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Abstract: In this paper, we present a foundation of formulating human reasoning processes with Kansei representationbased on 
granularity generated by background knowledge. For the objective, we examine the role of background knowledge and granularity in 
several kinds of reasoning. We put emphasis on difference between objective and subjective levels of knowledge. We represent 
subjective knowledge by lower approximation in rough set theory under granularity generated by background knowledge.Then we 
examine monotonicity and non-monotonicity between the two levels with respect to deduction and non-monotonic reasoning. Next we 
apply the idea to abduction which gives us which premise is plausible when we are given rules and conclusions. The problem in 
abduction is how to select one from several possible premises and we solve it by calculating inclusion degree between possible prem-
ises and the lower approximation of the given conclusion. Thus we can introduce some ordering into the set of possible premises. 
Finally we apply a similar idea to conflict resolution typically dealt with in reasoning in expert systems and robotcontrol. When we 
have plural monotonic rules which can be applied to a given premise, if conclusions are associated with their own action or execution, 
then we cannot take the conjunction of all conclusions. Again we must select one of the conclusions using the inclusion degree between 
the premise and the lower approximations of possible conclusions. Thus we can introduce some ordering into the set of possible 
conclusions associated with actions. 
Keywords: Rough sets, Lower and upper approximations, Modal logic, Granularity, Adjustment of granularity, Deduction, Non-
monotonic reasoning, Abduction, Conflict resolution.

1. INTRODUCTION 

The late professor Z.Pawlak[10] proposed rough set 
theory[10,11] in 1982. Since then, nowadays it becomes 

one of the most important and remarkable methodologies 
for imprecise and uncertain data and reasoning from data. 
Recently in 21st century, the concept of granular comput-
ing has newly advocated by several researchers [2,12] in 

rough set community and the importance of rough set 
theory more and more increases. 

Along this line, the authors in [4-9] have applied the 
idea of granular computing into reasoning processes. We 

call the formulation granular reasoning or zooming 
systems. In order to apply it to human ordinary reasoning, 

we must introduce Kansei representations to reasoning 

processes. 
In this paper, for the purpose, we examine some rela-

tionship between several kinds of reasoning processes and 

granularity generated by background knowledge. We 
introduce two levels of objective and subjective under 
background knowledge. In particular, we put much 

emphasis on the role of lower approximation, whose size 
depends on the granularity based on background knowl-

edge, in several kinds of reasoning such as deduction,

non-monotonic reasoning, abduction, and conflict resolu-

tion in expert systems and robot control. 
Recently in Japan, Kansei engineering provides very 

interesting and important applications of rough set theory. 
There the concept of reducts plays an important part in 

such applications. We expect this paper would give Kansei 
community another aspect of rough set theory, that is, 

adjustment of granularity. 
This paper is organized as follows. In Section 2, we give 

a brief description on rough set theory and modal logic. In 
Section 3, we examine the role of granularity generated by 
background knowledge in several kinds of reasoning 

processes such as deduction, non-monotonic reasoning, 
abduction, and conflict resolution. Section 4 concludes 

the paper. 

2. GRANULAR COMPUTING 

2.1 Rough Sets 
The basic idea of rough set theory[10,11] is to describe 

unknown objects represented in some set (universe of 

discourse) in terms of known (usually finite) data, by 

which we can generate an equivalence relation. In fact, 
first, some clusters of elements are generated by known
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set of data. Then, unknown objects, which we want to 

explain, are described using such clusters just like 'build-

ing blocks.' We can regard such known set of data as 

background knowledge. 

Formally, let U be a universe of discourse and R be an 

equivalence relation on U. In general, a relation on U is a 

subset of the direct (Cartesian) product of U:

When a pair (x,y) is in R, we write xRy. A relation R on U 

is said to be an equivalence relation just in case it satisfies 

the following three properties : for every x, y, z•¸U,

(1)

(2)

(3)

where '•Ë'means 'imply.' 

The set [x]R defined by

is called the equivalence class of x with respect to R. The 

family of all equivalence classes of each element in U 

with respect to R is denoted U/R, that is,

It is called the quotient set of U with respect to R. Equiva-

lence classes satisfy the following properties:

(1)

(2)

Then the quotient set U/R gives a partition of U. Thus 

we can deal with equivalence classes as building blocks 

under background knowledge induced from relation R. In 

fact, we can approximate a set X (unknown object) in the 

two ways just illustrated in Figure 1. 

