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On Wohlfahrt series and wreath products

Yugen Takegahara

Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

Abstract. Suppose that a group A contains only a finite number of subgroups
of index d for each positive integer d. Let G S,, be the wreath product of a
finite group G with the symmetric group S,, on {1,..., n}. For each positive
integer n, let K, be a subgroup of G.5,, containing the commutator subgroup
of G1S,. If the sequence {K,}{° satisfies a certain compatible condition,
then the exponential generating function Y~/ [Hom(A4, K,,)|X™/|G|"n! of the
sequence {|Hom(A, K,,)|}5° takes the form of a sum of exponential functions.

1. Introduction

Let A be a group and F4 the set of subgroups B of A of finite index |A : B|. Sup-
pose that A contains only a finite number of subgroups of index d for each positive
integer d. Then for any finite group K, the set Hom(A, K) of homomorphisms from
A to K is a finite set. We denote by [Hom(A, K)| the number of homomorphisms
from A to a finite group K. Let S, be the symmetric group on [n] = {1,..., n} and
So the group consisting of only the identity. In [17] Wohlfahrt proves that

o0
|Hom(A, S,,)] 1 A:B
— = X"=e G WF
2 nl | D A B (WE)
n=0 BeFa
This formula interests us in various exponential formulas.
Given a sequence { K, }5° of finite groups, the Wohlfahrt series E4(X : {K,}§°)
is the exponential generating function
2. [Hom(A, K,,)| .,
> A
n=0 ’
Previous studies of Wohlfahrt series have given some exponential formulas, each of
which is a sum of exponential functions. In this paper we extend the approach to the
exponential formulas. The approach is based on character theory of finite groups.

2000 Mathematics Subject Classification: 05A15, 20B30, 20C15, 20E22, 20F55, 20K01.
Keyword and phrases : generating function, symmetric group, linear character, wreath product,
reflection group, finite abelian group.
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Let G be a finite group and G the direct product of n copies of G. If H is a
subgroup of S,, then the wreath product

GUH ={(g1,---, g)h | (91,-.., 9n) €G™, he H}

is the semidirect product G(™ x H, in which each h € H acts as an inner automor-
phism on G™):
h(gis- - 9B = (gr=1(1)s- - - Gn=1(n))-

We consider G1Sy = Sp. In [10, 11, 15, 16] the Wohlfahrt formula (WF) is extended
to formulas for E4(X : {G15,}5°) and EA(X/|G| : {G 1S, }§) (cf. Corollary 2.7).

Let 1g, be the trivial C-character of S,, and 6, the linear C-character of S, such
that d,,(h) is the sign of h for all h € S,,, where C is the complex numbers. We
denote by e the sequence {1g, }° and denote by sgn the sequence {4, }3°. Let x be
a linear C-character of G, and let ((x,e,n) and ((x,sgn,n) be linear C-characters
of G5, defined by

Cx.e,n)((g1,-- -5 gn)h) = x(91 - gn)1s, (h)
and

C(x,sgn,n)((g1,-- -, gn)h) = x(g1 -+ gn)on(h)

for all (g1,..., gn) € G™ and h € S,,. Given a linear C-character ¢ of G Sy, there
exists a linear C-character yo of G such that ¢ = ((xo,e,n) or ¢ = ((xo0,sgn,n).

Let z € {e, sgn}. We define K (x, z, n) to be the kernel of ((x, z, n), and consider
K(x,e,0) = K(x,sgn,0) =Sy. Let 15 be the trivial C-character of G, and let A,, be
the alternating group on [n]. Then G1S,, = K(1g,e,n) and Gt A,, = K(1g,sgn,n).
The Wohlfahrt series E4(X : {K(1g,z,n) N K(x,e,n)}5°) with |G/Kerx| < 2 is
described as a sum of exponential functions by Miiller and Shareshian [11]. The
form of E4(X/|G|: {GVA,}T°) is also studied in [16] (cf. Corollary 2.8). Moreover,
EA(X/|G| : {K(x,e,n)}) with |G/Ker x| = p, where p is a prime, takes the form
of a sum of exponential functions, and so does E4(X/|G| : {K(x,sgn,n)}§°) with
|G/Ker x| = 2 [16, Theorem 1].

Given linear C-characters xi,..., xs of G and an element (zi,..., z;) of the
Cartesian product {e, sgn}(®) of s copies of {e, sgn}, we define

K(X1y-ey XsyZ1y---s Zg, ) = ﬂ K(xi,2zi,n).
i€{1,...,s}

Every subgroup of G.5,, containing the commutator subgroup of G5, is considered
as such a subgroup, because any subgroup of a finite abelian group is expressed as
the intersection of kernels of linear C-characters. In Section 2 we study the form of

i [Hom (A, K(X1,---y XssZ1s---, Zs,1))]

X?’L
|G|™n! ’

n=0
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which is described as a sum of exponential functions (cf. Theorem 2.1).

