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Abstract. Suppose that a group A contains only a finite number of subgroups
of index d for each positive integer d. Let G o Sn be the wreath product of a
finite group G with the symmetric group Sn on {1, . . . , n}. For each positive
integer n, let Kn be a subgroup of G oSn containing the commutator subgroup
of G o Sn. If the sequence {Kn}∞0 satisfies a certain compatible condition,
then the exponential generating function

∑∞
n=0 |Hom(A,Kn)|Xn/|G|nn! of the

sequence {|Hom(A,Kn)|}∞0 takes the form of a sum of exponential functions.

1. Introduction

Let A be a group and FA the set of subgroups B of A of finite index |A : B|. Sup-
pose that A contains only a finite number of subgroups of index d for each positive
integer d. Then for any finite group K, the set Hom(A,K) of homomorphisms from
A to K is a finite set. We denote by |Hom(A,K)| the number of homomorphisms
from A to a finite group K. Let Sn be the symmetric group on [n] = {1, . . . , n} and
S0 the group consisting of only the identity. In [17] Wohlfahrt proves that

∞∑

n=0

|Hom(A,Sn)|
n!

Xn = exp


 ∑

B∈FA

1
|A : B| X

|A:B|


 . (WF)

This formula interests us in various exponential formulas.
Given a sequence {Kn}∞0 of finite groups, the Wohlfahrt series EA(X : {Kn}∞0 )

is the exponential generating function

∞∑

n=0

|Hom(A,Kn)|
n!

Xn.

Previous studies of Wohlfahrt series have given some exponential formulas, each of
which is a sum of exponential functions. In this paper we extend the approach to the
exponential formulas. The approach is based on character theory of finite groups.
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Keyword and phrases : generating function, symmetric group, linear character, wreath product,
reflection group, finite abelian group.
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Let G be a finite group and G(n) the direct product of n copies of G. If H is a
subgroup of Sn, then the wreath product

G oH = {(g1, . . . , gn)h | (g1, . . . , gn) ∈ G(n), h ∈ H}

is the semidirect product G(n) oH, in which each h ∈ H acts as an inner automor-
phism on G(n):

h(g1, . . . , gn)h−1 = (gh−1(1), . . . , gh−1(n)).

We consider G oS0 = S0. In [10, 11, 15, 16] the Wohlfahrt formula (WF) is extended
to formulas for EA(X : {G o Sn}∞0 ) and EA(X/|G| : {G o Sn}∞0 ) (cf. Corollary 2.7).

Let 1Sn be the trivial C-character of Sn and δn the linear C-character of Sn such
that δn(h) is the sign of h for all h ∈ Sn, where C is the complex numbers. We
denote by e the sequence {1Sn}∞0 and denote by sgn the sequence {δn}∞0 . Let χ be
a linear C-character of G, and let ζ(χ, e, n) and ζ(χ, sgn, n) be linear C-characters
of G o Sn defined by

and
ζ(χ, e, n)((g1, . . . , gn)h) = χ(g1 · · · gn)1Sn(h)

ζ(χ, sgn, n)((g1, . . . , gn)h) = χ(g1 · · · gn)δn(h)

for all (g1, . . . , gn) ∈ G(n) and h ∈ Sn. Given a linear C-character ζ of G o Sn, there
exists a linear C-character χ0 of G such that ζ = ζ(χ0, e, n) or ζ = ζ(χ0, sgn, n).

Let z ∈ {e, sgn}. We define K(χ, z, n) to be the kernel of ζ(χ, z, n), and consider
K(χ, e, 0) = K(χ, sgn, 0) = S0. Let 1G be the trivial C-character of G, and let An be
the alternating group on [n]. Then G oSn = K(1G, e, n) and G oAn = K(1G, sgn, n).
The Wohlfahrt series EA(X : {K(1G, z, n) ∩ K(χ, e, n)}∞0 ) with |G/Kerχ| ≤ 2 is
described as a sum of exponential functions by Müller and Shareshian [11]. The
form of EA(X/|G| : {G oAn}∞0 ) is also studied in [16] (cf. Corollary 2.8). Moreover,
EA(X/|G| : {K(χ, e, n)}∞0 ) with |G/Kerχ| = p, where p is a prime, takes the form
of a sum of exponential functions, and so does EA(X/|G| : {K(χ, sgn, n)}∞0 ) with
|G/Kerχ| = 2 [16, Theorem 1].

Given linear C-characters χ1, . . . , χs of G and an element (z1, . . . , zs) of the
Cartesian product {e, sgn}(s) of s copies of {e, sgn}, we define

K(χ1, . . . , χs, z1, . . . , zs, n) =
⋂

i∈{1,..., s}
K(χi, zi, n).

Every subgroup of G oSn containing the commutator subgroup of G oSn is considered
as such a subgroup, because any subgroup of a finite abelian group is expressed as
the intersection of kernels of linear C-characters. In Section 2 we study the form of

∞∑

n=0

|Hom(A,K(χ1, . . . , χs, z1, . . . , zs, n))|
|G|nn!

Xn,
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which is described as a sum of exponential functions (cf. Theorem 2.1).
Let m be a positive integer, and let ω be a primitive mth root of unity in C. If

G is the cyclic group 〈ω〉 generated by ω and if χ(ω) = ωm/r, where r is a divisor
of m, then we identify K(χ, e, n) with the imprimitive complex pseudo-reflection
group G(m, r, n) [8], and define

and
H(m, r, n) = K(χ, e, n) ∩ (G oAn)(= K(χ, 1G, e, sgn, n))

L(m, r, n) = K(χ, sgn, n).

The form of EA(X/p : {G(p, p, n)}∞0 ) and the form of EA(X/2 : {L(2, 2, n)}∞0 ) are
studied in [16]. In Section 3 we study the form of EA(X/m : {Kn}∞0 ) where Kn is
G(m, r, n), H(m, r, n) or L(m, r, n) (cf. Theorem 3.2).