 One way is to make an approximation from inside using 

the building blocks of U/R that are contained in X:

It is called the lower approximation of X with respect to 

R. The other is to make an approximation from outside of 

X by deleting the building blocks that have no intersection 

with X. Equivalently, it comes to

It is called the upper approximation of X with respect to 

R. Obviously we have the following inclusion:

Further we use the following three terms: 

(1) Positive region of X: Pos(X)=R(X) 

(2) Borderline region of X: Bd(X)=R(X)—R(X) 

(3) Negative region of X: Neg(X)=X-R(X) 
The pair

is called the rough set of X with respect to R. And the 

pair

(U,R)

is referred as an approximation or Pawlak space.

Figure 1 : Two kinds of approximations

2.2 Adjustment of Granularity 

Intuitively speaking, the size of building blocks depends 

on the granularity generated by a given approximation 

space or its quotient set. In Figure 2, U/R has coarser granu-

larity that U/R' has. Thus, in general, we can understand 

that U/R' gives better approximation than U/R. 

In order to deal with degrees of granularity in a quanti-

tative way, several kinds of measures are introduced for 

the finite universe case. Among them, the following 

measure is called the accuracy of X with respect to R:

Another well-known measure is

which is called the quality of X with respect to R. By these 

measures we can have the degree of granularity of X under 

background knowledge.

Figure 2: Adjustment of granularity.
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2.3 Rough Sets and Modal Logic 

 Rough sets have a close relationship with modal 

 logics [1]. In fact, approximation spaces are just modal 

algebras for modal system KT5 (S5). 

 In general, modal logic is supplemented by two modal 

operators •  and •ž which are applied to one sentence. For 

a sentence p, standard readings of them are as follows: 

(1) • p: p is necessary. 

(2) •žp: p is possible. 

Depending on context, however, there are many other 

interpretations such as 'obligation', 'knowledge' , and 

'belief' for operator • . 

                There are several kinds of semantics for modal logic 

and, among them, Kripke semantics is now a most popular 

one for interpreting sentences in modal logics. A Kripke 

frame F is a pair

where U is a non-empty set of possible worlds and R is a 

relation on U. Apparently, an approximation space is just 

a Kripke frame when R is an equivalence relation. 

 A Kripke model M is a triple

where (U,R) is a frame and v is a valuation which assigns 

'true' or 'false' to atomic sentences at each world x. 

 Let us write

when a sentence p is true at a world x•¸U in a Kripke 

model M=(U,R,v). Also we use

which means p is true at every world x in U. 

 Truth conditions of modal sentences are defined by

That is, p is necessary if and only if p is true at every world 

we can access while p is possible just in case there is at 

least one world at which p is true. The set of worlds at 

which p is true in M, denoted •ap•aM(•ºU), is defined by

which is often called the proposition of p in M. 

 Let us define the set of worlds which can be accessible 

from x in U by the following set

We can rewrite the truth conditions of modal sentences in 

a simpler way:

When R is an equivalence relation, then Ux becomes an 

equivalence class [x]R. Now readers can find the right-

hand sides of the above formulas correspond to the 

definition of lower and upper approximations, respectively. 

Thus we have

 In this paper, we adopt the following notation if no 

confusion arises: for a sentence p (in small letter), we use 

its capital letter P for the proposition of p:

In particular, we use

for modal sentences. 

 Finally in this section, we sketch proof theory of modal 

logic KT5. KT5 is axiomatized by the following special 

rule and axiom schemas for modal sentences

as well as the usual rule and axioms of propositional logic. 

KT5 is proved to be both sound and complete with respect 

to the class of Kripke models with equivalence relations 

(cf.[1]).

3. GRANULARITY GENERATED BY BACKGROUND 

  KNOWLEDGE IN REASONING PROCESSES 

 In this section, we examine several kinds of reasoning 

under granularity generated from background knowl-

edge. 

3.1 Objective and Subjective Levels of Knowledge 

 First we note objective and subjective levels of knowl-

edge. 

 When a fact p is given, its proposition P is just the 

maximum set of accessible worlds. In ordinary reasoning, 

however, we cannot enumerate the total of them when 

carrying out reasoning processes. In general, we could 

imagine some proper subset of P at most. 

 One possible way of specifying such subset is that we 

can consider some relevant worlds under background 

knowledge to be the lower approximation • P of P. This is 

based on the idea that background knowledge formulates 

its own context with some granularity, in which our way 

of observing worlds is determined. 

