On Wohlfahrt series and wreath products

<table>
<thead>
<tr>
<th>メタデータ</th>
<th>言語: eng</th>
</tr>
</thead>
<tbody>
<tr>
<td>出版者:</td>
<td></td>
</tr>
<tr>
<td>公開日: 2007-12-11</td>
<td></td>
</tr>
<tr>
<td>キーワード (Ja):</td>
<td></td>
</tr>
<tr>
<td>キーワード (En):</td>
<td></td>
</tr>
<tr>
<td>作成者: TAKEGAHARA, Yugen</td>
<td></td>
</tr>
<tr>
<td>メールアドレス:</td>
<td></td>
</tr>
<tr>
<td>所属:</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10258/285</td>
</tr>
</tbody>
</table>
On Wohlfahrt series and wreath products

Yugen Takegahara

Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

Abstract. Suppose that a group \(A \) contains only a finite number of subgroups of index \(d \) for each positive integer \(d \). Let \(G \wr S_n \) be the wreath product of a finite group \(G \) with the symmetric group \(S_n \) on \(\{1, \ldots, n\} \). For each positive integer \(n \), let \(K_n \) be a subgroup of \(G \wr S_n \) containing the commutator subgroup of \(G \wr S_n \). If the sequence \(\{K_n\}_{n=0}^{\infty} \) satisfies a certain compatible condition, then the exponential generating function \(\sum_{n=0}^{\infty} \frac{|\text{Hom}(A, K_n)|}{n!} X^n / |G|^n \) of the sequence \(\{|\text{Hom}(A, K_n)|\}_{n=0}^{\infty} \) takes the form of a sum of exponential functions.

1. Introduction

Let \(A \) be a group and \(\mathcal{F}_A \) the set of subgroups \(B \) of \(A \) of finite index \(|A : B|\). Suppose that \(A \) contains only a finite number of subgroups of index \(d \) for each positive integer \(d \). Then for any finite group \(K \), the set \(\text{Hom}(A, K) \) of homomorphisms from \(A \) to \(K \) is a finite set. We denote by \(|\text{Hom}(A, K)|\) the number of homomorphisms from \(A \) to a finite group \(K \). Let \(S_n \) be the symmetric group on \([n] = \{1, \ldots, n\} \) and \(S_0 \) the group consisting of only the identity. In [17] Wohlfahrt proves that

\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(A, S_n)|}{n!} X^n = \exp \left(\sum_{B \in \mathcal{F}_A} \frac{1}{|A : B|} X^{|A : B|} \right). \tag{WF}
\]

This formula interests us in various exponential formulas.

Given a sequence \(\{K_n\}_{n=0}^{\infty} \) of finite groups, the Wohlfahrt series \(E_A(X : \{K_n\}_{0}^{\infty}) \) is the exponential generating function

\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(A, K_n)|}{n!} X^n.
\]

Previous studies of Wohlfahrt series have given some exponential formulas, each of which is a sum of exponential functions. In this paper we extend the approach to the exponential formulas. The approach is based on character theory of finite groups.

Keyword and phrases: generating function, symmetric group, linear character, wreath product, reflection group, finite abelian group.
Let G be a finite group and $G^{(n)}$ the direct product of n copies of G. If H is a subgroup of S_n, then the wreath product

$$G \wr H = \{(g_1, \ldots, g_n)h \mid (g_1, \ldots, g_n) \in G^{(n)}, h \in H\}$$

is the semidirect product $G^{(n)} \rtimes H$, in which each $h \in H$ acts as an inner automorphism on $G^{(n)}$:

$$h(g_1, \ldots, g_n)h^{-1} = (g_{h^{-1}(1)}, \ldots, g_{h^{-1}(n)}).$$

We consider $G \wr S_0 = S_0$. In [10, 11, 15, 16] the Wohlfahrt formula (WF) is extended to formulas for $E_A(X : \{G \wr S_n\}_0^\infty)$ and $E_A(X/|G| : \{G \wr S_n\}_0^\infty)$ (cf. Corollary 2.7).

Let 1_{S_n} be the trivial C-character of S_n and δ_n the linear C-character of S_n such that $\delta_n(h)$ is the sign of h for all $h \in S_n$, where C is the complex numbers. We denote by \mathbf{e} the sequence $\{1_{S_n}\}_0^\infty$ and denote by sgn the sequence $\{\delta_n\}_0^\infty$. Let χ be a linear C-character of G, and let $\zeta(\chi, \mathbf{e}, n)$ and $\zeta(\chi, \text{sgn}, n)$ be linear C-characters of $G \wr S_n$ defined by

$$\zeta(\chi, \mathbf{e}, n)((g_1, \ldots, g_n)h) = \chi(g_1 \cdots g_n)1_{S_n}(h)$$

and

$$\zeta(\chi, \text{sgn}, n)((g_1, \ldots, g_n)h) = \chi(g_1 \cdots g_n)\delta_n(h)$$

for all $(g_1, \ldots, g_n) \in G^{(n)}$ and $h \in S_n$. Given a linear C-character ζ of $G \wr S_n$, there exists a linear C-character χ_0 of G such that $\zeta = \zeta(\chi_0, \mathbf{e}, n)$ or $\zeta = \zeta(\chi_0, \text{sgn}, n)$.

Let $z \in \{\mathbf{e}, \text{sgn}\}$. We define $K(\chi, z, n)$ to be the kernel of $\zeta(\chi, z, n)$, and consider $K(\chi, \mathbf{e}, 0) = K(\chi, \text{sgn}, 0) = S_0$. Let 1_G be the trivial C-character of G, and let A_n be the alternating group on $[n]$. Then $G \wr S_n = K(1_G, \mathbf{e}, n)$ and $G \wr A_n = K(1_G, \text{sgn}, n)$.

The Wohlfahrt series $E_A(X : \{K(1_G, z, n) \cap K(\chi, z, n)\}_0^\infty)$ with $|G/\text{Ker} \chi| \leq 2$ is described as a sum of exponential functions by Müller and Shareshian [11]. The form of $E_A(X/|G| : \{G \wr A_n\}_0^\infty)$ is also studied in [16] (cf. Corollary 2.8). Moreover, $E_A(X/|G| : \{K(\chi, \mathbf{e}, n)\}_0^\infty)$ with $|G/\text{Ker} \chi| = p$, where p is a prime, takes the form of a sum of exponential functions, and so does $E_A(X/|G| : \{K(\chi, \text{sgn}, n)\}_0^\infty)$ with $|G/\text{Ker} \chi| = 2$ [16, Theorem 1].

Given linear C-characters χ_1, \ldots, χ_s of G and an element (z_1, \ldots, z_s) of the Cartesian product $\{\mathbf{e}, \text{sgn}\}^s$ of s copies of $\{\mathbf{e}, \text{sgn}\}$, we define

$$K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n) = \bigcap_{i \in \{1, \ldots, s\}} K(\chi_i, z_i, n).$$

Every subgroup of $G \wr S_n$ containing the commutator subgroup of $G \wr S_n$ is considered as such a subgroup, because any subgroup of a finite abelian group is expressed as the intersection of kernels of linear C-characters. In Section 2 we study the form of

$$\sum_{n=0}^\infty \frac{|\text{Hom}(A, K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n))|}{|G|^n n!} X^n,$$
which is described as a sum of exponential functions (cf. Theorem 2.1).

Let \(m \) be a positive integer, and let \(\omega \) be a primitive \(m \)th root of unity in \(\mathbb{C} \). If \(G \) is the cyclic group \(\langle \omega \rangle \) generated by \(\omega \) and if \(\chi(\omega) = \omega^{m/r} \), where \(r \) is a divisor of \(m \), then we identify \(K(\chi, e, n) \) with the imprimitive complex pseudo-reflection group \(G(m, r, n) \) [8], and define

\[
H(m, r, n) = K(\chi, e, n) \cap (G \wr A_n) = K(\chi, 1_G, e, \text{sgn}, n)
\]

and

\[
L(m, r, n) = K(\chi, \text{sgn}, n).
\]

The form of \(E_A(X/p : \{G(p, p, n)\}_0^\infty) \) and the form of \(E_A(X/2 : \{L(2, 2, n)\}_0^\infty) \) are studied in [16]. In Section 3 we study the form of \(E_A(X/m : \{K_n\}_0^\infty) \) where \(K_n \) is \(G(m, r, n) \), \(H(m, r, n) \) or \(L(m, r, n) \) (cf. Theorem 3.2).