The Weyl group W (Dn) of type Dn is isomorphic to G(2, 2, n). When A is a finite
abelian group, the explicit forms of EA(X : {G oAn}∞0 ) and EA(X : {W (Dn)}∞0 ) are
given in [11]. In Section 4 we study the form of EP (X/p : {G(p, p, n)}∞0 ) where P
is a finite abelian p-group, together with that of EP (X/2 : {L(2, 2, n)}∞0 ) and that
of EP (X : {An}∞0 ) where P is a finite abelian 2-group (cf. Theorems 4.8 and 4.12).
The argument about the descriptions of these Wohlfahrt series is essentially due to
Müller and Shareshian (see [11, Section 4]).

In Sections 5 and 6 we present some examples.

2. The form of Wohlfahrt series

Let χ1, . . . , χs be linear C-characters of G, and let (z1, . . . , zs) ∈ {e, sgn}(s). In
this section we study the form of EA(X/|G| : {K(χ1, . . . , χs, z1, . . . , zs, n)}∞0 ).

Let i ∈ {1, . . . , s}. Suppose that the factor group G/Kerχi is of order r′i. Put
ri = r′i if r′i is even or zi = e, and ri = 2r′i otherwise. Then the linear C-character
ζ(χi, zi, n) is a homomorphism from G o Sn to the cyclic group 〈ωri〉 generated by a
primitive rith root ωri of unity in C. Define

Φri(A) =
⋂

α∈Hom(A,〈ωri 〉)
Kerα.

Then Φri(A) is a normal subgroup of A and the factor group A/Φri(A) is a finite
abelian group. Write Ri = A/Φri(A), and let a denote the coset aΦri(A) of Φri(A)
in A containing a ∈ A. Given ϕ ∈ Hom(A,G o Sn) and a ∈ Ri, it is clear that
ζ(χi, zi, n)(ϕ(c)) with c ∈ a is independent of the choice of c in a.

Let B ∈ FA. We define a homomorphism sgn A/B from A to C by

sgn A/B(a) =

{
1 if a ∈ A is an even permutation on A/B,

−1 if a ∈ A is an odd permutation on A/B,
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where A/B is the left A-set consisting of all left cosets of B in A with the action
given by a.cB = acB for all a, c ∈ A.

Suppose that |A : B| = d and TA
B = {a1, . . . , ad} is a left transversal of B in

A. For each normal subgroup N of B containing the commutator subgroup B′, let
VA→B/N be the transfer from A to the factor group B/N defined by

VA→B/N (a) =
d∏

j=1

a−1
j′ aajN with aaj ∈ aj′B

for all a ∈ A, which is independent of the choice of TA
B , and is a homomorphism.

Let α ∈ Hom(B,C×), C× the multiplicative group of C. Then B′ ≤ Kerα. Let
α0 be the homomorphism from B/B′ to C× defined by α0(bB′) = α(b) for all b ∈ B.
Let α⊗A be the homomorphism from A to C× given by

α⊗A(a) = α0(VA→B/B′(a))

for all a ∈ A, which is the representation afforded by a tensor induced CA-module
(see [4, (13.12) Proposition]). Let κ ∈ Hom(B,G). Given a ∈ Ri, it is clear that
(χi ◦ κ)⊗A(c) with c ∈ a is independent of the choice of c in a.

Set I = {i | zi = sgn}. Given a ∈ Ri with i ∈ I, sgn A/B(c) with c ∈ a is
independent of the choice of c in a.

Put R = R1 × · · · ×Rs. Given (c1, . . . , cs) ∈ R, we define

ρB(c1, . . . , cs) = sgn A/B

(∏

i∈I

ci

) ∑

κ∈Hom(B,G)

s∏

i=1

(χi ◦ κ)⊗A(ci).

We are successful in finding the following formula.

Theorem 2.1
∞∑

n=0

|Hom(A,K(χ1, . . . , χs, z1, . . . , zs, n))|
|G|nn!

Xn

=
1
|R|

∑

(c1,..., cs)∈R

exp


 ∑

B∈FA

ρB(c1, . . . , cs)
|G| |A : B| X |A:B|


 .

Let us prove this theorem. We start with the following lemma, which plays a
crucial role in this description of EA(X/|G| : {K(χ1, . . . , χs, z1, . . . , zs, n)}∞0 ).

Lemma 2.2 Let ϕ ∈ Hom(A, G o Sn). Then for each integer i with 1 ≤ i ≤ s,

1
|Ri|

∑

a∈Ri

ζ(χi, zi, n)(ϕ(a)) =

{
1 if Imϕ ≤ K(χi, zi, n),
0 otherwise,

where the sum
∑

a∈Ri
is over all left cosets a ∈ Ri with a ∈ A.
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Proof. Define a C-character αi of Ri by setting

αi(a) = ζ(χi, zi, n)(ϕ(a))

for all a ∈ Ri with a ∈ A. Then Imϕ ≤ K(χi, zi, n) if and only if αi is the trivial
C-character of Ri. Hence it follows from the first orthogonality relation [4, (9.21)
Proposition] that

1
|Ri|

∑

a∈Ri

αi(a) =

{
1 if Imϕ ≤ K(χi, zi, n),
0 otherwise,

which proves the lemma. 2

This lemma enables us to get the following proposition.

Proposition 2.3

∞∑

n=0

|Hom(A,K(χ1, . . . , χs, z1, . . . , zs, n))|
n!

Xn

=
1
|R|

∑

(c1,..., cs)∈R

∞∑

n=0

1
n!





∑

ϕ∈Hom(A,GoSn)

s∏

i=1

ζ(χi, zi, n)(ϕ(ci))



 Xn.

Proof. If ϕ ∈ Hom(A,G o Sn), then by Lemma 2.2, we have

s∏

i=1





1
|Ri|

∑

ci∈Ri

ζ(χi, zi, n)(ϕ(ci))



 =





1 if Imϕ ≤
⋂

i∈{1,..., s}
K(χi, zi, n),

0 otherwise.