 Size of lower approximation • P depends on granularity 

generated by background knowledge. P is in objective 

level while • P is in subjective level. There are several 

kinds of meaning of • P in each context such as a set of 

'essential' or 'typical' elements 

3.2 Deduction 

 Logical reasoning in the usual sense, that is, deduction 

does not consider background knowledge. A typical rule
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of inference is well-known modus ponens:

 This means that we can obtain a conclusion q from a 

fact p and a rule p•¨q. We examine modus ponens in the 

framework of possible world semantics. 

Let M=(U,R,v) be a Kripke model. Then, in M, rule 

p•¨q is represented as set inclusion between propositions:

Then the rule means the following procedure: 

(1) Fact p restricts the set of possible worlds that we 

      can access under p. 

   (2) Then, by rule p•¨q, we can find that conclusion q 

     is true at every world in the restricted set. That is, 

     q is necessary under the fact p. 

Thus the rule implies the monotonicity of deduction. In 

fact we have

which holds in every Kriple models. We can rewrite it in a 

propositional level as follows:

Figure 3: Deduction.

3.3 Non-monotonic Reasoning 

 Non-monotonic reasoning is one of the most typical kind 

of ordinary reasoning. The Tweety example is well-known: 

   (1) Tweety is a bird. 

     Most birds fly. 

     Then he flies. 

   (2) Tweety is a penguin. 

     Penguins do not fly. 

     Then he does not fly. 

Thus the conclusion in (1) is withdrawn in (2). 

Thus the set of conclusions in non-monotonic reasoning 

no longer increases in a monotonic manner and in this 

sense the above kind of reasoning is said to be non-mono-

tonic. 

As stated in Section 3.2, the usual monotonic reasoning 

satisfies the monotonicity

while in non-monotonic reasoning in general,

 In the Tweety case, let BIRD and FLYING be the set of 

birds and flying objects, respectively. Then in the objec-

tive level.

but in the subjective level, the inclusion

holds. (see Figure 4)

Figure 4 : Non-monotonic reasoning.

3.4 Abduction 

 Abduction has the form of reasoning

thus apparently it is not valid because, in general, there are 

many sentences which imply q. Peirce, however, argued 

that abduction plays a very important role in scientific 

discovery in the 19th century. 

 Also abduction is important in human plausible reason-

ing, which is not necessary correct, like fortune-telling. 

When possible candidates of sentences which imply q are 

given, we can give an order between the candidates using 
lower approximation of Q. 

 For example, in Figure 5, we have three candidates, that 

is, we have three possible implications:

Now when q is given, we must select one of them.

Figure 5: Abduction 

 For the purpose, let us consider the inclusion measure 

between Pi and • Q defined by

Then we can calculate

hence we can introduce the following ordering,
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Therefore we can first choose p1 as possible premise of 

abduction. 

Note that, in the example, the following implications 

with modality hold:

We can see the difference of strength of each possible 

premise for the same conclusion q. 

3.5 Conflict Resolution 

 The similar idea in abduction can be applied to conflict 

resolution in expert systems. We are given, for example, 

three monotonic rules:

Then, in a usual logical framework, we have conclusion

In many application areas, however, like expert systems 

and robot control, each conclusion is associated with 

action or execution, thus more than two conclusions cannot 

be carried out. Hence we must choose one of them.

Figure 6: Conflict resolution.

 Again let us consider the inclusion measure between P 

and • Q defined by

Then we can calculate

hence we can introduce the following ordering,

Therefore it is plausible that we first select q1 as possible 

conclusion with execution. 

  Note that, in the example, the following implications 

with modality hold:

We can see the difference of strength of each possible 

conclusion for the same premise p.

4. CONCLUDING REMARKS 

  In this paper, we have argued an important role of back-

ground knowledge and granularity in several kinds of 
reasoning such as (monotonic) deduction, non-monotonic 

reasoning, abduction, and conflict resolution. Thereby we 

have a foundation of applying Kansei representation into 

reasoning. Adjustment of granularity with topology could 

provide us another important characteristic of rough set 
theory in Kansei engineering as well as reducts. Because 

rough set theory has a close relationship with topological 

spaces[3] and adjustment of granularity can be regarded 

as homomorphism between topological spaces, we may 

introduce several useful concepts in topological spaces 

into Kansei engineering via rough set theory. A future task 

is to implement a Kansei reasoning system and its appli-

cation to recommendation and image retrieval systems. 
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