The Weyl group \(W(D_n) \) of type \(D_n \) is isomorphic to \(G(2, 2, n) \). When \(A \) is a finite abelian group, the explicit forms of \(E_A(X : \{G \wr A_n\}_0^\infty) \) and \(E_A(X : \{W(D_n)\}_0^\infty) \) are given in [11]. In Section 4 we study the form of \(E_P(X/p : \{G(p, p, n)\}_0^\infty) \) where \(P \) is a finite abelian \(p \)-group, together with that of \(E_P(X/2 : \{L(2, 2, n)\}_0^\infty) \) and that of \(E_P(X : \{A_n\}_0^\infty) \) where \(P \) is a finite abelian 2-group (cf. Theorems 4.8 and 4.12).

The argument about the descriptions of these Wohlfahrt series is essentially due to Müller and Shareshian (see [11, Section 4]).

In Sections 5 and 6 we present some examples.

2. The form of Wohlfahrt series

Let \(\chi_1, \ldots, \chi_s \) be linear \(\mathbb{C} \)-characters of \(G \), and let \((z_1, \ldots, z_s) \in \{e, \text{sgn}\}^{(s)} \). In this section we study the form of \(E_A(X/G : \{K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n)\}_0^\infty) \).

Let \(i \in \{1, \ldots, s\} \). Suppose that the factor group \(G/\ker \chi_i \) is of order \(r_i' \). Put \(r_i = r_i' \) if \(r_i' \) is even or \(z_i = e \), and \(r_i = 2r_i' \) otherwise. Then the linear \(\mathbb{C} \)-character \(\zeta(\chi_i, z_i, n) \) is a homomorphism from \(G \wr S_n \) to the cyclic group \(\langle \omega_{r_i} \rangle \) generated by a primitive \(r_i \)th root \(\omega_{r_i} \) of unity in \(\mathbb{C} \). Define

\[
\Phi_{r_i}(A) = \bigcap_{\alpha \in \text{Hom}(A, \langle \omega_{r_i} \rangle)} \ker \alpha.
\]

Then \(\Phi_{r_i}(A) \) is a normal subgroup of \(A \) and the factor group \(A/\Phi_{r_i}(A) \) is a finite abelian group. Write \(R_i = A/\Phi_{r_i}(A) \), and let \(\bar{a} \) denote the coset \(a\Phi_{r_i}(A) \) of \(\Phi_{r_i}(A) \) in \(A \) containing \(a \in A \). Given \(\varphi \in \text{Hom}(A, G \wr S_n) \) and \(\bar{c} \in R_i \), it is clear that \(\zeta(\chi_i, z_i, n)(\varphi(c)) \) with \(c \in \bar{c} \) is independent of the choice of \(c \) in \(\bar{c} \).

Let \(B \in \mathcal{F}_A \). We define a homomorphism \(\text{sgn}_{A/B} \) from \(A \) to \(\mathbb{C} \) by

\[
\text{sgn}_{A/B}(a) = \begin{cases}
1 & \text{if } a \in A \text{ is an even permutation on } A/B, \\
-1 & \text{if } a \in A \text{ is an odd permutation on } A/B,
\end{cases}
\]
where A/B is the left A-set consisting of all left cosets of B in A with the action given by $a.cB = acB$ for all $a, c \in A$.

Suppose that $|A : B| = d$ and $T_B^d = \{a_1, \ldots, a_d\}$ is a left transversal of B in A. For each normal subgroup N of B containing the commutator subgroup B', let $V_{A-B/N}$ be the transfer from A to the factor group B/N defined by

$$V_{A-B/N}(a) = \prod_{j=1}^{d} a_j^{-1}aa_jN \quad \text{with} \quad aa_j \in a_j'B$$

for all $a \in A$, which is independent of the choice of T_B^d, and is a homomorphism.

Let $\alpha \in \text{Hom}(B, \mathbb{C}^\times)$, \mathbb{C}^\times the multiplicative group of \mathbb{C}. Then $B' \leq \text{Ker} \alpha$. Let α_0 be the homomorphism from B'/B'' to \mathbb{C}^\times defined by $\alpha_0(b'B') = \alpha(b)$ for all $b \in B$. Let $\alpha^{\otimes A}$ be the homomorphism from A to \mathbb{C}^\times given by

$$\alpha^{\otimes A}(a) = \alpha_0(V_{A-B/B'}(a))$$

for all $a \in A$, which is the representation afforded by a tensor induced CA-module (see [4, (13.12) Proposition]). Let $\kappa \in \text{Hom}(B, G)$. Given $\overline{a} \in R_i$, it is clear that $(\chi_i \circ \kappa)^{\otimes A}(c)$ with $c \in \pi$ is independent of the choice of c in π.

Set $I = \{i \mid z_i = \text{sgn}\}$. Given $\overline{a} \in R_i$ with $i \in I$, $\text{sgn}_{A/B}(c)$ with $c \in \overline{a}$ is independent of the choice of c in \overline{a}.

Put $R = R_1 \times \cdots \times R_s$. Given $(\overline{a_1}, \ldots, \overline{a_s}) \in R$, we define

$$\rho_B(\overline{a_1}, \ldots, \overline{a_s}) = \text{sgn}_{A/B} \left(\prod_{i \in I} c_i \right) \sum_{\kappa \in \text{Hom}(B, G)} \prod_{i=1}^{s} (\chi_i \circ \kappa)^{\otimes A}(c_i).$$

We are successful in finding the following formula.

Theorem 2.1

$$\sum_{n=0}^{\infty} \frac{\left| \text{Hom}(A, K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n) \right|}{|G|^n n!} X^n = \frac{1}{|R|} \sum_{(\overline{a_1}, \ldots, \overline{a_s}) \in R} \exp \left(\sum_{B \in F_A} \frac{\rho_B(\overline{a_1}, \ldots, \overline{a_s})}{|G| |A : B|} X^{[A : B]} \right).$$

Let us prove this theorem. We start with the following lemma, which plays a crucial role in this description of $E_A(X/G) : \{K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n)\}^\infty$).

Lemma 2.2 Let $\varphi \in \text{Hom}(A, G \wr S_n)$. Then for each integer i with $1 \leq i \leq s$,

$$\frac{1}{|R_i|} \sum_{\overline{a} \in R_i} \zeta(\chi_i, z_i, n)(\varphi(a)) = \begin{cases} 1 & \text{if } \text{Im} \varphi \leq K(\chi_i, z_i, n), \\ 0 & \text{otherwise,} \end{cases}$$

where the sum $\sum_{\overline{a} \in R_i} \zeta(\chi_i, z_i, n)(\varphi(a))$ is over all left cosets $\overline{a} \in R_i$ with $a \in A$.
Proof. Define a \mathbb{C}-character α_i of R_i by setting

$$\alpha_i(\sigma) = \zeta(\chi_i, z_i, n)(\varphi(a))$$

for all $\sigma \in R_i$ with $a \in A$. Then $\text{Im} \varphi \leq K(\chi_i, z_i, n)$ if and only if α_i is the trivial \mathbb{C}-character of R_i. Hence it follows from the first orthogonality relation [4, (9.21) Proposition] that

$$\frac{1}{|R_i|} \sum_{\sigma \in R_i} \alpha_i(\sigma) = \begin{cases} 1 & \text{if } \text{Im} \varphi \leq K(\chi_i, z_i, n), \\ 0 & \text{otherwise}, \end{cases}$$

which proves the lemma. \qed

This lemma enables us to get the following proposition.