Hence it turns out that

|Hom(A,K(χ1, . . . , χs, z1, . . . , zs, n))|

=
∑

ϕ∈Hom(A,GoSn)

s∏

i=1





1
|Ri|

∑

ci∈Ri

ζ(χi, zi, n)(ϕ(ci))





=
1
|R|

∑

(c1,..., cs)∈R1×···×Rs

∑

ϕ∈Hom(A,GoSn)

s∏

i=1

ζ(χi, zi, n)(ϕ(ci)),

completing the proof of the proposition. 2

We consider the Cartesian product G× [n] of G and [n] to be the left G o Sn-set
with the left action of G o Sn given by

(g1, . . . , gn)h.(g, i) = (gh(i)g, h(i))
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for all (g1, . . . , gn) ∈ G(n), h ∈ Sn, and (g, i) ∈ G × [n] [9, 2.11], so that G o Sn

is isomorphic to the automorphism group of the free right G-set G × [n] with the
right action of G given by (g, i).y = (gy, i) for all (g, i) ∈ G× [n] and y ∈ G (see [1,
Proposition 6.11], [16, Proposition 1]).

Let υn be the homomorphism from G o Sn to Sn defined by

υn((g1, . . . , gn)h) = h

for all (g1, . . . , gn) ∈ G(n) and h ∈ Sn.
Set FA(n) = {B ∈ FA | |A : B| ≤ n}. We now show a recurrence formula like

Dey’s theorem [5, (6.10)], namely,

Proposition 2.4 If n is a positive integer, then

∑

ϕ∈Hom(A,GoSn)

s∏

i=1

ζ(χi, zi, n)(ϕ(ci))

|G|n(n− 1)!

=
∑

B∈FA(n)

ρB(c1, . . . , cs)
|G|

∑

ψ∈Hom(A,GoSn−|A:B|)

s∏

i=1

ζ(χi, zi, n− |A : B|)(ψ(ci))

|G|n−|A:B|(n− |A : B|)!

with c1, . . . , cs ∈ A.

The proof is analogous to that of [15, Theorem 3.1].

Proof of Proposition 2.4. If B ∈ FA, then we fix a left transversal TA
B containing

the identity εA of A. We denote by ε the identity of G.
Let ϕ ∈ Hom(A,G o Sn). Define a subgroup B of A by

B = {a ∈ A | υn(ϕ(a))(1) = 1},

and define a homomorphism κ from B to G by

ϕ(b).(ε, 1) = (κ(b), 1)

for all b ∈ B. We then have |A : B| ≤ n. Suppose that TA
B = {a1, . . . , ad} with

a1 = εA and d = |A : B|. Define an injection ι from [d] into [n] with ι(1) = 1 by

ι(j) = υn(ϕ(aj))(1)

for all j ∈ [d], and define an element (y1, . . . , yd) of the Cartesian product G(d) of d
copies of G with y1 = ε by

ϕ(aj).(ε, 1) = (yj , ι(j))
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for all j ∈ [d]. If a ∈ A and if j ∈ [d], then we have

ϕ(a).(ε, ι(j)) = (yj′κ(a−1
j′ aaj)y−1

j , ι(j′)) with aaj ∈ aj′B. (I)

Suppose that {ι(1), . . . , ι(d)} ∪ {k1, . . . , kn−d} = [n] and k1 < · · · < kn−d. If
h ∈ Im(υn ◦ ϕ), then we define a permutation ĥ on [n − d] by h(kt) = kĥ(t) for all
t ∈ [n− d]. Let ψ be the mapping from A to G o Sn−d defined by

ψ(a) = (gk1 , . . . , gkn−d
)ĥ with h = υn(ϕ(a)), ϕ(a) = (g1, . . . , gn)h (II)

for all a ∈ A. Then it is easily checked that ψ is a homomorphism.
We have got a quintet (B, κ, ι, (y1, . . . , yd), ψ) satisfying the condition





B ∈ FA with d = |A : B| ≤ n,

κ ∈ Hom(B, G),
ι is an injection from [d] to [n] with ι(1) = 1

(y1, . . . , yd) ∈ G(d) with y1 = ε,

ψ ∈ Hom(A,G o Sn−d),

(III)

and by (I) and (II), we obtain

s∏

i=1

ζ(χi, zi, n)(ϕ(ci))

= sgn A/B

(∏

i∈I

ci

)
·

s∏

i=1

(χi ◦ κ)⊗A(ci) · ζ(χi, zi, n− d)(ψ(ci)).

(IV)

The preceding map

Γ : ϕ → (B, κ, ι, (y1, . . . , yd), ψ)

from Hom(A,G o Sn) to the set of quintets (B, κ, ι, (y1, . . . , yd), ψ) satisfying (III)
is clearly injective. Moreover, it is easily verified that Γ is surjective (see the proof
of [15, Theorem 3.1]). Combining this fact with (IV), we have

∑

ϕ∈Hom(A,GoSn)

s∏

i=1

ζ(χi, zi, n)(ϕ(ci))

=
∑

B∈FA(n)



 ρB(c1, . . . , cs))

(n− 1)!
(n− |A : B|)! |G|

|A:B|−1

×
∑

ψ∈Hom(A,GoSn−|A:B|)

s∏

i=1

ζ(χi, zi, n− |A : B|)(ψ(ci))



 .
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This completes the proof of the proposition. 2

If χ1 = · · · = χs = 1G and if z1 = · · · = zs = e, then this proposition is the
recurrence formula [15, Theorem 3.1] of |Hom(A,G o Sn)|, which is a generalization
of the recurrence formula [17, Satz] of |Hom(A,Sn)|.

As a result of Proposition 2.4, we obtain the following proposition.

Proposition 2.5 Suppose that c1, . . . , cs ∈ A. Then

∞∑

n=0

1
|G|n n!





∑

ϕ∈Hom(A,GoSn)

s∏

i=1

ζ(χi, zi, n)(ϕ(ci))



Xn

= exp


 ∑

B∈FA

ρB(c1, . . . , cs)
|G| |A : B| X |A:B|


 .

Proof. Put γϕ(n) =
∏s

i=1 ζ(χi, zi, n)(ϕ(ci)) with ϕ ∈ Hom(A,G o Sn), and put
β(B) = ρB(c1, . . . , cs) with B ∈ FA for convenience. We denote by Ξ(n) the set of
sequences (nB)B∈FA

of nonnegative integers nB corresponding to B ∈ FA such that∑
B∈FA

nB|A : B| = n, and abbreviate (nB)B∈FA
to (nB). It suffices to show that

for each nonnegative integer n,

∑

ϕ∈Hom(A,GoSn)

γϕ(n)
|G|nn!