Let m be a positive integer, and let w be a primitive mth root of unity in C. If
G is the cyclic group (w) generated by w and if y(w) = w™/"
of m, then we identify K (x,e,n) with the imprimitive complex pseudo-reflection
group G(m,r,n) [8], and define

, where r is a divisor

H(m,r,n) = K(x,e,n)N (Gl A,)(= K(x, lg,e,sgn,n))
and
L(m,r,n) = K(x,sgn,n).

The form of E4(X/p : {G(p,p,n)}5°) and the form of E4(X/2: {L(2,2,n)}§°) are
studied in [16]. In Section 3 we study the form of E4(X/m : {K,}§°) where K, is
G(m,r,n), H(m,r,n) or L(m,r,n) (cf. Theorem 3.2).

The Weyl group W (D,,) of type D,, is isomorphic to G(2,2,n). When A is a finite
abelian group, the explicit forms of E4(X : {G1A,}§°) and E4(X : {W(D,)}5°) are
given in [11]. In Section 4 we study the form of Ep(X/p : {G(p,p,n)}) where P
is a finite abelian p-group, together with that of Ep(X/2 : {L(2,2,n)}5°) and that
of Ep(X : {A,}]°) where P is a finite abelian 2-group (cf. Theorems 4.8 and 4.12).
The argument about the descriptions of these Wohlfahrt series is essentially due to
Miiller and Shareshian (see [11, Section 4]).

In Sections 5 and 6 we present some examples.

2. The form of Wohlfahrt series

Let x1,..., Xs be linear C-characters of G, and let (z1,..., z;) € {e, sgn}®). In
this section we study the form of E4(X/|G| : {K(x1,---1 Xs)Z15-- - Zs; ) }T)-

Let i € {1,..., s}. Suppose that the factor group G/Ker; is of order . Put
ri = r} if r} is even or z; = e, and r; = 2r} otherwise. Then the linear C-character
¢(x4,2i,n) is @ homomorphism from G .S, to the cyclic group (w,.) generated by a
primitive r;th root w,, of unity in C. Define

o, (A) = ﬂ Kera.
a€Hom(A,(wr,))

Then ®,,(A) is a normal subgroup of A and the factor group A/®, (A) is a finite
abelian group. Write R; = A/®,,(A), and let @ denote the coset a®,,(A) of &, (A)
in A containing a € A. Given ¢ € Hom(A4,G S,) and @ € R;, it is clear that
C(xi,2i,n)(p(c)) with ¢ € @ is independent of the choice of ¢ in @.

Let B € Fa. We define a homomorphism sgn 4,p from A to C by

1 if a € A is an even permutation on A/B,

sgn 4/p(a) = { .

if a € A is an odd permutation on A/B,
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where A/B is the left A-set consisting of all left cosets of B in A with the action
given by a.cB = acB for all a, ¢ € A.

Suppose that |A : B| = d and T4 = {a1,..., ag} is a left transversal of B in
A. For each normal subgroup N of B containing the commutator subgroup B’, let
Va_.p/n be the transfer from A to the factor group B/N defined by

d
Vap/n(a) = Ha;,laajN with aa; € ay B
j=1
for all a € A, which is independent of the choice of T' g, and is a homomorphism.
Let a € Hom(B,C*), C* the multiplicative group of C. Then B’ < Kera. Let
ap be the homomorphism from B/B’ to C* defined by ag(bB’) = «(b) for all b € B.
Let a®4 be the homomorphism from A to C* given by

a®A(a) = ao(Va—p/p(a))
for all a € A, which is the representation afforded by a tensor induced CA-module
(see [4, (13.12) Proposition]). Let x € Hom(B,G). Given @ € R;, it is clear that
(xi 0 k)®4(c) with ¢ € @ is independent of the choice of ¢ in @.
Set I = {i |z = sgn}. Given @ € R; with i € I, sgn 4/p(c) with ¢ € @ is
independent of the choice of ¢ in @.
Put R=R; X --- x Rs. Given (c1,..., ¢;) € R, we define

pB(CL,. .., Cs) =sSgn a/p (H Ci) > Txiow)®4 (.

el k€Hom(B,QG) i=1

We are successful in finding the following formula.

Theorem 2.1
i |HOH1(A, K(X17 sy X8y Zly e ey Zsan))| X"
= |G|™n!
1 pB(Cih,Cis) |A:B|
o X w3 el e
Bl (€1, C5)ER BeF, G4 : B

Let us prove this theorem. We start with the following lemma, which plays a
crucial role in this description of E4(X/|G| : {K(x1,- -5 Xs:2Z1s-- -, Zs, 1) }T°)-

Lemma 2.2 Let ¢ € Hom(A,GS,). Then for each integer i with 1 < i <'s,

1 Zf Imap S K(Xivzian)7
0  otherwise,

,Rlz_, S ez ) ((a)) =

acR;

where the sum ) o p. is over all left cosets @ € R; with a € A.
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Proof. Define a C-character a; of R; by setting

ai(@) = ¢(xi> zi,n)(p(a))

for all @ € R; with a € A. Then Ime < K(x;,2;,n) if and only if «; is the trivial
C-character of R;. Hence it follows from the first orthogonality relation [4, (9.21)
Proposition] that

1 if Ime < K(xi,2i,n),
D> ai(@) =

|Rz’ ach: otherwise,
which proves the lemma. O

This lemma enables us to get the following proposition.