Proposition 2.3

$$\sum_{n=0}^{\infty} \frac{|\text{Hom}(A, K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n))|}{n!} X^n = \frac{1}{|R|} \sum_{(c_1, \ldots, c_s) \in R} \left(\prod_{i=1}^{s} \zeta(\chi_i, z_i, n)(\varphi(c_i)) \right) X^n.$$

Proof. If $\varphi \in \text{Hom}(A, G \wr S_n)$, then by Lemma 2.2, we have

$$\prod_{i=1}^{s} \left(\frac{1}{|R_i|} \sum_{\sigma \in R_i} \zeta(\chi_i, z_i, n)(\varphi(c_i)) \right) = \begin{cases} 1 & \text{if } \text{Im} \varphi \leq \bigcap_{i \in \{1, \ldots, s\}} K(\chi_i, z_i, n), \\ 0 & \text{otherwise}. \end{cases}$$

Hence it turns out that

$$|\text{Hom}(A, K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n))|$$

$$= \sum_{\varphi \in \text{Hom}(A, G \wr S_n)} \left(\frac{1}{|R_i|} \sum_{\sigma \in R_i} \zeta(\chi_i, z_i, n)(\varphi(c_i)) \right)$$

$$= \frac{1}{|R|} \sum_{(c_1, \ldots, c_s) \in R} \left(\prod_{i=1}^{s} \zeta(\chi_i, z_i, n)(\varphi(c_i)) \right),$$

completing the proof of the proposition. \qed

We consider the Cartesian product $G \times [n]$ of G and $[n]$ to be the left $G \wr S_n$-set with the left action of $G \wr S_n$ given by

$$(g_1, \ldots, g_n)h.(g, i) = (gh(i)g, h(i)).$$
for all \((g_1, \ldots, g_n) \in G^{(n)}\), \(h \in S_n\), and \((g, i) \in G \times [n]\) [9, 2.11], so that \(G \wr S_n\) is isomorphic to the automorphism group of the free right \(G\)-set \(G \times [n]\) with the right action of \(G\) given by \((g, i).y = (gy, i)\) for all \((g, i) \in G \times [n]\) and \(y \in G\) (see [1, Proposition 6.11], [16, Proposition 1]).

Let \(\nu_n\) be the homomorphism from \(G \wr S_n\) to \(S_n\) defined by

\[
\nu_n((g_1, \ldots, g_n)h) = h
\]

for all \((g_1, \ldots, g_n) \in G^{(n)}\) and \(h \in S_n\).

Set \(\mathcal{F}_A(n) = \{B \in \mathcal{F}_A \mid \lvert A : B \rvert \leq n\}\). We now show a recurrence formula like Dey’s theorem [5, (6.10)], namely,

Proposition 2.4 If \(n\) is a positive integer, then

\[
\sum_{\varphi \in \text{Hom}(A, G \wr S_n)} \prod_{i=1}^{s} \zeta(\chi_i, z_i, n)(\varphi(c_i)) \cdot \frac{|G|^n(n-1)!}{|G|^n(n-1)!}
\]

\[
= \sum_{B \in \mathcal{F}_A(n)} \frac{\rho_B(\tau_1, \ldots, \tau_s)}{|G|} \sum_{\psi \in \text{Hom}(A, G \wr S_{n-\lvert A : B \rvert})} \prod_{i=1}^{s} \zeta(\chi_i, z_i, n-\lvert A : B \rvert)(\psi(c_i)) \cdot \frac{|G|^{n-\lvert A : B \rvert}(n-\lvert A : B \rvert)!}{|G|^{n-\lvert A : B \rvert}(n-\lvert A : B \rvert)!}
\]

with \(c_1, \ldots, c_s \in A\).

The proof is analogous to that of [15, Theorem 3.1].

Proof of Proposition 2.4. If \(B \in \mathcal{F}_A\), then we fix a left transversal \(T^A_B\) containing the identity \(\epsilon_A\) of \(A\). We denote by \(\epsilon\) the identity of \(G\).

Let \(\varphi \in \text{Hom}(A, G \wr S_n)\). Define a subgroup \(B\) of \(A\) by

\[
B = \{a \in A \mid \nu_n(\varphi(a))(1) = 1\},
\]

and define a homomorphism \(\kappa\) from \(B\) to \(G\) by

\[
\varphi(b). (\epsilon, 1) = (\kappa(b), 1)
\]

for all \(b \in B\). We then have \(\lvert A : B \rvert \leq n\). Suppose that \(T^A_B = \{a_1, \ldots, a_d\}\) with \(a_1 = \epsilon_A\) and \(d = \lvert A : B \rvert\). Define an injection \(\iota\) from \([d]\) into \([n]\) with \(\iota(1) = 1\) by

\[
\iota(j) = \nu_n(\varphi(a_j))(1)
\]

for all \(j \in [d]\), and define an element \((y_1, \ldots, y_d)\) of the Cartesian product \(G^{(d)}\) of \(d\) copies of \(G\) with \(y_1 = \epsilon\) by

\[
\varphi(a_j). (\epsilon, 1) = (y_j, \iota(j))
\]
for all \(j \in [d] \). If \(a \in A \) and if \(j \in [d] \), then we have
\[
\varphi(a).(\epsilon, \iota(j)) = (y_j.a (a_j^{-1} a a_j^{-1}) y_j^{-1}, \iota(j)) \quad \text{with} \quad a a_j \in a_j B.
\] (I)

Suppose that \(\{\iota(1), \ldots, \iota(d)\} \cup \{k_1, \ldots, k_{n-d}\} = [n] \) and \(k_1 < \cdots < k_{n-d} \). If \(h \in \operatorname{Im}(\nu_n \circ \varphi) \), then we define a permutation \(\hat{h} \) on \([n-d]\) by \(h(k_t) = k_{h(t)} \) for all \(t \in [n-d] \). Let \(\psi \) be the mapping from \(A \) to \(G \wr S_{n-d} \) defined by
\[
\psi(a) = (g_{k_1}, \ldots, g_{k_{n-d}}) \hat{h} \quad \text{with} \quad h = \nu_n(\varphi(a)), \quad \varphi(a) = (g_1, \ldots, g_n) h
\] (II)

for all \(a \in A \). Then it is easily checked that \(\psi \) is a homomorphism.

We have got a quintet \((B, \kappa, \iota, (y_1, \ldots, y_d), \psi) \) satisfying the condition
\[
\begin{cases}
B \in F_A \text{ with } d = |A : B| \leq n, \\
\kappa \in \text{Hom}(B, G), \\
\iota \text{ is an injection from } [d] \text{ to } [n] \text{ with } \iota(1) = 1 \\
(y_1, \ldots, y_d) \in G^{(d)} \text{ with } y_1 = \epsilon, \\
\psi \in \text{Hom}(A, G \wr S_{n-d})
\end{cases}
\] (III)

and by (I) and (II), we obtain
\[
\prod_{i=1}^s \zeta(\chi_i, z_i, n)(\varphi(c_i)) = \operatorname{sgn}_{A/B} \left(\prod_{i \in I} c_i \right) \cdot \prod_{i=1}^s (\chi_i \circ \kappa)^{\otimes_A}(c_i) \cdot \zeta(\chi_i, z_i, n - d)(\psi(c_i)).
\] (IV)

The preceding map
\[
\Gamma : \varphi \rightarrow (B, \kappa, \iota, (y_1, \ldots, y_d), \psi)
\]
from \(\text{Hom}(A, G \wr S_n) \) to the set of quintets \((B, \kappa, \iota, (y_1, \ldots, y_d), \psi) \) satisfying (III) is clearly injective. Moreover, it is easily verified that \(\Gamma \) is surjective (see the proof of [15, Theorem 3.1]). Combining this fact with (IV), we have
\[
\sum_{\varphi \in \text{Hom}(A, G \wr S_n)} \prod_{i=1}^s \zeta(\chi_i, z_i, n)(\varphi(c_i))
\]
\[
= \sum_{B \in F_A(n)} \left\{ \rho_B(\overline{t_1}, \ldots, \overline{t_s}) \frac{(n-1)!}{(n-|A : B|)!} |G|^{|A:B|-1} \right\} \times \sum_{\psi \in \text{Hom}(A, G \wr S_{n-d} : A, B)} \prod_{i=1}^s \zeta(\chi_i, z_i, n - |A : B|)(\psi(c_i))
\]
This completes the proof of the proposition. □

If \(\chi_1 = \cdots = \chi_s = 1_G \) and if \(\mathbf{z}_1 = \cdots = \mathbf{z}_s = \mathbf{e} \), then this proposition is the recurrence formula [15, Theorem 3.1] of \(|\text{Hom}(A, G \wr S_n)| \), which is a generalization of the recurrence formula [17, Satz] of \(|\text{Hom}(A, S_n)| \).

As a result of Proposition 2.4, we obtain the following proposition.