=
∑

(nB)∈Ξ(n)

∏

B∈FA

β(B)nB

|G|nB |A : B|nBnB!
.

We use induction on n. Evidently, this formula is true if n = 0. Suppose that n ≥ 1.
Then Proposition 2.4 yields

∑

ϕ∈Hom(A,GoSn)

γϕ(n)
|G|n(n− 1)!

=
∑

B∈FA(n)

β(B)
|G|

∑

ψ∈Hom(A,GoSn−|A:B|)

γψ(n− |A : B|)
|G|n−|A:B|(n− |A : B|)! .

Moreover, given B ∈ FA(n), the inductive assumption means that

∑

ψ∈Hom(A,GoSn−|A:B|)

γψ(n− |A : B|)
|G|n−|A:B|(n− |A : B|)!

=
∑

(nK)∈Ξ(n−|A:B|)

∏

K∈FA

β(K)nK

|G|nK |A : K|nK nK !
.
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Hence we obtain
∑

ϕ∈Hom(A,GoSn)

γϕ(n)
|G|nn!

=
1
n

∑

B∈FA(n)

β(B)
|G|

∑

(nK)∈Ξ(n−|A:B|)

∏

K∈FA

β(K)nK

|G|nK |A : K|nK nK !

=
1
n

∑

B∈FA(n)

∑

(nK)∈Ξ(n)

nB|A : B|
∏

K∈FA

β(K)nK

|G|nK |A : K|nK nK !

=
1
n

∑

(nK)∈Ξ(n)


 ∑

B∈FA(n)

nB|A : B|

 ∏

K∈FA

β(K)nK

|G|nK |A : K|nKnK !

=
∑

(nK)∈Ξ(n)

∏

K∈FA

β(K)nK

|G|nK |A : K|nK nK !
,

as required. 2

Remark 2.6 Proposition 2.5 is also a consequence of a categorical fact, namely,
[16, Propsition 5] (see the second half of the proof of [16, Theroem 1]). It should be
stated in this connection that the categorical proof of the Wohlfahrt formula (WF)
was given by Yoshida (see [18, 6.4]).

By virtue of Propositions 2.3 and 2.5, we have established Theorem 2.1.
Recall that G o Sn = K(1G, e, n) and G o An = K(1G, sgn, n). The next results

are corollaries to Theorem 2.1.

Corollary 2.7 ([10, 11, 15, 16]) We have

∞∑

n=0

|Hom(A,G o Sn)|
|G|nn!

Xn = exp


 ∑

B∈FA

|Hom(B,G)|
|G| |A : B| X |A:B|


 .

Corollary 2.8 ([16]) We have
∞∑

n=0

|Hom(A,G oAn)|
|G|nn!

Xn

=
1

|A : Φ2(A)|
∑

c∈A/Φ2(A)

exp


 ∑

B∈FA

sgn A/B(c) · |Hom(B,G)|
|G| |A : B| X |A:B|


 .

Remark 2.9 When A is a finite cyclic group, Corollary 2.7 is shown in [3, 12] and
Corollary 2.8 is shown in [3].



Yugen Takegahara / Wohlfahrt series and wreath products 10

3. Imprimitive complex pseudo reflection groups and related groups

Keep the notation of Section 2, and suppose that G = 〈ω〉 with ω a primitive
mth root of unity in C. Assume that for any integer i with 1 ≤ i ≤ s, χi(ω) = ωqi ,
where qi is a positive integer. Let B ∈ FA, and define

Φm(B) =
⋂

α∈Hom(B,〈ω〉)
Kerα.

Let i ∈ {1, . . . , s}. Since the order of 〈ω〉/Kerχi divides ri, it follows that qiri is a
multiple of m. Then the order of VA→B/Φm(B)(cqi) with c ∈ A divides ri. Hence,
given a ∈ Ri, VA→B/Φm(B)(cqi) with c ∈ a is independent of the choice of c in a.

Now define a homomorphism F
(q1,..., qs)
A→B/Φm(B) from R to B/Φm(B) by

F
(q1,..., qs)
A→B/Φm(B)(c1, . . . , cs) = VA→B/Φm(B)

(
s∏

i=1

cqi
i

)

for all (c1, . . . , cs) ∈ R. Let c1, . . . , cs ∈ A. We can identify Hom(B, 〈ω〉) with
Hom(B/Φm(B), 〈ω〉). Hence it turns out that

∑

κ∈Hom(B,〈ω〉)

s∏

i=1

(χi ◦ κ)⊗A(ci) =
∑

κ∈Hom(B/Φm(B),〈ω〉)

s∏

i=1

κ
(
VA→B/Φm(B)(ci)

)qi

=
∑

κ∈Hom(B/Φm(B),〈ω〉)
κ

(
F

(q1,..., qs)
A→B/Φm(B)(c1, . . . , cs)

)
.

Moreover, the C-character ∑

κ∈Hom(B/Φm(B),〈ω〉)
κ

of B/Φm(B) is afforded by the left regular module C(B/Φm(B)). Thus

∑

κ∈Hom(B,〈ω〉)

s∏

i=1

(χi ◦ κ)⊗A(ci) =

{
|B : Φm(B)| if (c1, . . . , cs) ∈ KerF

(q1,..., qs)
A→B/Φm(B),

0 otherwise.

Combining the preceding fact with Theorem 2.1, we conclude that
∞∑

n=0

|Hom(A,K(χ1, . . . , χs, z1, . . . , zs, n))|
mnn!

Xn

=
1
|R|

∑

(c1,..., cs)∈R

exp


 ∑

B∈ΩA(c1,..., cs)

sgn A/B

(∏

i∈I

ci

)
|B : Φm(B)|

m|A : B| X |A:B|


 ,

(V)

where
ΩA(c1, . . . , cs) =

{
B ∈ FA

∣∣∣ (c1, . . . , cs) ∈ KerF
(q1,..., qs)
A→B/Φm(B)

}
.
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Remark 3.1 There exists a divisor r of m such that K(χ1, . . . , χs, z1, . . . , zs, n) is
G(m, r, n), H(m, r, n), or L(m, r, n).