Proposition 2.3

i |HOH1(A,K(X1,.. cs XssZly- - stn))| xn

n!
n=0

:u; 3 z S IO 20 (e(e) § X

(c1,...,Cs)ERN= 0" peHom(A,(RSy) i=1

Proof. If ¢ € Hom(A, G 1 Sy,), then by Lemma 2.2, we have

1 if Imep< ) K(xizi,n),

H Z CXwsz ( )) = ie{l,..., s}

i=1 G ER,; 0 otherwise.

Hence it turns out that

[Hom (A, K(X1,---y XssZ1s---, Zs,1))]

= % T gy X et

peHom(A,QSy) i= ceR;

:“}% ) S ¢t mmee).

(¢1,...,C5)ER1 X - X Rs p€EHOom(A,G1S,, ) i=1

completing the proof of the proposition. O

We consider the Cartesian product G x [n] of G and [n] to be the left G 1 .S,-set
with the left action of G 1.5, given by

(9155 gn)h-(9,7) = (gn(i)9, h(4))
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for all (g1,..., gn) € G, h € Sy, and (g,7) € G x [n] [9, 2.11], so that G S,
is isomorphic to the automorphism group of the free right G-set G x [n| with the
right action of G given by (g,1).y = (gy, i) for all (¢,7) € G x [n] and y € G (see [1,
Proposition 6.11], [16, Proposition 1]).

Let v, be the homomorphism from G .5, to S, defined by

Un((g15-- -, gn)h) = h

for all (g1,..., gn) € G and h € S,,.
Set Fa(n) ={B € Fa ||A: B|] <n}. We now show a recurrence formula like
Dey’s theorem [5, (6.10)], namely,

Proposition 2.4 Ifn is a positive integer, then

| | C(Xivz%n)(@(ci))
=1
|G| (n —1)!

>

pEHom(A,GiSy)

TT¢0hzim — 1A : B)(¥(e)

= Z (L. .-, C) i=1
B G n—|ABl(y, — A - |
BeFa(n) 1G] $eHom(A,G1S,,_|a.5)) |G| (n—|A: BJ)

with ¢1,..., cs € A.

The proof is analogous to that of [15, Theorem 3.1].

Proof of Proposition 2.4. If B € F4, then we fix a left transversal Tg containing
the identity e4 of A. We denote by e the identity of G.
Let ¢ € Hom(A,G1S,,). Define a subgroup B of A by

B ={aeAluvn(p(a))(l) =1},

and define a homomorphism « from B to G by

p(b)-(e,1) = (x(b), 1)

for all b € B. We then have |A : B| < n. Suppose that T§ = {ay,..., ag} with
a; = €4 and d = |A : B|. Define an injection ¢ from [d] into [n] with ¢(1) =1 by

1(4) = vn(e(az))(1)

for all j € [d], and define an element (y1, ..., yq) of the Cartesian product G@ of d
copies of G with y; = € by

p(aj).(e;1) = (y5, (7))
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for all j € [d]. If a € A and if j € [d], then we have
v(a).(e,0())) = (yj/ﬁ(aj_,laaj)yj_l,a(j’)) with aa; € ayB. (I)

Suppose that {¢(1),..., ¢«(d)} U{k1,..., kp—q} = [n] and k1 < --+ < kpg. If
h € Im(v, o ¢), then we define a permutation h on [n — d] by h(k;) = Kj,() for all
t € [n —d]. Let ¢ be the mapping from A to G S,_4 defined by

$(@) = (Grus- s Gy )b With b= va(p(a), p(a) = (g1, ga)h (11

for all @ € A. Then it is easily checked that 1 is a homomorphism.
We have got a quintet (B, &, ¢, (y1,..., yq), ¥) satisfying the condition

(B Fawithd=|A:B|<n,

k € Hom(B, G),

¢ is an injection from [d] to [n] with ¢(1) =1 (III)
(Y1, ..., ya) € G with y; = ¢,

Y € Hom(A,G1.S,—q),

and by (I) and (II), we obtain

s

T ¢On i m) ((ci))
i=1 (IV)

=S80 /B (H Ci) ' H(Xz' o k)®4(es) - C(xir zirn — d) (¥ (cy)).

i€l i=1

The preceding map

I':o— (B, Kk, t, (Y1,---, Ya), ¥)

from Hom(A, G S,) to the set of quintets (B, &, ¢, (y1,--., Yd), ) satisfying (IIT)
is clearly injective. Moreover, it is easily verified that I" is surjective (see the proof
of [15, Theorem 3.1]). Combining this fact with (IV), we have

Z HC(X’L,Zhn)(@(Cz))
pEHom(A,QSy) i=1
= Z pB(a,..., Cs))(n(—n‘z_él:l);’)HG‘A:Bl_l

X Z HC(Xi;Zian_ |A: Bl)(¢(ci))

p€Hom(A,GUS, ) a:B)) =1
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This completes the proof of the proposition. O

If x1=-=xs =1g and if zy = --- = z; = e, then this proposition is the
recurrence formula [15, Theorem 3.1] of |[Hom(A, G .S,,)|, which is a generalization
of the recurrence formula [17, Satz] of |[Hom(A, Sy,)|.