Proposition 2.5 Suppose that \(c_1, \ldots, c_s \in A \). Then

\[
\sum_{n=0}^{\infty} \frac{1}{G^n n!} \left\{ \sum_{\varphi \in \text{Hom}(A, G \wr S_n)} \prod_{i=1}^{s} \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i)) \right\} X^n
\]

\[= \exp \left(\sum_{B \in \mathcal{F}_A} \frac{\rho_B(\mathbf{c}_1, \ldots, \mathbf{c}_s)}{|G| |A : B|} X^{|A:B|} \right).\]

Proof. Put \(\gamma(n) = \prod_{i=1}^{s} \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i)) \) with \(\varphi \in \text{Hom}(A, G \wr S_n) \), and put \(\beta(B) = \rho_B(\mathbf{c}_1, \ldots, \mathbf{c}_s) \) with \(B \in \mathcal{F}_A \) for convenience. We denote by \(\Xi(n) \) the set of sequences \(\{n_B\} \in \mathcal{F}_A \) of nonnegative integers corresponding to \(B \in \mathcal{F}_A \) such that \(\sum_{B \in \mathcal{F}_A} n_B |A : B| = n \), and abbreviate \(\{n_B\} \in \mathcal{F}_A \) to \((n_B) \). It suffices to show that for each nonnegative integer \(n \),

\[
\sum_{\varphi \in \text{Hom}(A, G \wr S_n)} \frac{\gamma(n)}{G^n n!} = \sum_{(n_B) \in \Xi(n)} \prod_{B \in \mathcal{F}_A} \frac{\beta(B)^{n_B}}{|G|^n |A : B|^n n_B!}.\]

We use induction on \(n \). Evidently, this formula is true if \(n = 0 \). Suppose that \(n \geq 1 \). Then Proposition 2.4 yields

\[
\sum_{\varphi \in \text{Hom}(A, G \wr S_n)} \frac{\gamma(n)}{G^n n!} = \sum_{B \in \mathcal{F}_A(n)} \frac{\beta(B)}{|G|} \sum_{\psi \in \text{Hom}(A, G \wr S_{n-|A:B|})} \frac{\gamma(n-|A : B|)}{|G|^{n-|A : B|} |n-|A : B|! |A : B|^n n_B!}.\]

Moreover, given \(B \in \mathcal{F}_A(n) \), the inductive assumption means that

\[
\sum_{\psi \in \text{Hom}(A, G \wr S_{n-|A:B|})} \frac{\gamma(n-|A : B|)}{|G|^{n-|A:B|} (n-|A : B|)! |A : B|^n n_B!} = \sum_{(n_K) \in \Xi(n-|A:B|)} \prod_{K \in \mathcal{F}_A} \frac{\beta(K)^{n_K}}{|G|^{n_K} |A : K|^n n_K!}.\]
Hence we obtain
\[
\sum_{\varphi \in \text{Hom}(A, G \wr S_n)} \frac{\gamma_{\varphi}(n)}{|G|^n n!} = \frac{1}{n} \sum_{B \in \mathcal{F}_A(n)} \frac{\beta(B)}{|G|} \sum_{(n_K) \in \Xi(n-|A:B|)} \prod_{K \in \mathcal{F}_A} \frac{\beta(K)^{n_K}}{|G|^{n_K} |A : K|^{n_K n_K!}}
\]
\[
= \frac{1}{n} \sum_{B \in \mathcal{F}_A(n)} \left(\sum_{B \in \mathcal{F}_A(n)} n_B |A : B| \prod_{K \in \mathcal{F}_A} \frac{\beta(K)^{n_K}}{|G|^{n_K} |A : K|^{n_K n_K!}} \right)
\]
\[
= \prod_{(n_K) \in \Xi(n)} \frac{\beta(K)^{n_K}}{|G|^{n_K} |A : K|^{n_K n_K!}}
\]
as required. \[\square\]

Remark 2.6 Proposition 2.5 is also a consequence of a categorical fact, namely, [16, Proposition 5] (see the second half of the proof of [16, Theorem 1]). It should be stated in this connection that the categorical proof of the Wohlfahrt formula (WF) was given by Yoshida (see [18, 6.4]).

By virtue of Propositions 2.3 and 2.5, we have established Theorem 2.1.

Recall that \(G \wr S_n = K(1_G, e, n)\) and \(G \wr A_n = K(1_G, sgn, n)\). The next results are corollaries to Theorem 2.1.

Corollary 2.7 ([10, 11, 15, 16]) We have
\[
\sum_{n=0}^{\infty} \frac{\text{Hom}(A, G \wr S_n)}{|G|^{n} n!} X^n = \exp \left(\sum_{B \in \mathcal{F}_A} \frac{\text{Hom}(B, G)}{|G| |A : B|} X^{|A:B|} \right).
\]

Corollary 2.8 ([16]) We have
\[
\sum_{n=0}^{\infty} \frac{\text{Hom}(A, G \wr A_n)}{|G|^{n} n!} X^n = \frac{1}{|A : \Phi_2(A)|} \sum_{c \in A/\Phi_2(A)} \exp \left(\sum_{B \in \mathcal{F}_A} \frac{\text{sgn}_{A/B}(c) \cdot \text{Hom}(B, G)}{|G| |A : B|} X^{|A:B|} \right).
\]

Remark 2.9 When \(A\) is a finite cyclic group, Corollary 2.7 is shown in [3, 12] and Corollary 2.8 is shown in [3].
3. Imprimitive complex pseudo reflection groups and related groups

Keep the notation of Section 2, and suppose that $G = \langle \omega \rangle$ with ω a primitive mth root of unity in \mathbb{C}. Assume that for any integer i with $1 \leq i \leq s$, $\chi_i(\omega) = \omega^r$, where q_i is a positive integer. Let $B \in \mathcal{F}_A$, and define

$$\Phi_m(B) = \bigcap_{\alpha \in \text{Hom}(B, \omega)} \text{Ker} \alpha.$$

Let $i \in \{1, \ldots, s\}$. Since the order of $\langle \omega \rangle / \text{Ker} \chi_i$ divides r_i, it follows that $q_i r_i$ is a multiple of m. Then the order of $V_{A-B}/\Phi_m(B)(e^\theta)$ with $c \in A$ divides r_i. Hence, given $\pi \in R_i$, $V_{A-B}/\Phi_m(B)(e^\theta)$ with $c \in \pi$ is independent of the choice of c in π.

Now define a homomorphism $F_{A-B}/\Phi_m(B)$ from R to $B/\Phi_m(B)$ by

$$F_{A-B}/\Phi_m(B)(\overline{c_1}, \ldots, \overline{c_s}) = V_{A-B}/\Phi_m(B) \left(\prod_{i=1}^{s} e^{\overline{c_i}} \right)$$

for all $(\overline{c_1}, \ldots, \overline{c_s}) \in R$. Let $c_1, \ldots, c_s \in A$. We can identify $\text{Hom}(B, \langle \omega \rangle)$ with $\text{Hom}(B/\Phi_m(B), \langle \omega \rangle)$. Hence it turns out that

$$\sum_{\kappa \in \text{Hom}(B, \langle \omega \rangle)} \prod_{i=1}^{s} (\chi_i \circ \kappa)^{\otimes A}(c_i) = \sum_{\kappa \in \text{Hom}(B/\Phi_m(B), \langle \omega \rangle)} \prod_{i=1}^{s} \kappa(V_{A-B}/\Phi_m(B)(c_i))^{q_i}$$

$$= \sum_{\kappa \in \text{Hom}(B/\Phi_m(B), \langle \omega \rangle)} \kappa \left(F_{A-B}/\Phi_m(B)(\overline{c_1}, \ldots, \overline{c_s}) \right).$$

Moreover, the \mathbb{C}-character

$$\sum_{\kappa \in \text{Hom}(B/\Phi_m(B), \langle \omega \rangle)} \kappa$$

of $B/\Phi_m(B)$ is afforded by the left regular module $\mathbb{C}(B/\Phi_m(B))$. Thus

$$\sum_{\kappa \in \text{Hom}(B, \langle \omega \rangle)} \prod_{i=1}^{s} (\chi_i \circ \kappa)^{\otimes A}(c_i) = \begin{cases} |B : \Phi_m(B)| & \text{if } (\overline{c_1}, \ldots, \overline{c_s}) \in \text{Ker } F_{A-B}/\Phi_m(B), \\ 0 & \text{otherwise.} \end{cases}$$

Combining the preceding fact with Theorem 2.1, we conclude that

$$\sum_{n=0}^{\infty} \frac{|\text{Hom}(A, K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n))|}{m^n n!} X^n$$

$$= \frac{1}{|R|} \sum_{(\overline{c_1}, \ldots, \overline{c_s}) \in R} \exp \left(\sum_{B \in \Omega_A(\overline{c_1}, \ldots, \overline{c_s})} \text{sgn}_{A/B} \left(\prod_{i \in I} c_i \right) \frac{|B : \Phi_m(B)|}{m |A : B|} X^{[A:B]} \right),$$

(V)

where

$$\Omega_A(\overline{c_1}, \ldots, \overline{c_s}) = \left\{ B \in \mathcal{F}_A \mid (\overline{c_1}, \ldots, \overline{c_s}) \in \text{Ker } F_{A-B}/\Phi_m(B) \right\}.$$
Remark 3.1 There exists a divisor r of m such that $K(\chi_1, \ldots, \chi_s, z_1, \ldots, z_s, n)$ is $G(m, r, n)$, $H(m, r, n)$, or $L(m, r, n)$.