The following theorem is an immediate consequence of the formula (V).

Theorem 3.2 Let r be a divisor of m. Given c ∈ A, set

ΩA(c) = {B ∈ FA | cm/r ∈ KerVA→B/Φm(B)}.

Put r0 = r if r is even, and r0 = 2r if r is odd. Then

∞∑

n=0

|Hom(A,G(m, r, n))|
mnn!

Xn

=
1

|A : Φr(A)|
∑

c∈A/Φr(A)

exp


 ∑

B∈ΩA(c)

|B : Φm(B)|
m|A : B| X |A:B|


 ,

∞∑

n=0

|Hom(A,H(m, r, n))|
mnn!

Xn

=
1

|A : Φr(A)| |A : Φ2(A)|

×
∑

(c1,c2)∈(A/Φr(A))×(A/Φ2(A))

exp


 ∑

B∈ΩA(c1)

sgn A/B(c2)
|B : Φm(B)|

m|A : B| X |A:B|


 ,

and
∞∑

n=0

|Hom(A,L(m, r, n))|
mnn!

Xn

=
1

|A : Φr0(A)|
∑

c∈A/Φr0(A)

exp


 ∑

B∈ΩA(c)

sgn A/B(c)
|B : Φm(B)|

m|A : B| X |A:B|


 .

Corollary 3.3 ([16]) Keep the notation of Theorem 3.2, and assume further that
m = r = 2. Then

∞∑

n=0

|Hom(A,W (Dn))|
2nn!

Xn

=
1

|A : Φ2(A)|
∑

c∈A/Φ2(A)

exp


 ∑

B∈ΩA(c)

|B : Φ2(B)|
2|A : B| X |A:B|


 .
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Example 3.4 Suppose that A is a finite cyclic group of order ` and is generated
by an element c. Let p be a prime. For a subgroup B of A, we have

sgn A/B(c) =
{

1 if |A : B| is odd,
−1 if |A : B| is even,

and VA→B/Φp(B)(c) = c|A:B|Φp(B). Considering A as Z/`Z, we obtain the following.

(1)
∞∑

n=0

|Hom(Z/`Z, Sn)|
n!

Xn = exp


∑

d|`

1
d

Xd


 .

(2)

∞∑

n=0

|Hom(Z/`Z, An)|
n!

Xn =
1
2

exp


∑

d|`

1
d

Xd


 +

1
2

exp


∑

d|`

(−1)d−1

d
Xd


 .

(3)
∞∑

n=0

|Hom(Z/`Z, G(p, p, n))|
pnn!

Xn

=
1
p

exp




∑
d|`

p-(`/d)

1
pd

Xd








exp




∑
d|`

p|(`/d)

1
d

Xd


 + p− 1





.

(4)
∞∑

n=0

|Hom(Z/`Z,H(p, p, n))|
pnn!

Xn

=
1
2p

exp




∑
d|`

p-(`/d)

1
pd

Xd








exp




∑
d|`

p|(`/d)

1
d

Xd


 + p− 1





+
1
2p

exp




∑
d|`

p-(`/d)

(−1)d−1

pd
Xd








exp




∑
d|`

p|(`/d)

(−1)d−1

d
Xd


 + p− 1





.

(5)
∞∑

n=0

|Hom(Z/`Z, L(2, 2, n))|
2nn!

Xn

=
1
2

exp




∑
d|`

2-(`/d)

1
2d

Xd








exp




∑
d|`

2|(`/d)

1
d

Xd


 + exp


−

∑
d|`

2-(`/d), 2|d

1
d

Xd








.
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Remark 3.5 The formula (1) is given in [2] and (2) is given in [13, Chapter 4,
Problem 22] and [3]. When p = 2, the formula (3) is shown in [3].

4. Finite abelian p-groups

Suppose that A is a finite abelian group. Let Â be the set of irreducible C-
characters of A, and define a multiplication in Â by α1α2(a) = α1(a)α2(a) for all
α1, α2 ∈ Â and a ∈ A. Then Â becomes a group, and the groups A and Â are
isomorphic [7, 5.1]. If B is a subgroup of A, we put

B⊥ = {α ∈ Â | α(b) = 1 for all b ∈ B}.

If U is a subgroup of Â, then we put

U⊥ = {a ∈ A | α(a) = 1 for all α ∈ U}.

We use the following lemmas, which are parts of [7, 5.5, 5.6].

Lemma 4.1 ([7]) Let B be a subgroup of A. Then

Â/B ∼= B⊥ and Â/B⊥ ∼= B̂.

Lemma 4.2 ([7]) Let B be a subgroup of A, and let U be a subgroup of Â. Then

B⊥⊥ = B and U⊥⊥ = U .

Lemma 4.3 ([7]) Let B1, B2 be subgroups of A. Then

(B1 ∩B2)⊥ = B⊥
1 B⊥

2 and (B1B2)⊥ = B⊥
1 ∩B⊥

2 .

Lemma 4.4 ([7]) Let U1, U2 be subgroups of Â. Then

(U1 ∩ U2)⊥ = U⊥
1 U⊥

2 and (U1U2)⊥ = U⊥
1 ∩ U⊥

2 .

Let εA be the identity of A. For each positive integer k, we define

Ωk(A) = {a ∈ A | ak = εA} and fk(A) = {ak | a ∈ A}.

We provide a part of [7, 5.8], namely,

Lemma 4.5 ([7]) Ωk(A)⊥ = fk(Â), and equivalently, Ωk(A) = fk(Â)⊥.
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A partition is a sequence λ = (λ1, . . . , λt, . . . ) of nonnegative integers containing
only finitely many non-zero terms where λ1 ≥ · · · ≥ λt ≥ · · · . Given a partition
λ = (λ1, . . . , λt, . . . ), we define

mi(λ) = ]{t | λt = i}
and

λ′i = ]{t | λt ≥ i}.
Then λ′ = (λ′1, . . . , λ′i, . . . ) is a partition, and is called the conjugate of λ.