As a result of Proposition 2.4, we obtain the following proposition.

Proposition 2.5 Suppose that c1,..., cs € A. Then

Zminl Z Hg(Xi’Ziv”)(SD(Ci)) X"
n=0

pEHom(A,G1Sy) i=1

pB(Ci, ..., ¢ )X|AB|

P GlA" B|

BeFa

Proof. Put v,(n) = [[;_; C(xi»2i,n)(¢(ci)) with ¢ € Hom(A,G 1 S,), and put
B(B) = pp(c1, ..., ¢) with B € F4 for convenience. We denote by =(n) the set of
sequences (ng)per, of nonnegative integers np corresponding to B € F4 such that
> per, "BlA : B =n, and abbreviate (ng)per, to (np). It suffices to show that
for each nonnegative integer n,

Yo(n) "B
2 |C?\"n!_ 2 11 |G|"B|A B\”BnB

pEHom(A,G1Sn) np)€E(n) BEF4

We use induction on n. Evidently, this formula is true if n = 0. Suppose that n > 1.
Then Proposition 2.4 yields

Yo (n)
2 |G["*(n —1)!

peHom(A,Gi1Sy)
Z B(B) > vo(n —|A: B)
n—|A:B _ . 1
seram 1O yetom(icis, o [CI" P (n =14 B])!

Moreover, given B € F4(n), the inductive assumption means that

Y(n— 1A : B)
2 GEAB[A: B

_ BE)"*
B Z H |G|"K A K|"Eng!

(nk)EE(n—|A:B|) KEF 4

PeHom(A,G1S,,_ | a.5|)
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Hence we obtain

Ye(n)
Z |G|"n!

pEHom(A,GSy)

1 Z B(B) H B(K)"E
n . n |
" pemam (O oetmeiam) KeF, 1CTA K]
1 BK)" <
. A:B
n Z na| | H |G|"x A K|"Eng!
EFa(n) (nk)€EE(n) KeFa
_ 1 : B(K)"
— ” ~ Z nB|A . B| H ’G|nK‘A . K|nK’I’ZK'
(nk)€E(n) \B€Fa(n ) KeFa

nK

-2 |G|nK\A K|nKnK"

(nK)€E(n) KeFa

as required. O

Remark 2.6 Proposition 2.5 is also a consequence of a categorical fact, namely,
[16, Propsition 5] (see the second half of the proof of [16, Theroem 1]). It should be
stated in this connection that the categorical proof of the Wohlfahrt formula (WF)
was given by Yoshida (see [18, 6.4]).

By virtue of Propositions 2.3 and 2.5, we have established Theorem 2.1.
Recall that G1S,, = K(1g,e,n) and Gl A, = K(1g,sgn,n). The next results
are corollaries to Theorem 2.1.

Corollary 2.7 ([10, 11, 15, 16]) We have

Z |H0m(A7G25n)| X" = exp Z |Hom B G X|A:B‘

) C 2 lGllA Bl
Corollary 2.8 ([16]) We have
n=0 |G‘nn|
1 SgnA/B(C) - [Hom(B, G)| |A:B|
= ex X :
rEE D SRR P Gl1A B
ceA/Do(A) BeF,

Remark 2.9 When A is a finite cyclic group, Corollary 2.7 is shown in [3, 12] and
Corollary 2.8 is shown in [3].
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3. Imprimitive complex pseudo reflection groups and related groups

Keep the notation of Section 2, and suppose that G = (w) with w a primitive
mth root of unity in C. Assume that for any integer ¢ with 1 <1i <'s, y;(w) = W%,
where ¢; is a positive integer. Let B € F 4, and define

®,,(B) = m Kera.
acHom(B,(w))

Let i € {1,..., s}. Since the order of (w)/Kerx; divides r;, it follows that ¢;r; is a
multiple of m. Then the order of Vy_p/p, (5)(c?) with ¢ € A divides r;. Hence,
given @ € R;, Va_p/s,,(B)(c?) with ¢ € @ is independent of the choice of ¢ in @.

