj as parts ofx, and therefore,
constraints about design of objects introduced by the name
structure are satisfied.

Example 3:Let O, N and C be the object structure, the
name structure, and the class structure used in example 1,
respectively. Moreover, letidC : O −→ C, na : O −→ N and
nf : N −→ C be the class identifier, the name assignment
and the naming function used in example 1, respectively. We
introduce an incomplete object structureIO = (O ∪ NO,∋I

,⊇I) based onO as follows:

Let NO = {nc1, nc2, nc3} be a set of null value objects
with the following idC andna:

idC(nc1) = idC(nc2) = idC(nc3) = CPU,
na(nc1) = na(nc2) = cpu, na(nc3) = cpu2.

- 2241 -

pc4
³³³³

nc1 m4

PPPP
h4

512MHz 40GB
pc5
ÃÃÃÃÃÃ

nc2
¡¡

nc3
@@

m5

`````̀
h5

1GB 80GB

Fig. 1. Has-a relation∋I between actual and null value objects

We also add objects with the following names toO:

na(pc4) = desk top pc, na(pc5) = 2cpu dtpc,
na(m4) = na(m5) = memory,
na(h4) = na(h5) = hdd,
· · · .

We define the is-a relation⊇I on O ∪NO as follows. Fig.
1 illustrates the has-a relation∋I about newly added actual
objects and null value objects:

x ⊇I x, ∀x ∈ O ∪ NO, and,
pci ⊇I pcj, (i, j ∈ {1, 2, 4}),
pci ⊇I pcj, (i, j ∈ {3, 5}),
pc3⊇I pci, pc5⊇I pci. (i ∈ {1, 2, 4}).

The incomplete object structureIO illustrates the following
situations about newly added actual objects and null value
objects: There are two personal computers pc4 and pc5 with
some lack of parts, respectively. pc4 is an instance of the
DestTopPC class, thus pc4 should have one CPU as a part.
Similarly, pc5 is an instance of the2CPU-DTPC class, thus
pc5 should have two CPUs as parts. However, both pc4 and
pc5 have no CPU as its parts.

IV. TOLERANCE RELATIONS IN OBJECT–ORIENTED

ROUGH SETS

In this section, we extend the tolerance relation proposed by
Kryszkiewicz [1] to apply object–oriented incomplete informa-
tion systems. According to Stefanowski and Tsoukiàs [7], the
tolerance relation corresponds to “missing value” semantics
that unknown values allow any comparison. Thus, we think
that extended tolerance relations in object–oriented incomplete
information systems are suitable for treating incompleteness
by “absence of parts”.

Definition 4: Let B ⊆ N be a non-empty subset of names.
A object–oriented tolerance relationTB onO∪NO is a binary
relation defined as follows:

xTBy ⇐⇒
x andy satisfy the following two conditions:
1 B ∩ HN (na(x)) = B ∩ HN (na(y)), and,
2. ∀n[n ∈ B ∩ HN (na(x)) ⇒ eitherx.n ∼ y.n

or x.n ∈ NO or y.n ∈ NO],

(8)

where∼ is an equivalence relation onO defined by (4).
We call the relationTB defined by (8) anobject–oriented

tolerance relation. Similar to the tolerance relation [1], it is
easy to check that the relationTB defined by (8) is reflexive
and symmetric, but not necessary transitive.

We intend that the tolerance relationTB defined by (8) treats
“absence of parts” in the sense that, ifx.n is a null value object
of the classidC(x.n), x.n is regarded to be equivalent to any
instance of the classidC(x.n). This means that, if we have
xTBy, we can makex andy be equivalent, that is,x ∼B y, by
removing all null value objects from bothx andy, and setting
“actual” parts to makex.n ∼ y.n for all n ∈ B∩HN (na(x)).

For any subsetX ⊆ O of “actual” objects, we define the
B-lower approximationTB (X) and B-upper approximation
TB(X) as the same manner with [1], respectively:

TB(X) = {x ∈ O | TB(x) ⊆ X}, (9)

TB(X) = {x ∈ O | TB(x) ∩ X ̸= ∅}, (10)

where TB(X) = {y ∈ O | xTBy}. We call the setTB(x)
the tolerance class ofx. B-lower approximationTB(X) is
the set of objectsy ∈ O such that we can makey be
equivalent to all objectsx ∈ X. On the other hand,B-upper
approximationTB(X) is the set of objectsy such that there
is at least one objectx ∈ X such that we can makex and
y be equivalent. Similar to [1], it is not hard to check that
B-lower approximationTB(X) and B-upper approximation
TB(X) satisfy the following properties.

Proposition 1: For any non-emptyX ⊆ O and any non-
emptyB, B1, B2 ⊆ N , the following properties are satisfied:

1) TB(X) ⊆ X ⊆ TB(X).
2) B1 ⊆ B2 =⇒ TB1(X) ⊆ TB2(X).
3) B1 ⊆ B2 =⇒ TB1(X) ⊇ TB2(X).
Example 4:Let B1 = {cpu, cpu2} be a subset of names,

and X = {pc2, pc3}. We construct the object–oriented toler-
ance relationTB1 by (8), and the obtained tolerance classes