Let p be a prime. If P is a finite abelian p-group, then there is a unique partition
λ = (λ1, . . . , λ`, 0, . . . ) such that P is isomorphic to the direct product

Z/pλ1Z× · · · × Z/pλ`Z

of cyclic p-groups Z/pλ1Z, . . . , Z/pλ`Z, and we call λ the type of P .
Now let P be a finite abelian p-group, and let εP be the identity of P . We have

Φp(P ) = fp(P ) and P/Φp(P ) ∼= Ωp(P ).

In order to describe the Wohlfahrt series EP (X/p : {G(p, p, n)}∞0 ), we must show
the following.

Lemma 4.6 Let P0 be a subgroup of P . Suppose that c ∈ P and c 6∈ Φp(P ). Then
c 6∈ KerVP→P0/Φp(P0) if and only if P = 〈c〉P0 and P0 contains Ωp(P ).

Proof. We have Φp(P0) = fp(P0) and VP→P0/Φp(P0)(c) = c|P :P0|Φp(P0). Assume that
c 6∈ KerVP→P0/Φp(P0). Then c|P :P0| 6∈ fp(P0), and thereby P = 〈c〉P0. Moreover, if
P0 does not contain Ωp(P ) , then c|P :P0| = εP , contrary to the assumption. Hence P0

contains Ωp(P ). Conversely, assume that P = 〈c〉P0 and P0 contains Ωp(P ). Since
c 6∈ Φp(P ), it follows that c 6∈ KerVP→P/Φp(P ). Hence we assume that P 6= P0.
Clearly, c|P :P0|/p 6∈ P0. Now suppose that c|P :P0| ∈ fp(P0) and a is an element of P0

such that ap = c|P :P0|. Then a−1c|P :P0|/p is not contained in P0 and is of order p.
But every element of order p in P is contained in P0. This is a contradiction. Thus
c|P :P0| 6∈ fp(P0), and hence c 6∈ KerVP0→P0/Φp(P0), which proves the lemma. 2

Suppose that P is of type λ = (λ1, . . . , λ`, 0, . . . ) and P = 〈a1〉 × · · · × 〈a`〉,
where 〈ai〉 is a cyclic group generated by ai and is of order pλi . We assume that
λ` > 0, and set

T (P ) = {ae1
1 · · · ae`

` | 0 ≤ e1, . . . , e` ≤ p− 1},
which is a left transversal of Φp(P ) in P . Given a positive integer j, we define Tj(P )
to be the set of all elements of order pj in T (P ). Then

]Tj(P ) = pλ′1−λ′j+1 − pλ′1−λ′j .

We have the following.
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Lemma 4.7 Suppose that c ∈ Tj(P ). Let k be a nonnegative integer, and let
M(〈c〉; k) be the set of all subgroups P0 of P containing Ωp(P ) such that P = 〈c〉P0

and |P : P0| = pk. Then

]M(〈c〉; k) =

{
0 if k ≥ j,

pwλ(k) if k < j,

where

wλ(k) =

{
k

λ1∑

i=k+1

mi(λ) +
k∑

i=1

(i− 1)mi(λ)

}
− k.

Proof. Suppose that P0 ∈ M(〈c〉; k). Then by Lemma 4.5, P⊥
0 is contained in

fp(P̂ ). Since P⊥ = {1P }, it follows from Lemma 4.3 that 〈c〉⊥ ∩P⊥
0 = {1P }, where

1P is the trivial character of P . Moreover, by Lemma 4.1 we have

P/P0
∼= P̂/P0

∼= P⊥
0 .

Thus P⊥
0 is a cyclic group of fp(P̂ ) such that 〈c〉⊥ ∩ P⊥

0 = {1P } and |P⊥
0 | = pk.

Now let N (〈c〉⊥; k) be the set of all cyclic subgroups U of fp(P̂ ) such that
〈c〉⊥ ∩ U = {1P } and |U | = pk. If P0 ∈M(〈c〉; k), then by the preceding argument,
P⊥

0 ∈ N (〈c〉⊥; k). Define a map f from M(〈c〉; k) to N (〈c〉⊥; k) by f(P0) = P⊥
0 for

all P0 ∈M(〈c〉; k). Then Lemma 4.2 implies that f is injective.
Suppose that U ∈ N (〈c〉⊥; k). Then by Lemma 4.5, U⊥ contains Ωp(P ). Since

{1P }⊥ = P , it follows from Lemmas 4.2 and 4.4 that P = 〈c〉U⊥. Moreover, by
Lemmas 4.1 and 4.2, we have

P/U⊥ ∼= P̂/U⊥ ∼= U,

whence |P : U⊥| = |U | = pk. Thus we obtain U⊥ ∈ M(〈c〉; k). This fact, together
with Lemma 4.2, means that f is surjective. Consequently, f is bijective.

In order to prove the statement, it suffices to verify that

]N (〈c〉⊥; k) =

{
0 if k ≥ j,

pwλ(k) if k < j.

Suppose that c = ae1
1 · · · ae`

` , where e1, . . . , e` are nonnegative integers less than p.
Since c 6= εP , we assume that ei = 0 with i < t0 and et0 6= 0, where 1 ≤ t0 ≤ `. Put

D = 〈a1〉 × · · · × 〈at0−1〉 × 〈at0+1〉 × · · · × 〈a`〉.
Then P = 〈c〉 ×D, and hence P̂ = 〈c〉⊥ ×D⊥ by Lemma 4.3. Moreover, it follows
from Lemma 4.1 that

D⊥ ∼= P̂ /〈c〉⊥ ∼= 〈̂c〉 ∼= 〈c〉 and 〈c〉⊥ ∼= P̂ /D⊥ ∼= D̂ ∼= D.
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Thus there exists a bijection from N (〈c〉⊥; k) to the set W(D; k) of all cyclic sub-
groups Y of fp(P ) such that D ∩ Y = {εP } and |Y | = pk. If k ≥ j, then clearly
W(D; k) = ∅, and hence ]N (〈c〉⊥; k) = ]W(D; k) = 0. Suppose that k < j.
We set I1 = {t | λt > k, t 6= t0} and I2 = {t | λt ≤ k}. For each sequence
(n1, . . . , nt0−1, nt0+1, . . . , n`) of positive integers, put

y(n1,...,nt0−1,nt0+1,...,n`) = cpj−k


∏

t∈I1

apλt−knt
t





∏

t∈I2

apnt
t


 .

