室蘭工業大学
学術資源アーカイブ
Muroran Institute of Technology Academic Resources Archive

On Wohlfahrt series and wreath products

メタデータ	言語：eng
	出版者：Elsevier B．V．
	公開日：2007－12－11
	キーワード（Ja）：
	キーワード（En）：generating function，symmetric group，
linear character，wreath product，reflection group，	
finite abelian group	
作成者：竹ケ原，裕元	
メールアドレス：	
所属：	

室蘭工業大学
学術資源アーカイブ
Muroran Institute of Technology Academic Resources Archive

On Wbhl fahrt series and wreath products

著者	TAKEGAHARA Yugen
j our nal or publ i cat i on titl e	Advances in Nat hemat i cs
vol une	209
number	2
page range	$526-546$
year	$2007-03$
URL	ht t p：／／hdl ．handl e．net／10258／285
doi：info：doi／10．1016／j．aim．2006．05．008	

On Wohlfahrt series and wreath products

Yugen Takegahara
Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

Abstract

Suppose that a group A contains only a finite number of subgroups of index d for each positive integer d. Let $G \imath S_{n}$ be the wreath product of a finite group G with the symmetric group S_{n} on $\{1, \ldots, n\}$. For each positive integer n, let K_{n} be a subgroup of $G \backslash S_{n}$ containing the commutator subgroup of $G\left\{S_{n}\right.$. If the sequence $\left\{K_{n}\right\}_{0}^{\infty}$ satisfies a certain compatible condition, then the exponential generating function $\sum_{n=0}^{\infty}\left|\operatorname{Hom}\left(A, K_{n}\right)\right| X^{n} /|G|^{n} n$! of the sequence $\left\{\left|\operatorname{Hom}\left(A, K_{n}\right)\right|\right\}_{0}^{\infty}$ takes the form of a sum of exponential functions.

1. Introduction

Let A be a group and \mathcal{F}_{A} the set of subgroups B of A of finite index $|A: B|$. Suppose that A contains only a finite number of subgroups of index d for each positive integer d. Then for any finite group K, the set $\operatorname{Hom}(A, K)$ of homomorphisms from A to K is a finite set. We denote by $|\operatorname{Hom}(A, K)|$ the number of homomorphisms from A to a finite group K. Let S_{n} be the symmetric group on $[n]=\{1, \ldots, n\}$ and S_{0} the group consisting of only the identity. In [17] Wohlfahrt proves that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, S_{n}\right)\right|}{n!} X^{n}=\exp \left(\sum_{B \in \mathcal{F}_{A}} \frac{1}{|A: B|} X^{|A: B|}\right) . \tag{WF}
\end{equation*}
$$

This formula interests us in various exponential formulas.
Given a sequence $\left\{K_{n}\right\}_{0}^{\infty}$ of finite groups, the Wohlfahrt series $E_{A}\left(X:\left\{K_{n}\right\}_{0}^{\infty}\right)$ is the exponential generating function

$$
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K_{n}\right)\right|}{n!} X^{n}
$$

Previous studies of Wohlfahrt series have given some exponential formulas, each of which is a sum of exponential functions. In this paper we extend the approach to the exponential formulas. The approach is based on character theory of finite groups.

2000 Mathematics Subject Classification: 05A15, 20B30, 20C15, 20E22, 20F55, 20K01.
Keyword and phrases : generating function, symmetric group, linear character, wreath product, reflection group, finite abelian group.

Let G be a finite group and $G^{(n)}$ the direct product of n copies of G. If H is a subgroup of S_{n}, then the wreath product

$$
G \imath H=\left\{\left(g_{1}, \ldots, g_{n}\right) h \mid\left(g_{1}, \ldots, g_{n}\right) \in G^{(n)}, h \in H\right\}
$$

is the semidirect product $G^{(n)} \rtimes H$, in which each $h \in H$ acts as an inner automorphism on $G^{(n)}$:

$$
h\left(g_{1}, \ldots, g_{n}\right) h^{-1}=\left(g_{h^{-1}(1)}, \ldots, g_{h^{-1}(n)}\right)
$$

We consider $G \imath S_{0}=S_{0}$. In $[10,11,15,16]$ the Wohlfahrt formula (WF) is extended to formulas for $E_{A}\left(X:\left\{G\left\{S_{n}\right\}_{0}^{\infty}\right)\right.$ and $E_{A}\left(X /|G|:\left\{G\left\{S_{n}\right\}_{0}^{\infty}\right)\right.$ (cf. Corollary 2.7).

Let $1_{S_{n}}$ be the trivial \mathbb{C}-character of S_{n} and δ_{n} the linear \mathbb{C}-character of S_{n} such that $\delta_{n}(h)$ is the sign of h for all $h \in S_{n}$, where \mathbb{C} is the complex numbers. We denote by e the sequence $\left\{1_{S_{n}}\right\}_{0}^{\infty}$ and denote by sgn the sequence $\left\{\delta_{n}\right\}_{0}^{\infty}$. Let χ be a linear \mathbb{C}-character of G, and let $\zeta(\chi, \mathbf{e}, n)$ and $\zeta(\chi, \mathbf{s g n}, n)$ be linear \mathbb{C}-characters of $G \imath S_{n}$ defined by

$$
\zeta(\chi, \mathbf{e}, n)\left(\left(g_{1}, \ldots, g_{n}\right) h\right)=\chi\left(g_{1} \cdots g_{n}\right) 1_{S_{n}}(h)
$$

and

$$
\zeta(\chi, \mathbf{s g n}, n)\left(\left(g_{1}, \ldots, g_{n}\right) h\right)=\chi\left(g_{1} \cdots g_{n}\right) \delta_{n}(h)
$$

for all $\left(g_{1}, \ldots, g_{n}\right) \in G^{(n)}$ and $h \in S_{n}$. Given a linear \mathbb{C}-character ζ of $G \imath S_{n}$, there exists a linear \mathbb{C}-character χ_{0} of G such that $\zeta=\zeta\left(\chi_{0}, \mathbf{e}, n\right)$ or $\zeta=\zeta\left(\chi_{0}, \mathbf{s g n}, n\right)$.