are as follows:

TB1(pc1) = {pc1, pc4},
TB1(pc2) = {pc2, pc4},
TB1(pc3) = {pc3, pc5},
TB1(pc4) = {pc1, pc2, pc4},
TB1(pc5) = {pc3, pc5},
TB1(c1) = O − {pci | 1 ≤ i ≤ 5}.

Therefore, we have the followingB1−lower andB1−upper
approximations ofX:

TB1 (X) = ∅,
TB1(X) = {pc2, pc3, pc4, pc5}.

On the other hand, if we setB2
def= B∪{memory}, we have

the following tolerance classes by the tolerance relationTB2

as follows:

TB2(pc1) = {pc1, pc4},
TB2(pc2) = {pc2},

- 2242 -



TB2(pc3) = {pc3, pc5},
TB2(pc4) = {pc1, pc2, pc4},
TB2(pc5) = {pc3, pc5},
TB2(c1) = O − {pci | 1 ≤ i ≤ 5}.

By these tolerance classes, we have the followingB2−lower
andB2−upper approximations ofX:

TB2(X) = {pc2},
TB2(X) = {pc2, pc3, pc4, pc5}.

This illustrates an example of the situation of the property 2)
and 3) in Proposition 1.

V. D ISCUSSION

We have treated object–oriented incomplete information
systems and tolerance relations in object–oriented rough sets,
which provide an extension of object–oriented rough sets to
treat incomplete information by “absence of parts”.

The main idea of this paper is to introduce null value
objects that enable us to treat incompleteness of objects and
constraints about design of objects simultaneously. Moreover,
introduction of null value objects provides flexibility of rep-
resentation in a sense that name structures also illustrate
“possibility” of the numbers of actual parts. As mentioned in
section III-B, constraints about design of objects are satisfied
in object–oriented incomplete information systems. Thus, if
the name structure describes that any instancex of a classci

has exactlym instances of a classcj as parts ofx, there
are exactlym instances ofcj within k actual objects and
l null value objects as parts ofx, where k + l = m and
0 ≤ k, l ≤ m. Therefore, we can regard that the name
structure also determines the maximum number of “actual”
parts that an objectcan have, instead of determining the
number of objects that an objectshouldhave in object–oriented
“complete” information systems

We think that the object–oriented tolerance relation captures
characteristics of incompleteness by “absence of parts”. This
is because, as mentioned in section IV, the “original” tolerance
relation provides “missing value” semantics that unknown
values allow any comparison. We consider that, in object–
oriented incomplete information systems, missing value se-
mantics illustrates the situation that unknown values of some
class c allow any comparison with instances ofc, which
captures an important characteristic of “absence of parts”
as an interpretation of null values. Consideration of other
interpretations of null values in object–oriented incomplete
information systems are future works.

VI. CONCLUSION

In this paper, we have proposed null value objects to
represent incomplete information that comes from “absence
of parts” in the object–oriented rough set model. Moreover,
similar to [1], we have introduced the object–oriented toler-
ance relation that arrows incomplete information illustrates by
null value objects.

More refinement of theoretical aspects of null value objects
and the object–oriented tolerance relation, and extension to
treat other kinds of incompleteness, for example, similarity
relations proposed by Stefanowski and Tsoukiàs [7], are future
works.

REFERENCES

[1] M.Kryszkiewicz: Rough Set Approach to Incomplete Information Sys-
tems,Information Science, Vol. 112, pp. 39–49, 1998.

[2] Y. Kudo and T. Murai: A Theoretical Formulation of Object–Oriented
Rough Set Models,Journal of Advanced Computational Intelligence and
Intelligent Informatics, Vol. 10, No. 5, 2006 (to appear).

[3] Z. Pawlak: Rough Sets,International Journal of Computer and Infor-
mation Science, Vol. 11, pp. 341–356, 1982.

[4] Z. Pawlak:Rough Sets: Theoretical Aspects of Reasoning about Data,
Kluwer Academic Publisher, 1991.

[5] S. Popkorn:First Steps in Modal Logic, Cambridge University Press,
1994.

[6] R. Słowiński and J. Stefanowski: Rough Classification in Incomplete
Information Systems.Mathematical Computing Modeling, Vol 12, No.
10–11, pp. 1347–1357, 1989.

[7] J. Stefanowski and A. Tsoukiàs: Incomplete Information Tables and
Rough Classification,Computational Intelligence, Vol. 17, No. 3, pp.
545–565, 2001.

- 2243 -