Then

W(D; k) =
{〈

y(n1,...,nt0−1,nt0+1,...,n`)

〉 ∣∣∣ 1 ≤ nt ≤ pk if t ∈ I1,
1 ≤ nt ≤ pλt−1 if t ∈ I2

}
,

and ]W(D; k) = pwλ(k). Thus we conclude that ]N (〈c〉⊥; k) = pwλ(k), and the proof
is completed. 2

Theorem 3.2, together with Lemmas 4.6 and 4.7, enables us to get the following.

Theorem 4.8 Keep the notation of Lemma 4.7. We have

∞∑

n=0

|Hom(P,G(p, p, n))|
pnn!

Xn

=
1
p`

{ ∞∑

n=0

|Hom(P, (Z/pZ) o Sn)|
pnn!

Xn

}

×


1 +

∑

j≥1

(pλ′1−λ′j+1 − pλ′1−λ′j ) exp

(
−p`−1

j−1∑

k=0

pwλ(k)−kXpk

)

 .

We now turn to the forms of EP (X/2 : {L(2, 2, n)}∞0 ) and EP (X : {An}∞0 ).
First, we need a consequence of [15, Lemma 2.1], namely,

Lemma 4.9 Let P0 be a subgroup of P , and let c ∈ P . Then sgn P/P0
(c) = −1 if

and only if P 6= P0 and P = 〈c〉P0.

The proof of the next lemma is straightforward.

Lemma 4.10 Let P0 be a subgroup of P , and let c ∈ P −{εP }. Then P = 〈c〉 ×P0

if and only if P = 〈c〉P0 and P0 does not contain Ωp(P ).

By an argument similar to that in the proof of Lemma 4.7, we get the following.
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Lemma 4.11 Suppose that c ∈ Tj(P ). Let k be a nonnegative integer. Then the
number of all subgroups P0 of P such that P = 〈c〉P0 and |P : P0| = pk is 0 if k > j,
and is psλ(k) if k ≤ j, where

sλ(k) =

{
k

λ1∑

i=k+1

mi(λ) +
k∑

i=1

imi(λ)

}
− k.

Combining Theorem 3.2 with Lemmas 4.6, 4.9, 4.10, and 4.11, we can now state
the following.

Theorem 4.12 Keep the notation of Lemma 4.11, and assume further that p = 2.
Then
∞∑

n=0

|Hom(P, L(2, 2, n))|
2nn!

Xn

=
1
2`

{ ∞∑

n=0

|Hom(P, (Z/2Z) o Sn)|
2nn!

Xn

}

×


1 +

∑

j≥1

(2λ′1−λ′j+1 − 2λ′1−λ′j ) exp

(
−2`−1

j∑

k=0

2sλ(k)−kX2k

)

 ,

and
∞∑

n=0

|Hom(P,An)|
n!

Xn

=
1
2`

{ ∞∑

n=0

|Hom(P, Sn)|
n!

Xn

}

×


1 +

∑

j≥1

(2λ′1−λ′j+1 − 2λ′1−λ′j ) exp

(
−2

j∑

k=1

2sλ(k)−kX2k

)

 .

Remark 4.13 The form of EP (X : {An}∞0 ) in the theorem above is also a conse-
quence of Lemma 4.11 and [15, Theorem 1.1].

5. Explicit formulas

Keep the notation of Section 4, and further assume that λ1 = · · · = λ`−1 = u
and λ` = v, where ` ≥ 1 and u ≥ v > 0. Then P ' (Z/puZ)(`−1) × Z/pvZ, whence
]Tu(P ) = p` − p and ]Tv(P ) = p− 1.
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Example 5.1 By Theorem 4.8, we have

∞∑

n=0

|Hom((Z/puZ)(`−1) × Z/pvZ, G(p, p, n))|
pnn!

Xn

=
1
p`

{ ∞∑

n=0

|Hom((Z/puZ)(`−1) × Z/pvZ, (Z/pZ) o Sn)|
pnn!

Xn

}

×
{

1 + (p− 1) exp

(
−p`−1

v−1∑

k=0

p(`−2)kXpk

)

+(p` − p) exp

(
−p`−1

v−1∑

k=0

p(`−2)kXpk − p`−1
u−1∑

k=v

p(`−3)k+v−1Xpk

)}
.

By Theorem 4.12,

∞∑

n=0

|Hom((Z/2uZ)(`−1) × Z/2vZ, L(2, 2, n))|
2nn!

Xn

=
1
2`

{ ∞∑

n=0

|Hom((Z/2uZ)(`−1) × Z/2vZ, (Z/2Z) o Sn)|
2nn!

Xn

}

×
{

1 + exp

(
−2`−1

v∑

k=0

2(`−2)kX2k

)

+(2` − 2) exp

(
−2`−1

v∑

k=0

2(`−2)kX2k − 2`−1
u∑

k=v+1

2(`−3)k+vX2k

)}
,

and
∞∑

n=0

|Hom((Z/2uZ)(`−1) × Z/2vZ, An)|
n!

Xn

=
1
2`

{ ∞∑

n=0

|Hom((Z/2uZ)(`−1) × Z/2vZ, Sn)|
n!

Xn

}

×
{

1 + exp

(
−2

v∑

k=1

2(`−2)kX2k

)

+(2` − 2) exp

(
−2

v∑

k=1

2(`−2)kX2k − 2
u∑

k=v+1

2(`−3)k+vX2k

)}
.

Remark 5.2 The formulas of EP (X : {W (Dn)}∞0 ) and EP (X : {An}∞0 ) where
P = (Z/2uZ)(`) are due to Müller and Shareshian [11].
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We next suppose that P ∼= Z/puZ× Z/pvZ, where u ≥ v > 0. Given a nonneg-
ative integer k, let NP (k) be the number of subgroups of order pk in P .