The following theorem is an immediate consequence of the formula (V).

Theorem 3.2 Let r be a divisor of m. Given $c \in A$, set

$$\Omega_{A}(\bar{c}) = \{B \in \mathcal{F}_A \mid c^{m/r} \in \operatorname{Ker} V_{A \rightarrow B}/\Phi_{m(B)}\}.$$

Put $r_0 = r$ if r is even, and $r_0 = 2r$ if r is odd. Then

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, G(m, r, n))|}{m^n n!} X^n = \frac{1}{|A : \Phi_r(A)|} \sum_{\bar{c} \in A/\Phi_r(A)} \exp \left(\sum_{B \in \Omega_{A}(\bar{c})} \frac{|B : \Phi_{m(B)}|}{m|A : B|} X^{[A : B]} \right),$$

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, H(m, r, n))|}{m^n n!} X^n = \frac{1}{|A : \Phi_r(A)|} \frac{|A : \Phi_2(A)|}{|A : \Phi_2(A)|} \times \sum_{(\bar{c}_1, \bar{c}_2) \in (A/\Phi_r(A)) \times (A/\Phi_2(A))} \exp \left(\sum_{B \in \Omega_{A}(\bar{c}_1)} \frac{\operatorname{sgn}_{A/B}(c_2)|B : \Phi_{m(B)}|}{m|A : B|} X^{[A : B]} \right),$$

and

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, L(m, r, n))|}{m^n n!} X^n = \frac{1}{|A : \Phi_{r_0}(A)|} \sum_{\bar{c} \in A/\Phi_{r_0}(A)} \exp \left(\sum_{B \in \Omega_{A}(\bar{c})} \frac{\operatorname{sgn}_{A/B}(c)|B : \Phi_{m(B)}|}{m|A : B|} X^{[A : B]} \right).$$

Corollary 3.3 ([16]) Keep the notation of Theorem 3.2, and assume further that $m = r = 2$. Then

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, W(D_n))|}{2^n n!} X^n = \frac{1}{|A : \Phi_2(A)|} \sum_{\bar{c} \in A/\Phi_2(A)} \exp \left(\sum_{B \in \Omega_{A}(\bar{c})} \frac{|B : \Phi_2(B)|}{2|A : B|} X^{[A : B]} \right).$$
Example 3.4 Suppose that A is a finite cyclic group of order ℓ and is generated by an element c. Let p be a prime. For a subgroup B of A, we have

$$\text{sgn}_{A/B}(c) = \begin{cases} 1 & \text{if } |A : B| \text{ is odd,} \\ -1 & \text{if } |A : B| \text{ is even,} \end{cases}$$

and $V_{A \to B/\Phi_p(B)}(c) = e^{[A:B] \Phi_p(B)}$. Considering A as $\mathbb{Z}/\ell \mathbb{Z}$, we obtain the following.

1. $$\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}/\ell \mathbb{Z}, S_n)|}{n!} X^n = \exp \left(\sum_{d|\ell} \frac{1}{d} X^d \right).$$
2. $$\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}/\ell \mathbb{Z}, A_n)|}{n!} X^n = \frac{1}{2} \exp \left(\sum_{d|\ell} \frac{1}{pd} X^d \right) + \frac{1}{2} \exp \left(\sum_{d|\ell} \frac{(-1)^{d-1}}{d} X^d \right).$$
3. $$\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}/\ell \mathbb{Z}, G(p, p, n))|}{p^n n!} X^n = \frac{1}{p} \exp \left(\sum_{d|\ell, p|(\ell/d)} \frac{1}{pd} X^d \right) \left\{ \exp \left(\sum_{d|\ell, p|(\ell/d)} \frac{1}{d} X^d \right) + p - 1 \right\}.$$
Remark 3.5 The formula (1) is given in [2] and (2) is given in [13, Chapter 4, Problem 22] and [3]. When \(p = 2 \), the formula (3) is shown in [3].

4. Finite abelian \(p \)-groups

Suppose that \(A \) is a finite abelian group. Let \(\hat{A} \) be the set of irreducible \(\mathbb{C} \)-characters of \(A \), and define a multiplication in \(\hat{A} \) by \(\alpha_1 \alpha_2(a) = \alpha_1(a)\alpha_2(a) \) for all \(\alpha_1, \alpha_2 \in \hat{A} \) and \(a \in A \). Then \(\hat{A} \) becomes a group, and the groups \(A \) and \(\hat{A} \) are isomorphic [7, 5.1]. If \(B \) is a subgroup of \(A \), we put

\[
B^\perp = \{ \alpha \in \hat{A} \mid \alpha(b) = 1 \text{ for all } b \in B \}.
\]

If \(U \) is a subgroup of \(\hat{A} \), then we put

\[
U^\perp = \{ a \in A \mid \alpha(a) = 1 \text{ for all } \alpha \in U \}.
\]

We use the following lemmas, which are parts of [7, 5.5, 5.6].

Lemma 4.1 ([7]) Let \(B \) be a subgroup of \(A \). Then

\[
\hat{A}/B \cong B^\perp \quad \text{and} \quad \hat{A}/B^\perp \cong \hat{B}.
\]

Lemma 4.2 ([7]) Let \(B \) be a subgroup of \(A \), and let \(U \) be a subgroup of \(\hat{A} \). Then

\[
B^{\perp \perp} = B \quad \text{and} \quad U^{\perp \perp} = U.
\]

Lemma 4.3 ([7]) Let \(B_1, B_2 \) be subgroups of \(A \). Then

\[
(B_1 \cap B_2)^\perp = B_1^\perp B_2^\perp \quad \text{and} \quad (B_1B_2)^\perp = B_1^\perp \cap B_2^\perp.
\]

Lemma 4.4 ([7]) Let \(U_1, U_2 \) be subgroups of \(\hat{A} \). Then

\[
(U_1 \cap U_2)^\perp = U_1^\perp U_2^\perp \quad \text{and} \quad (U_1U_2)^\perp = U_1^\perp \cap U_2^\perp.
\]

Let \(\epsilon_A \) be the identity of \(A \). For each positive integer \(k \), we define

\[
\Omega_k(A) = \{ a \in A \mid a^k = \epsilon_A \} \quad \text{and} \quad \emptyset_k(A) = \{ a^k \mid a \in A \}.
\]

We provide a part of [7, 5.8], namely,

Lemma 4.5 ([7]) \(\Omega_k(A) = \emptyset_k(\hat{A}) \), and equivalently, \(\Omega_k(A) = \emptyset_k(\hat{A})^\perp \).
A partition is a sequence $\lambda = (\lambda_1, \ldots, \lambda_\ell, \ldots)$ of nonnegative integers containing only finitely many non-zero terms where $\lambda_1 \geq \cdots \geq \lambda_\ell \geq \cdots$. Given a partition $\lambda = (\lambda_1, \ldots, \lambda_\ell, \ldots)$, we define

$$m_i(\lambda) = \# \{ t \mid \lambda_t = i \}$$

and

$$\lambda'_i = \# \{ t \mid \lambda_t \geq i \}.$$

Then $\lambda' = (\lambda'_1, \ldots, \lambda'_i, \ldots)$ is a partition, and is called the conjugate of λ.