Now define a homomorphism Fqui)’é’/gjl (B) from R to B/®,,(B) by

) (@ @) = Vac o (s) <H Cgi)
i=1

for all (¢1,...,¢) € R. Let ¢1,...,¢cs € A. We can identify Hom(B, (w)) with
Hom(B/®,,(B), (w)). Hence it turns out that

> Txor)®He) = > 1% (Vac /e, 5 (c)”

r€Hom(B,(w)) i=1 k€Hom(B/®,,(B),(w)) i=1

= Y (R @)
NEHOIH(B/‘:I)7n(B)v<w))

> e

k€Hom(B/®m (B),{w))
of B/®,,(B) is afforded by the left regular module C(B/®,,(B)). Thus

S [oen™e) :{
=1

k€Hom(B,(w)) ¢

Moreover, the C-character

B:@u(B)| if (ar,.... %) € Ker Fypd)

0 otherwise.

Combining the preceding fact with Theorem 2.1, we conclude that

X?’L

i [Hom (A, K (X1, -y XssZ1y---» Zs,1))]

mnn!
n=0

1 1B : @ (B)| y(a:5
:m( Z exp Z )sgnA/B (ch) WA B] xABl

C1,...,C3)ER BeQy (et,...,Cs el

(V)

where
Qalet,..., ) = {B € Fu ‘ (¢1,...,C5) € KerFIg@é’/gfi(B)} .
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Remark 3.1 There exists a divisor r of m such that K(x1,..., XssZ1,---, Zs,n) iS
G(m,r,n), H(m,r,n), or L(m,r,n).
The following theorem is an immediate consequence of the formula (V).
Theorem 3.2 Let r be a divisor of m. Given c € A, set
Qu(@) ={B € Fa| ™" eKerVa_p/e, (5}
Put rg =1 if r is even, and ro = 27 if r is odd. Then

i |Hom(A, G(m,r,n))] xn

mnn!

n=0

1 S | Y |B: 2n(B)| ¢ ’

T A9, (A) ~ ml|A: B
ceA/P,r(A) BeQa(c)
Z |Hom(A, H(m,r n))|Xn
m"n!
_ 1
|A: @, (A)]|A: Po(A)]
|B : @5 (B)| (a8
X B Z exp Z, sgnA/B(CQ)m‘TWfB’X| ,
(Cl,CQ)E(A/CD'r(A))X(A/CI’Q(A)) BEQA(C1)
and
Z |Hom(A, L(m,r,n))] xn
mmn)!

_ 1 B : @, (B))| |A:B|
T A3, (A)] ), e ZfsgnA/B(c) mld: B
cEA/ Py (A) BeQ4(e)

Corollary 3.3 ([16]) Keep the notation of Theorem 3.2, and assume further that
m=r=2. Then

_ 1 |B: @2(B)| a8
T A 3u(A)] > o Z, 24 B X
ceA/Py(A) BeQa(c)
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Example 3.4 Suppose that A is a finite cyclic group of order ¢ and is generated
by an element c. Let p be a prime. For a subgroup B of A, we have

n up(c) = 1 if |A:B| isodd,
Sga/B\€) =193 _1 if |A: B| is even,

and Vy_.p/a,B)(c) = c|A:B|<I>p(B). Considering A as Z /{7, we obtain the following.
(1)

2. |Hom(Z/(Z, S,
Z! (z/ )|

n!

1
no_ - yd
X exp E dX

o dle
(2)
oo
|Hom(Z/(Z, Ay,)| 1 14| 1 ()¢t
Z X" = —exp Z*X + 5 exp ZiX
[
R n! 2 e d 2 dje d
(3)
—~ pn!
= e | 3 x e | 3 Xt ep
P m pd dle d
pt(€/d) p|(¢/d)
(4)
—~ pn!
=g | X X e X gxt] e
2p a1 pd dje d
PH(E/) P/
, it U,
+—exp — X exp Yy X ftp-l
2p ; pd ; !
Pl(E/d) Pl
()
i [Hom(Z/(Z, L(2,2,n))| s
~ 27!
1 L L xd Ly
= o Z ﬁX exp Z gX +exp | — Z gX
- 2t dle

21(¢/d) 2((¢/d) 2t(¢/d), 2|d
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Remark 3.5 The formula (1) is given in [2] and (2) is given in [13, Chapter 4,
Problem 22] and [3]. When p = 2, the formula (3) is shown in [3].

4. Finite abelian p-groups

Suppose that A is a finite abelian group. Let A be the set of irreducible C-
characters of A, and define a multiplication in A by araz(a) = ai(a)az(a) for all
ay, g € A and a € A. Then A becomes a group, and the groups A and A are
isomorphic [7, 5.1]. If B is a subgroup of A, we put

L—{acA|a(b)=1foralbec B}
If U is a subgroup of fT, then we put

L={aecA|ala)=1forall acU}.
We use the following lemmas, which are parts of [7, 5.5, 5.6].

Lemma 4.1 ([7]) Let B be a subgroup of A. Then

m%BJ— and A/B-~B

Lemma 4.2 ([7]) Let B be a subgroup of A, and let U be a subgroup of A. Then

Bt =B and Uttt =vU.