Proposition 5.3 Let k be a nonnegative integer. Then

NP (k) =





1 + p + · · ·+ pk if 0 ≤ k < v,

1 + p + · · ·+ pv if v ≤ k ≤ u,

1 + p + · · ·+ pu+v−k if u < k ≤ u + v.

Proof. We proceed by induction on u+v. Obviously, the assertion is true if u+v = 0.
Assume that u + v > 0 and P = 〈a〉× 〈b〉, where a has order pu and b order pv. Put
M = 〈ap〉 × 〈b〉. If k < v, then NP (k) = NM (k) because every subgroup of order
less than pv is contained in M , and hence by the inductive assumption,

NP (k) = 1 + p + · · ·+ pk.

Case (1) Assume that u = v. Then by [14, Corollary], we obtain

NP (v) = NM (v − 1) + pv.

Hence by the inductive assumption,

NP (v) = 1 + p + · · ·+ pv.

Case (2) Assume that u > v. If v ≤ k < u, then clearly NP (k) = NM (k). Moreover,
it follows from [14, Corollary] that

NP (u) = NM (u− 1).

Hence if v ≤ k ≤ u, then by the inductive assumption,

NP (k) = 1 + p + · · ·+ pv.

Since NP (k) = NP (u + v − k), the assertion of the proposition follows. 2

It is easy to prove the following.

Lemma 5.4 Let k be a positive integer. Then the number of cyclic subgroups of
order pk in P is pk−1 + pk if 0 < k ≤ v, and is pv if v < k ≤ u.

The next result is a consequence of Proposition 5.3 and Lemma 5.4.
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Proposition 5.5 We have

∞∑

n=0

|Hom(Z/puZ× Z/pvZ, Sn)|
pnn!

Xn

= exp

(
v−1∑

k=0

1 + · · ·+ pk

pk
Xpk

+
u∑

k=v

1 + · · ·+ pv

pk
Xpk

+
u+v∑

k=u+1

1 + · · ·+ pu+v−k

pk
Xpk

)

and
∞∑

n=0

|Hom(Z/puZ× Z/pvZ, (Z/pZ) o Sn)|
pnn!

Xn

= exp

(
v−1∑

k=0

p + · · ·+ pk+1

pk
Xpk

+
u−1∑

k=v

p + · · ·+ pv

pk
Xpk

+
u−1∑

k=v

pv

pk
Xpk

+
u+v−1∑

k=u

p + · · ·+ pu+v−k

pk
Xpk

+
u+v∑

k=u

pu+v−k−1

pk
Xpk

)
.

We are now in position to determine the form of EP (X/p : {G(p, p, n)}∞0 ),
EP (X/2 : {L(2, 2, n)}∞0 ), and EP (X : {An}∞0 ).

Theorem 5.6 We have
∞∑

n=0

|Hom(Z/puZ× Z/pvZ, G(p, p, n))|
pnn!

Xn

=
1
p2

exp

(
v−1∑

k=1

p + · · ·+ pk

pk
Xpk

+
u−1∑

k=v

p + · · ·+ pv

pk
Xpk

+
u+v−1∑

k=u

p + · · ·+ pu+v−k

pk
Xpk

+
u+v∑

k=u

pu+v−k−1

pk
Xpk

)

×
{

exp

(
v−1∑

k=0

pXpk
+

u−1∑

k=v

pv

pk
Xpk

)
+ (p− 1) exp

(
u−1∑

k=v

pv

pk
Xpk

)
+ p(p− 1)

}
,
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∞∑

n=0

|Hom(Z/2uZ× Z/2vZ, L(2, 2, n))|
2nn!

Xn

=
1
22

exp

(
v−1∑

k=1

2 + · · ·+ 2k

2k
X2k

+
u−1∑

k=v

2 + · · ·+ 2v

2k
X2k −

u−1∑

k=v

2v

2k
X2k

− 2
2u

X2u
+

u+v−1∑

k=u+1

2 + · · ·+ 2u+v−k

2k
X2k

+
u+v∑

k=u

2u+v−k−1

2k
X2k

)

×
{

exp

(
v∑

k=0

2X2k
+

u∑

k=v+1

2v+1

2k
X2k

)
+ exp

(
u∑

k=v+1

2v+1

2k
X2k

)
+ 2

}
,

and
∞∑

n=0

|Hom(Z/2uZ× Z/2vZ, An)|
n!

Xn

=
1
22

exp

(
X −

u∑

k=1

1
2k

X2k
+

u+v∑

k=u+1

1 + · · ·+ 2u+v−k

2k
X2k

)

×
{

exp

(
v∑

k=1

2X2k
+

u∑

k=v+1

2v+1

2k
X2k

)
+ exp

(
u∑

k=v+1

2v+1

2k
X2k

)
+ 2

}
.

Remark 5.7 In [15, Exapmle 6.2], the formula of EP (X/2 : {W (Dn)}∞0 ), where
P = Z/2uZ× Z/2vZ, is not correct, and neither is the formula of EP (X : {An}∞0 );
either of them has a wrong term.

6. The additive group of p-adic integers

Let Zp be the additive group of p-adic integers. The subgroups of finite index
in Zp are pkZp, k = 0, 1, 2, . . . . Moreover, Zp/pkZp

∼= Z/pkZ for each nonnegative
integer k. In [6] Dress and Yoshida pointed out that

∞∑

n=0

|Hom(Zp, Sn)|
n!

Xn = exp

( ∞∑

k=0

1
pk

Xpk

)
;

this is called the Artin-Hasse exponential. We conclude this paper with a presenta-
tion of the following consequences of Theorem 3.2 :

∞∑

n=0

|Hom(Z2, An)|
n!

Xn =
1
2

exp

( ∞∑

k=0

1
2k

X2k

)
+

1
2

exp

(
X −

∞∑

k=1

1
2k

X2k

)
;

∞∑

n=0

|Hom(Zp, G(p, p, n))|
pnn!

Xn =
1
p

exp

( ∞∑

k=0

1
pk

Xpk

)
+

p− 1
p

.
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