Let p be a prime. If P is a finite abelian p-group, then there is a unique partition $\lambda = (\lambda_1, \ldots, \lambda_\ell, 0, \ldots)$ such that P is isomorphic to the direct product

$$\mathbb{Z}/p^{\lambda_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{\lambda_\ell}\mathbb{Z}$$

of cyclic p-groups $\mathbb{Z}/p^{\lambda_1}\mathbb{Z}$, \ldots, $\mathbb{Z}/p^{\lambda_\ell}\mathbb{Z}$, and we call λ the type of P.

Now let P be a finite abelian p-group, and let ϵ_P be the identity of P. We have

$$\Phi_p(P) = \mathcal{U}_p(P) \quad \text{and} \quad P/\Phi_p(P) \cong \Omega_p(P).$$

In order to describe the Wohlfahrt series $E_P(X/p : \{G(p, p, n)\}^{\infty}_0)$, we must show the following.

Lemma 4.6 Let P_0 be a subgroup of P. Suppose that $c \in P$ and $c \notin \Phi_p(P)$. Then $c \notin \text{Ker} V_{P \rightarrow P_0/\Phi_p(P_0)}$ if and only if $P = \langle c \rangle P_0$ and P_0 contains $\Omega_p(P_0)$.

Proof. We have $\Phi_p(P_0) = \mathcal{U}_p(P_0)$ and $V_{P \rightarrow P_0/\Phi_p(P_0)}(c) = c^{[P:P_0]}\Phi_p(P_0)$. Assume that $c \notin \text{Ker} V_{P \rightarrow P_0/\Phi_p(P_0)}$. Then $c^{[P:P_0]} \notin \mathcal{U}_p(P_0)$, and thereby $P = \langle c \rangle P_0$. Moreover, if P_0 does not contain $\Omega_p(P)$, then $c^{[P:P_0]} = \epsilon_P$, contrary to the assumption. Hence P_0 contains $\Omega_p(P)$. Conversely, assume that $P = \langle c \rangle P_0$ and P_0 contains $\Omega_p(P)$. Since $c \notin \Phi_p(P)$, it follows that $c \notin \text{Ker} V_{P \rightarrow P_0/\Phi_p(P_0)}$. Hence we assume that $P \neq P_0$. Clearly, $c^{[P:P_0]} \notin P_0$. Now suppose that $c^{[P:P_0]} \in \mathcal{U}_p(P_0)$ and a is an element of P_0 such that $a^p = c^{[P:P_0]}$. Then $a^{-1}c^{[P:P_0]}a/p$ is not contained in P_0 and is of order p. But every element of order p is contained in P_0. This is a contradiction. Thus $c^{[P:P_0]} \notin \mathcal{U}_p(P_0)$, and hence $c \notin \text{Ker} V_{P \rightarrow P_0/\Phi_p(P_0)}$, which proves the lemma. \square

Suppose that P is of type $\lambda = (\lambda_1, \ldots, \lambda_\ell, 0, \ldots)$ and $P = \langle a_1 \rangle \times \cdots \times \langle a_\ell \rangle$, where $\langle a_i \rangle$ is a cyclic group generated by a_i and is of order p^{λ_i}. We assume that $\lambda_\ell > 0$, and set

$$T(P) = \{ a_1^{e_1} \cdots a_\ell^{e_\ell} \mid 0 \leq e_1, \ldots, e_\ell \leq p-1 \},$$

which is a left transversal of $\Phi_p(P)$ in P. Given a positive integer j, we define $T_j(P)$ to be the set of all elements of order p^j in $T(P)$. Then

$$T_j(P) = p^{\lambda_1 - \lambda_{j+1}} - p^{\lambda_1 - \lambda'_j}.$$

We have the following.
Lemma 4.7 Suppose that \(c \in T_j(P) \). Let \(k \) be a nonnegative integer, and let \(\mathcal{M}(\langle c \rangle; k) \) be the set of all subgroups \(P_0 \) of \(P \) containing \(\Omega_p(P) \) such that \(P = \langle c \rangle P_0 \) and \(|P : P_0| = p^k \). Then

\[
\sharp \mathcal{M}(\langle c \rangle; k) = \begin{cases} 0 & \text{if } k < j, \\ p^{w_\lambda(k)} & \text{if } k \geq j, \end{cases}
\]

where

\[
w_\lambda(k) = \left\{ k \sum_{i=k+1}^{\lambda_1} m_i(\lambda) + \sum_{i=1}^{k} (i-1) m_i(\lambda) \right\} - k.
\]

Proof. Suppose that \(P_0 \in \mathcal{M}(\langle c \rangle; k) \). Then by Lemma 4.5, \(P_0^\perp \) is contained in \(\widehat{\Omega}_p(P) \). Since \(P^\perp = \{1_P\} \), it follows from Lemma 4.3 that \(\langle c \rangle^\perp \cap P_0^\perp = \{1_P\} \), where \(1_P \) is the trivial character of \(P \). Moreover, by Lemma 4.1 we have

\[
P/P_0 \cong \widehat{P}/P_0 \cong P_0^\perp.
\]

Thus \(P_0^\perp \) is a cyclic group of \(\widehat{\Omega}_p(P) \) such that \(\langle c \rangle^\perp \cap P_0^\perp = \{1_P\} \) and \(|P_0^\perp| = p^k \).

Now let \(\mathcal{N}(\langle c \rangle^\perp; k) \) be the set of all cyclic subgroups \(U \) of \(\widehat{\Omega}_p(P) \) such that \(\langle c \rangle^\perp \cap U = \{1_P\} \) and \(|U| = p^k \). If \(P_0 \in \mathcal{M}(\langle c \rangle; k) \), then by the preceding argument, \(P_0^\perp \in \mathcal{N}(\langle c \rangle^\perp; k) \). Define a map \(f \) from \(\mathcal{M}(\langle c \rangle; k) \) to \(\mathcal{N}(\langle c \rangle^\perp; k) \) by \(f(P_0) = P_0^\perp \) for all \(P_0 \in \mathcal{M}(\langle c \rangle; k) \). Then Lemma 4.2 implies that \(f \) is injective.

Suppose that \(U \in \mathcal{N}(\langle c \rangle^\perp; k) \). Then by Lemma 4.5, \(U^\perp \) contains \(\Omega_p(P) \). Since \(\{1_P\}^\perp = P \), it follows from Lemmas 4.2 and 4.4 that \(P = \langle c \rangle U^\perp \). Moreover, by Lemmas 4.1 and 4.2, we have

\[
P/U^\perp \cong \widehat{P}/U^\perp \cong U,
\]

whence \(|P : U^\perp| = |U| = p^k \). Thus we obtain \(U^\perp \in \mathcal{M}(\langle c \rangle; k) \). This fact, together with Lemma 4.2, means that \(f \) is surjective. Consequently, \(f \) is bijective.

In order to prove the statement, it suffices to verify that

\[
\sharp \mathcal{N}(\langle c \rangle^\perp; k) = \begin{cases} 0 & \text{if } k < j, \\ p^{w_\lambda(k)} & \text{if } k \geq j. \end{cases}
\]

Suppose that \(c = a_1^{e_1} \cdots a_\ell^{e_\ell} \), where \(e_1, \ldots, e_\ell \) are nonnegative integers less than \(p \). Since \(c \not\in \epsilon_P \), we assume that \(e_i = 0 \) with \(i < t_0 \) and \(e_{t_0} \neq 0 \), where \(1 \leq t_0 \leq \ell \). Put

\[
D = \langle a_1 \rangle \times \cdots \times \langle a_{t_0-1} \rangle \times \langle a_{t_0+1} \rangle \times \cdots \times \langle a_\ell \rangle.
\]

Then \(P = \langle c \rangle \times D \), and hence \(\widehat{P} = \langle c \rangle^\perp \times D^\perp \) by Lemma 4.3. Moreover, it follows from Lemma 4.1 that

\[
D^\perp \cong \widehat{P}/\langle c \rangle^\perp \cong \langle c \rangle^\perp \cong \langle c \rangle \text{ and } \langle c \rangle^\perp \cong \widehat{P}/D^\perp \cong \widehat{D} \cong D.
\]
Thus there exists a bijection from \(N((c)^{\perp}; k) \) to the set \(\mathcal{W}(D; k) \) of all cyclic subgroups \(Y \) of \(\tilde{\mathcal{O}}_d(P) \) such that \(D \cap Y = \{ \epsilon_P \} \) and \(|Y| = p^k \). If \(k \geq j \), then clearly \(\mathcal{W}(D; k) = \emptyset \), and hence \(\sharp N((c)^{\perp}; k) = \sharp \mathcal{W}(D; k) = 0 \). Suppose that \(k < j \).