Lemma 4.3 ([7]) Let By, By be subgroups of A. Then

(B1 N BQ)J— = Bf‘B%‘ and (BlBQ)J_ = Bf‘ N Bé‘

Lemma 4.4 ([7]) Let Uy, Uy be subgroups of A. Then
(U1 N UQ)J_ = UlJ‘UQJ‘ and (U1U2)J_ = Ulj‘ N UQJ‘
Let €4 be the identity of A. For each positive integer k, we define
Q(A) ={ac A|d" =ey} and Ur(A) = {a* | a € A}.
We provide a part of [7, 5.8], namely,

Lemma 4.5 ([7]) Qu(A)* = Uy(A), and equivalently, QU (A) = Uy (A)*.
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A partition is a sequence A = (A1, ..., Ay, ...) of nonnegative integers containing
only finitely many non-zero terms where A\ > --- > Ay > ---. Given a partition
A=(A1,..., A, ...), we define

mi(A) = H{t | A\ =i}

and

A =8{t | A > i}
Then N = (N,..., X,,...) is a partition, and is called the conjugate of \.

Let p be a prime. If P is a finite abelian p-group, then there is a unique partition
A= (A1,..., Ay, 0,...) such that P is isomorphic to the direct product

Z)pMZL % - X L] pMT

of cyclic p-groups Z/pMZ, ..., Z/pM7Z, and we call A the type of P.
Now let P be a finite abelian p-group, and let ep be the identity of P. We have

O,(P)=Ty(P)  and  P/®,(P)=Q,(P).

In order to describe the Wohlfahrt series Ep(X/p : {G(p,p,n)}5°), we must show
the following.

Lemma 4.6 Let Py be a subgroup of P. Suppose that c € P and ¢ ¢ ®,(P). Then
c & KerVp_pyja,(r) if and only if P = (c)Py and Py contains Qy,(P).

Proof. We have ®,(Fy) = Uy(Fo) and Vp_p) /e, (py)(¢) = cPPold,(Py). Assume that
c & KerVp_,pyja,(py)- Then Pl o U,(F), and thereby P = (c)Fy. Moreover, if
Py does not contain ,(P) , then PPl = ep, contrary to the assumption. Hence Py

contains ,(P). Conversely, assume that P = (c¢) Py and P, contains §,(P). Since
c & ®,(P), it follows that ¢ ¢ KerVp_p/p, (p). Hence we assume that P # P.

Clearly, c/P0l/P & Py. Now suppose that /P70l € Up(P) and a is an element of P
such that a? = ¢PFol. Then a1l P#0l/P is not contained in Py and is of order p.
But every element of order p in P is contained in Fy. This is a contradiction. Thus
clPhl o Up(Py), and hence ¢ ¢ Ker VBy—Py/®,(Py), Which proves the lemma. O

Suppose that P is of type A = (A,..., A\, 0,...) and P = (ay) X --- X {ag),
where (a;) is a cyclic group generated by a; and is of order p*'. We assume that
Ar > 0, and set

T(P):{a'il...azé’(]Sel,...,efgp_l}?

which is a left transversal of ®,(P) in P. Given a positive integer j, we define Tj(P)
to be the set of all elements of order p/ in T'(P). Then

T (P) = p 50 — N

We have the following.
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Lemma 4.7 Suppose that ¢ € Tj;(P). Let k be a nonnegative integer, and let
M((c); k) be the set of all subgroups Py of P containing Q,(P) such that P = (c) P
and |P : Py| = pF. Then

tM({c); k) = {pw(k) if  k<j,

where

Proof. Suppose that Py € M((c);k). Then by Lemma 4.5, P;- is contained in
Up(P). Since P = {1p}, it follows from Lemma 4.3 that (¢} N P;- = {1p}, where
1p is the trivial character of P. Moreover, by Lemma 4.1 we have

P/Py = P/P, = P;-.

Thus Py is a cyclic group of Up(ﬁ) such that (¢)* N Py~ = {1p} and |P;-| = p.

Now let N'({c)*;k) be the set of all cyclic subgroups U of Up(ﬁ) such that
()* NU = {1p} and |U| = p*. If Py € M({(c); k), then by the preceding argument,
Pi- € N((e)*; k). Define a map f from M((c); k) to N'({c)*; k) by f(Py) = P; for
all Py € M({(c);k). Then Lemma 4.2 implies that f is injective.

Suppose that U € N({c)*; k). Then by Lemma 4.5, U+ contains Q,(P). Since
{1p}*+ = P, it follows from Lemmas 4.2 and 4.4 that P = (c)U+. Moreover, by
Lemmas 4.1 and 4.2, we have

P/UL = PJUL =y,

whence |P : U*| = |U| = p¥. Thus we obtain U+ € M((c); k). This fact, together
with Lemma 4.2, means that f is surjective. Consequently, f is bijective.
In order to prove the statement, it suffices to verify that

0 it k>,

1. —
IN ()73 k) = {pu&(k) if k<.

Suppose that ¢ = af'---a;*, where ey, ..., e, are nonnegative integers less than p.
Since ¢ # ep, we assume that e; = 0 with ¢ < ¢y and e, # 0, where 1 <ty < {. Put

D= <CL1> X oo X <at0_1> X <at0+1> X oo X <CL[>.