We set \(I_1 = \{ t \mid \lambda_t > k, t \neq t_0 \} \) and \(I_2 = \{ t \mid \lambda_t \leq k \} \). For each sequence \((n_1, \ldots, n_{t_0-1}, n_{t_0+1}, \ldots, n_{t})\) of positive integers, put

\[
y_{(n_1,\ldots,n_{t_0-1},n_{t_0+1},\ldots,n_{t})} = e^{p^j-k} \left(\prod_{t \in I_1} a_t^{p^{\lambda_t-k} n_t} \right) \left(\prod_{t \in I_2} a_t^{p n_t} \right).
\]

Then

\[
\mathcal{W}(D; k) = \left\{ \left(y_{(n_1,\ldots,n_{t_0-1},n_{t_0+1},\ldots,n_{t})} \right) \mid \begin{array}{ll}
1 \leq n_t \leq p^k & \text{if } t \in I_1, \\
1 \leq n_t \leq p^{\lambda_t-1} & \text{if } t \in I_2,
\end{array} \right\},
\]

and \(\sharp \mathcal{W}(D; k) = p^{w_X(k)} \). Thus we conclude that \(\sharp N((c)^{\perp}; k) = p^{w_X(k)} \), and the proof is completed. \(\square \)

Theorem 3.2, together with Lemmas 4.6 and 4.7, enables us to get the following.

Theorem 4.8 Keep the notation of Lemma 4.7. We have

\[
\sum_{n=0}^{\infty} |\text{Hom}(P, G(p, p, n))| \frac{X^n}{p^n n!} = \frac{1}{p^k} \left\{ \sum_{n=0}^{\infty} \frac{|\text{Hom}(P, (\mathbb{Z}/p\mathbb{Z}) \wr S_n)|}{p^n n!} X^n \right\} \times \left\{ 1 + \sum_{j \geq 1} (p^{\lambda_j-\lambda_{j+1}} - p^{\lambda_j-\lambda_j}) \exp \left(-p^{j-1} \sum_{k=0}^{j-1} p^{w_X(k)-k} X^p^k \right) \right\}.
\]

We now turn to the forms of \(E_P(X/2 : \{ L(2,2,n) \}_{0}^{\infty}) \) and \(E_P(X : \{ A_n \}_{0}^{\infty}) \).

First, we need a consequence of [15, Lemma 2.1], namely,

Lemma 4.9 Let \(P_0 \) be a subgroup of \(P \), and let \(c \in P \). Then \(\text{sgn}_{P/P_0}(c) = -1 \) if and only if \(P \neq P_0 \) and \(P = \langle c \rangle P_0 \).

The proof of the next lemma is straightforward.

Lemma 4.10 Let \(P_0 \) be a subgroup of \(P \), and let \(c \in P - \{ \epsilon_P \} \). Then \(P = \langle c \rangle \times P_0 \) if and only if \(P = \langle c \rangle P_0 \) and \(P_0 \) does not contain \(\Omega_p(P) \).

By an argument similar to that in the proof of Lemma 4.7, we get the following.
Lemma 4.11 Suppose that \(c \in T_j(P) \). Let \(k \) be a nonnegative integer. Then the number of all subgroups \(P_0 \) of \(P \) such that \(P = \langle c \rangle P_0 \) and \(|P : P_0| = p^k \) is 0 if \(k > j \), and is \(p^s_{\lambda}(k) \) if \(k \leq j \), where

\[
s_{\lambda}(k) = \left\{ k \left(\sum_{i=k+1}^{\lambda_1} m_i(\lambda) + \sum_{i=1}^{k} im_i(\lambda) \right) - k. \right.\]

Combining Theorem 3.2 with Lemmas 4.6, 4.9, 4.10, and 4.11, we can now state the following.

Theorem 4.12 Keep the notation of Lemma 4.11, and assume further that \(p = 2 \). Then

\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(P, L(2, 2, n))|}{2^n n!} X^n = \frac{1}{2^\ell} \left\{ \sum_{n=0}^{\infty} \frac{|\text{Hom}(P, (\mathbb{Z}/2\mathbb{Z}) \wr S_n)|}{2^n n!} X^n \right\} \times \left\{ 1 + \sum_{j \geq 1} (2^{\lambda'_1-\lambda'_j+1} - 2^{\lambda'_1-\lambda'_j}) \exp \left(-2^{\ell-1} \sum_{k=0}^{j} 2^{s_{\lambda}(k)-k} X^{2^k} \right) \right\},
\]

and

\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(P, A_n)|}{n!} X^n = \frac{1}{2^\ell} \left\{ \sum_{n=0}^{\infty} \frac{|\text{Hom}(P, S_n)|}{n!} X^n \right\} \times \left\{ 1 + \sum_{j \geq 1} (2^{\lambda'_1-\lambda'_j+1} - 2^{\lambda'_1-\lambda'_j}) \exp \left(-2^{\sum_{k=1}^{j} 2^{s_{\lambda}(k)-k} X^{2^k}} \right) \right\}.
\]

Remark 4.13 The form of \(E_P(X : \{ A_n \}_{0}^{\infty}) \) in the theorem above is also a consequence of Lemma 4.11 and [15, Theorem 1.1].

5. Explicit formulas

Keep the notation of Section 4, and further assume that \(\lambda_1 = \cdots = \lambda_{\ell-1} = u \) and \(\lambda_\ell = v \), where \(\ell \geq 1 \) and \(u \geq v > 0 \). Then \(P \simeq (\mathbb{Z}/p^u \mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/p^v \mathbb{Z} \), whence \(\sharp T_u(P) = p^\ell - p \) and \(\sharp T_v(P) = p - 1 \).
Example 5.1 By Theorem 4.8, we have
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}((\mathbb{Z}/p^n\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/p^n\mathbb{Z}, G(p, p, n))|}{p^n n!} X^n
\]
\[
= \frac{1}{p^\ell} \left\{ \sum_{n=0}^{\infty} \frac{|\text{Hom}((\mathbb{Z}/p^n\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/p^n\mathbb{Z}, (\mathbb{Z}/p\mathbb{Z}) * S_n)|}{p^n n!} X^n \right\}
\times \left\{ 1 + (p-1) \exp \left(-p^{\ell-1} \sum_{k=0}^{v-1} p^{(\ell-2)k} X^k \right) \right.
\left. + (p^\ell - p) \exp \left(-p^{\ell-1} \sum_{k=0}^{w-1} p^{(\ell-2)k} X^k - p^{\ell-1} \sum_{k=v}^{w-1} p^{(\ell-3)k+v-1} X^k \right) \right\}.
\]

By Theorem 4.12,
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}((\mathbb{Z}/2^n\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/2^n\mathbb{Z}, L(2, 2, n))|}{2^n n!} X^n
\]
\[
= \frac{1}{2^\ell} \left\{ \sum_{n=0}^{\infty} \frac{|\text{Hom}((\mathbb{Z}/2^n\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/2^n\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z}) * S_n)|}{2^n n!} X^n \right\}
\times \left\{ 1 + \exp \left(-2^{\ell-1} \sum_{k=1}^{v} 2^{(\ell-2)k} X^k \right) \right.
\left. + (2^\ell - 2) \exp \left(-2^{\ell-1} \sum_{k=0}^{v} 2^{(\ell-2)k} X^k + 2^{\ell-1} \sum_{k=v+1}^{w} 2^{(\ell-3)k+v} X^k \right) \right\},
\]
and
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}((\mathbb{Z}/2^n\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/2^n\mathbb{Z}, A_n)|}{n!} X^n
\]
\[
= \frac{1}{2^\ell} \left\{ \sum_{n=0}^{\infty} \frac{|\text{Hom}((\mathbb{Z}/2^n\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/2^n\mathbb{Z}, S_n)|}{n!} X^n \right\}
\times \left\{ 1 + \exp \left(-2 \sum_{k=1}^{v} 2^{(\ell-2)k} X^k \right) \right.
\left. + (2^\ell - 2) \exp \left(-2 \sum_{k=1}^{v} 2^{(\ell-2)k} X^k - 2 \sum_{k=v+1}^{w} 2^{(\ell-3)k+v} X^k \right) \right\}.
\]

Remark 5.2 The formulas of $E_P(X : \{W(D_n)\})_0^\infty$ and $E_P(X : \{A_n\})_0^\infty$ where $P = (\mathbb{Z}/2^n\mathbb{Z})^{(\ell)}$ are due to Müller and Shareshian [11].
We next suppose that $P \cong \mathbb{Z}/p^u\mathbb{Z} \times \mathbb{Z}/p^v\mathbb{Z}$, where $u \geq v > 0$. Given a nonnegative integer k, let $N_P(k)$ be the number of subgroups of order p^k in P.

Proposition 5.3 Let k be a nonnegative integer. Then

$$N_P(k) = \begin{cases}
1 + p + \cdots + p^k & \text{if } 0 \leq k < v, \\
1 + p + \cdots + p^v & \text{if } v \leq k \leq u, \\
1 + p + \cdots + p^{u+v-k} & \text{if } u < k \leq u + v.
\end{cases}$$

Proof. We proceed by induction on $u+v$. Obviously, the assertion is true if $u+v = 0$. Assume that $u+v > 0$ and $P = \langle a \rangle \times \langle b \rangle$, where a has order p^u and b order p^v. Put $M = \langle a^p \rangle \times \langle b \rangle$. If $k < v$, then $N_P(k) = N_M(k)$ because every subgroup of order less than p^v is contained in M, and hence by the inductive assumption,

$$N_P(k) = 1 + p + \cdots + p^k.$$

Case (1) Assume that $u = v$. Then by [14, Corollary], we obtain

$$N_P(v) = N_M(v-1) + p^v.$$

Hence by the inductive assumption,

$$N_P(v) = 1 + p + \cdots + p^v.$$

Case (2) Assume that $u > v$. If $v \leq k < u$, then clearly $N_P(k) = N_M(k)$. Moreover, it follows from [14, Corollary] that

$$N_P(u) = N_M(u-1).$$

Hence if $v \leq k \leq u$, then by the inductive assumption,

$$N_P(k) = 1 + p + \cdots + p^v.$$

Since $N_P(k) = N_P(u + v - k)$, the assertion of the proposition follows. □

Lemma 5.4 Let k be a positive integer. Then the number of cyclic subgroups of order p^k in P is $p^{k-1} + p^k$ if $0 < k \leq v$, and is p^v if $v < k \leq u$.

The next result is a consequence of Proposition 5.3 and Lemma 5.4.
Proposition 5.5 We have
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}/p^n \mathbb{Z} \times \mathbb{Z}/p^n \mathbb{Z}, S_n)|}{p^n n!} X^n
= \exp \left(\sum_{k=0}^{u-1} \frac{1 + \cdots + p^k}{p^k} X^{p^k} + \sum_{k=v}^{u} \frac{1 + \cdots + p^v}{p^k} X^{p^k} + \sum_{k=u+1}^{u+v} \frac{1 + \cdots + p^{u+v-k}}{p^k} X^{p^k} \right)
\]
and
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}/p^n \mathbb{Z} \times \mathbb{Z}/p^n \mathbb{Z}, (\mathbb{Z}/p\mathbb{Z}) \wr S_n)|}{p^n n!} X^n
= \exp \left(\sum_{k=0}^{u-1} \frac{p + \cdots + p^{k+1}}{p^k} X^{p^k} + \sum_{k=v}^{u-1} \frac{p + \cdots + p^{v}}{p^k} X^{p^k} + \sum_{k=v}^{u-1} \frac{p^v}{p^k} X^{p^k} + \sum_{k=u}^{u+v-1} \frac{p + \cdots + p^{u+v-k}}{p^k} X^{p^k} + \sum_{k=u}^{u+v-1} \frac{p^{u+v-k-1}}{p^k} X^{p^k} \right)
\]

We are now in position to determine the form of \(E_P(X/p : \{G(p,p,n)\}_0^\infty)\), \(E_P(X/2 : \{L(2,2,n)\}_0^\infty\), and \(E_P(X : \{A_n\}_0^\infty\).

Theorem 5.6 We have
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}/p^n \mathbb{Z} \times \mathbb{Z}/p^n \mathbb{Z}, G(p,p,n))|}{p^n n!} X^n
= \frac{1}{p^2} \exp \left(\sum_{k=1}^{u-1} \frac{p + \cdots + p^k}{p^k} X^{p^k} + \sum_{k=v}^{u-1} \frac{p + \cdots + p^{v}}{p^k} X^{p^k} \right.
+ \left. \sum_{k=u}^{u+v-1} \frac{p + \cdots + p^{u+v-k}}{p^k} X^{p^k} + \sum_{k=u}^{u+v-1} \frac{p^{u+v-k-1}}{p^k} X^{p^k} \right)
\times \left\{ \exp \left(\sum_{k=0}^{u-1} p X^{p^k} + \sum_{k=v}^{u-1} \frac{p^v}{p^k} X^{p^k} \right) + (p-1) \exp \left(\sum_{k=u}^{u+v-1} \frac{p^{u+v-k}}{p^k} X^{p^k} \right) + p(p-1) \right\},
\]
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}/2^n \mathbb{Z} \times \mathbb{Z}/2^n \mathbb{Z}, L(2, 2, n))|}{2^n n!} X^n
\]
\[
= \frac{1}{2^2} \exp \left(\sum_{k=1}^{u+v-1} \frac{2 + \cdots + 2^k}{2k} X^{2k} + \sum_{k=1}^{u+v} \frac{2 + \cdots + 2^{u+v-k}}{2k} X^{2k} - \sum_{k=1}^{u-1} \frac{2^v}{2k} X^{2k} \right)
\times \left\{ \exp \left(\sum_{k=0}^{v} 2X^{2k} + \sum_{k=v+1}^{u} \frac{2^{v+1}}{2k} X^{2k} \right) + \exp \left(\sum_{k=v+1}^{u} \frac{2^{v+1}}{2k} X^{2k} \right) + 2 \right\},
\]
and
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}/2^n \mathbb{Z} \times \mathbb{Z}/2^n \mathbb{Z}, A_n)|}{n!} X^n
\]
\[
= \frac{1}{2^2} \exp \left(X - \sum_{k=1}^{u} \frac{1}{2k} X^{2k} + \sum_{k=u+1}^{u+v} \frac{1 + \cdots + 2^{u+v-k}}{2k} X^{2k} \right)
\times \left\{ \exp \left(\sum_{k=1}^{v} 2X^{2k} + \sum_{k=v+1}^{u} \frac{2^{v+1}}{2k} X^{2k} \right) + \exp \left(\sum_{k=v+1}^{u} \frac{2^{v+1}}{2k} X^{2k} \right) + 2 \right\}.
\]

Remark 5.7 In [15, Example 6.2], the formula of \(E_P(X/2 : \{W(D_n)\}_0) \), where \(P = \mathbb{Z}/2^n \mathbb{Z} \times \mathbb{Z}/2^n \mathbb{Z} \), is not correct, and neither is the formula of \(E_P(X : \{A_n\}_0) \); either of them has a wrong term.

6. The additive group of \(p \)-adic integers

Let \(\mathbb{Z}_p \) be the additive group of \(p \)-adic integers. The subgroups of finite index in \(\mathbb{Z}_p \) are \(p^k \mathbb{Z}_p, \) \(k = 0, 1, 2, \ldots \). Moreover, \(\mathbb{Z}_p/p^k \mathbb{Z}_p \cong \mathbb{Z}/p^k \mathbb{Z} \) for each nonnegative integer \(k \). In [6] Dress and Yoshida pointed out that
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}_p, S_n)|}{n!} X^n = \exp \left(\sum_{k=0}^{\infty} \frac{1}{p^k} X^{p^k} \right);
\]
this is called the Artin-Hasse exponential. We conclude this paper with a presentation of the following consequences of Theorem 3.2:
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}_p, A_n)|}{n!} X^n = \frac{1}{2} \exp \left(\sum_{k=0}^{\infty} \frac{1}{2^k} X^{2^k} \right) + \frac{1}{2} \exp \left(X - \sum_{k=1}^{\infty} \frac{1}{2^k} X^{2^k} \right);
\]
\[
\sum_{n=0}^{\infty} \frac{|\text{Hom}(\mathbb{Z}_p, G(p, p, n))|}{p^n n!} X^n = \frac{1}{p} \exp \left(\sum_{k=0}^{\infty} \frac{1}{p^k} X^{p^k} \right) + \frac{p - 1}{p}.
\]
References