Then P = (¢) x D, and hence P = (¢)* x D+ by Lemma 4.3. Moreover, it follows
from Lemma 4.1 that

—

DY~ P/)r = ()= (¢) and ()t =~ P/D*

I

D

12

D.
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Thus there exists a bijection from N ({c)*;k) to the set W(D;k) of all cyclic sub-
groups Y of U,(P) such that DNY = {ep} and |Y| = p*. If k > j, then clearly
W(D;k) = 0, and hence N ({c)*;k) = $W(D;k) = 0. Suppose that k& < j.
We set Iy = {t |\ > k,t # to} and Io = {t |\ < k}. For each sequence
(n1,...,Neg—1,Ntg+1, - - -, 1) Of positive integers, put

—k
pJ L pn
y(n17--~7nt0—17nt0+17" T H at H a

tely tels
Then

1<n; <pF if tel,
W(D; k) = {<y(”1w~,nto17nt0+17~-~7n1)> 1<m< p>\t_1 if tely, [’

and $W(D; k) = p“»(¥). Thus we conclude that $NV ((c); k) = p*>»¥) and the proof
is completed. O

Theorem 3.2, together with Lemmas 4.6 and 4.7, enables us to get the following.

Theorem 4.8 Keep the notation of Lemma 4.7. We have

Z|H0mPGpp7 ))|Xn

p"n!
1 i|H0m( ,(Z/pZ) 1Sn)|
pt vt pn!
X 1+Z A=A — ph )‘, eXp( . IZPW kX”)
7>1

We now turn to the forms of Ep(X/2 : {L(2,2,n)}§°) and Ep(X : {A,}5°).
First, we need a consequence of [15, Lemma 2.1], namely,

Lemma 4.9 Let Py be a subgroup of P, and let c € P. Then sgn p/p (c) = =1 if
and only if P # Py and P = (c)Fy.

The proof of the next lemma is straightforward.

Lemma 4.10 Let Py be a subgroup of P, and let c € P —{ep}. Then P = (c) x Py
if and only if P = (c)Py and Py does not contain ,(P).

By an argument similar to that in the proof of Lemma 4.7, we get the following.
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Lemma 4.11 Suppose that ¢ € Tj(P). Let k be a nonnegative integer. Then the
number of all subgroups Py of P such that P = (c)Py and |P : Py| = p* is 0 if k > j,
and is p>®) if k < §, where

A1 k
= {k: > mi()\)+Zimi()\)} — k.

i=k+1 i=1
Combining Theorem 3.2 with Lemmas 4.6, 4.9, 4.10, and 4.11, we can now state

the following.

Theorem 4.12 Keep the notation of Lemma 4.11, and assume further that p = 2.
Then

|Hom(P, L(2,2,n))|
Z AL

Hom(P,(Z/2Z) S, n

» 1+Z(2)\’17/\3. _ oM ,\ exp< ol— 122@ kX2k> 7

X'I”L

j=1
and
= n!
L[S Hom(PS,)|
T o Z n!
n=0
X 1+Z(2X1*A9+1 M exp< 2223A kX2’“>

j=1

Remark 4.13 The form of Ep(X : {A,}{°) in the theorem above is also a conse-
quence of Lemma 4.11 and [15, Theorem 1.1].

5. Explicit formulas

Keep the notation of Section 4, and further assume that \y = --- = A\p_1 = u
and Ay = v, where £ > 1 and u > v > 0. Then P ~ (Z/p*Z)*~Y x Z/p"Z, whence
$T.(P) = pt — p and i, (P) =p— 1.
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Example 5.1 By Theorem 4.8, we have

i [Hom((Z/p"Z)“~V) x Z/p"Z, G (p, p, n))|
pn!

_1 {i [Hom(Z/p"2) ™) x Z/p*Z, (2/p2) 1 S,)| Xn}

XTL

pn!

v—1
X {1 +(p—1)exp (—pﬁ_l Zp“‘Q)’“X”k)
k=0
u—1

k=v

v—1

_ _ k _ _ _ k

+(p€ _p) exp (_pﬁ 1 Zp(f 2)kXp . pZ 1 Zp(é 3)k+v lxp
k=0

By Theorem 4.12,

i |Hom((Z/2"Z) Y x 7./2 7, L(2,2,n))|
2nn!

_ % {i [Hom((Z/2Z)*Y) x Z./2VZ, (Z./2Z) 1 Sy,)| Xn}

ALY

XTL

n=0
v
x {1 + exp (—2“ > 2(f2>kX2k>

k=0

18

+(2 _2 exp( 2@ 122E 2]€X2k 2@ 1 Z f 3k+UX2k>}’

k=v+1

and

X'I’L

i [Hom((Z/2"Z)~Y) x /27, A,,)|

n!
n=0

1 | [Hom((Z/24Z) Y x Z/2V 7, Sp)|
_%{Z| (z/22) / >|X}

n!
n=0

X {1 + exp (—2 Z 2(62)’“X2k>
k=1

+(2€ _ 2) exp (_2 Z 2(Z_2)kX2k _9 z 2((—3)k+’UX2k

k=1 k=v+1

Remark 5.2 The formulas of Ep(X : {W(D,)}5°) and Ep(X : {A,}5°) where

P = (Z/2*Z)®) are due to Miiller and Shareshian [11].
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We next suppose that P = Z/p“Z x Z/p*Z, where u > v > 0. Given a nonneg-
ative integer k, let Np(k) be the number of subgroups of order p* in P.
Proposition 5.3 Let k be a nonnegative integer. Then

L+p+---+p if0<k<w,
Np(k)=<q 1+p+---+p* ifv <k <u,
Lbp+-+p"™F ifu<k<u+o.

Proof. We proceed by induction on u+4wv. Obviously, the assertion is true if u4+v = 0.
Assume that u+v > 0 and P = (a) x (b), where a has order p* and b order p¥. Put
M = (a?) x (b). If k < v, then Np(k) = Np(k) because every subgroup of order
less than p” is contained in M, and hence by the inductive assumption,

Np(k)=1+p+---+p"

Case (1) Assume that u = v. Then by [14, Corollary], we obtain
Np(v) = Npy(v—1) +p°.

Hence by the inductive assumption,
Np(w)=1+p+-+p".

Case (2) Assume that u > v. If v < k < u, then clearly Np(k) = Ns(k). Moreover,
it follows from [14, Corollary] that

Np(u) = Nyr(u—1).
Hence if v < k < u, then by the inductive assumption,
Np(k)=1+p+---+p".
Since Np(k) = Np(u+ v — k), the assertion of the proposition follows. O
It is easy to prove the following.

Lemma 5.4 Let k be a positive integer. Then the number of cyclic subgroups of
order p* in P is p" 1 +pF if 0 < k <w, and is p¥ if v < k < u.

The next result is a consequence of Proposition 5.3 and Lemma 5.4.
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Proposition 5.5 We have

i [Hom(Z/p"Z x Z/p"Z, Sp)|
p"n!

I+---+p° ., L+ 4p" ,
:exp<sz +ZP7X
k=0 k=v

and

i [Hom(Z/p"Z x Z/p"Z, (Z/pZ) L Sn)|
pn!

_exp<zp+

k+1

k=v
u+v—1

Z p+- +pu+” kXp +Z

We are now in position to determine the form of Ep(X/p :

Ep(X/2:{L(2,2,n)}§°), and Ep(X : {An})-
Theorem 5.6 We have

i [Hom(Z/p"Z x Z/p"Z, G(p, p,n))|

Xn
pn!

n=0

1 U_1p++pk k u_1p++pv k
I
p k=1 p k=v P

u—1 u—1
P +waw +Z%X”k
p

kvp

utv u+’u k— 1 >

{G(p,p,)}5°),

utv— 1 u+vfk utv ytpu—k—1

oy RS

k=u

u—1

k
XP
pk

{eXP (Zpo +va X”) p—1)exp (Z;Xplj +p(p1)},

k=v
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i |Hom(Z/2%Z x Z./2°Z, L(2,2,n))|

n
2nn! X
n=0
1 S22k log 4 2v e S
e (L S e S
k=1 k=v k=v
1 _ u+v e
) ou U+v— 24 . _|_2u+v k ok Qu+tv k-1 ok
o X7 Z oF X% + X
__|_ k=u
u
exp ZZXQk + exp Z 2UHXQIC +257,
2k
k=v+1 k=v+1
and

X?’L

i |Hom(Z/2VZ x 7./2'Z, A,,)|

n!
n=0

1 1 T e
:2—2exp (X—Z%Xﬁ—l- Z + ;k x?

k=1 k=u+1

v v ogutl v gutl
x{exp <Z2X2k+ Z 2]€X2k>+exp< Z o X2k> }

k=1 k=v+1 k=v+1

Remark 5.7 In [15, Exapmle 6.2], the formula of Ep(X/2 : {W(Dy)}3°), where
P =7/2"Z x Z/2"Z, is not correct, and neither is the formula of Ep(X : {4,}5°);
either of them has a wrong term.

6. The additive group of p-adic integers

Let Z, be the additive group of p-adic integers. The subgroups of finite index
in Z, are p*Z,, k = 0,1,2,.... Moreover, Z,/p*Z, = Z/p*Z for each nonnegative
integer k. In [6] Dress and Yoshida pointed out that

(o) [e.e]
S Hom(Zy, S0)l en _ ( 1 X,,k) |
p

|
ne0 n:

this is called the Artin-Hasse exponential. We conclude this paper with a presenta-
tion of the following consequences of Theorem 3.2 :

\HomZQ,|n1 1 ok 1 1)
Z X—iexp 227)( +§exp X—Z?X N

00 00
Z H Zy,, G 1 1 -1
‘ om( P> (papvn))| X" — —exp E - )(Pk + L
p

!
n=0 p
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