Let $\mathbf{z} \in\{\mathbf{e}, \mathbf{s g n}\}$. We define $K(\chi, \mathbf{z}, n)$ to be the kernel of $\zeta(\chi, \mathbf{z}, n)$, and consider $K(\chi, \mathbf{e}, 0)=K(\chi, \mathbf{s g n}, 0)=S_{0}$. Let 1_{G} be the trivial \mathbb{C}-character of G, and let A_{n} be the alternating group on $[n]$. Then $G \imath S_{n}=K\left(1_{G}, \mathbf{e}, n\right)$ and $G \imath A_{n}=K\left(1_{G}, \mathbf{s g n}, n\right)$. The Wohlfahrt series $E_{A}\left(X:\left\{K\left(1_{G}, \mathbf{z}, n\right) \cap K(\chi, \mathbf{e}, n)\right\}_{0}^{\infty}\right)$ with $|G / \operatorname{Ker} \chi| \leq 2$ is described as a sum of exponential functions by Müller and Shareshian [11]. The form of $E_{A}\left(X /|G|:\left\{G\left\{A_{n}\right\}_{0}^{\infty}\right)\right.$ is also studied in [16] (cf. Corollary 2.8). Moreover, $E_{A}\left(X /|G|:\{K(\chi, \mathbf{e}, n)\}_{0}^{\infty}\right)$ with $|G / \operatorname{Ker} \chi|=p$, where p is a prime, takes the form of a sum of exponential functions, and so does $E_{A}\left(X /|G|:\{K(\chi, \operatorname{sgn}, n)\}_{0}^{\infty}\right)$ with $|G / \operatorname{Ker} \chi|=2[16$, Theorem 1$]$.

Given linear \mathbb{C}-characters $\chi_{1}, \ldots, \chi_{s}$ of G and an element $\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{s}\right)$ of the Cartesian product $\{\mathbf{e}, \mathbf{s g n}\}^{(s)}$ of s copies of $\{\mathbf{e}, \mathbf{s g n}\}$, we define

$$
K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)=\bigcap_{i \in\{1, \ldots, s\}} K\left(\chi_{i}, \mathbf{z}_{i}, n\right)
$$

Every subgroup of $G \imath S_{n}$ containing the commutator subgroup of $G \imath S_{n}$ is considered as such a subgroup, because any subgroup of a finite abelian group is expressed as the intersection of kernels of linear \mathbb{C}-characters. In Section 2 we study the form of

$$
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)\right)\right|}{|G|^{n} n!} X^{n}
$$

which is described as a sum of exponential functions (cf. Theorem 2.1).
Let m be a positive integer, and let ω be a primitive m th root of unity in \mathbb{C}. If G is the cyclic group $\langle\omega\rangle$ generated by ω and if $\chi(\omega)=\omega^{m / r}$, where r is a divisor of m, then we identify $K(\chi, \mathbf{e}, n)$ with the imprimitive complex pseudo-reflection group $G(m, r, n)$ [8], and define

$$
H(m, r, n)=K(\chi, \mathbf{e}, n) \cap\left(G \imath A_{n}\right)\left(=K\left(\chi, 1_{G}, \mathbf{e}, \mathbf{s g n}, n\right)\right)
$$

and

$$
L(m, r, n)=K(\chi, \mathbf{s g n}, n)
$$

The form of $E_{A}\left(X / p:\{G(p, p, n)\}_{0}^{\infty}\right)$ and the form of $E_{A}\left(X / 2:\{L(2,2, n)\}_{0}^{\infty}\right)$ are studied in [16]. In Section 3 we study the form of $E_{A}\left(X / m:\left\{K_{n}\right\}_{0}^{\infty}\right)$ where K_{n} is $G(m, r, n), H(m, r, n)$ or $L(m, r, n)$ (cf. Theorem 3.2).

The Weyl group $W\left(D_{n}\right)$ of type D_{n} is isomorphic to $G(2,2, n)$. When A is a finite abelian group, the explicit forms of $E_{A}\left(X:\left\{G \imath A_{n}\right\}_{0}^{\infty}\right)$ and $E_{A}\left(X:\left\{W\left(D_{n}\right)\right\}_{0}^{\infty}\right)$ are given in [11]. In Section 4 we study the form of $E_{P}\left(X / p:\{G(p, p, n)\}_{0}^{\infty}\right)$ where P is a finite abelian p-group, together with that of $E_{P}\left(X / 2:\{L(2,2, n)\}_{0}^{\infty}\right)$ and that of $E_{P}\left(X:\left\{A_{n}\right\}_{0}^{\infty}\right)$ where P is a finite abelian 2-group (cf. Theorems 4.8 and 4.12). The argument about the descriptions of these Wohlfahrt series is essentially due to Müller and Shareshian (see [11, Section 4]).

In Sections 5 and 6 we present some examples.

2. The form of Wohlfahrt series

Let $\chi_{1}, \ldots, \chi_{s}$ be linear \mathbb{C}-characters of G, and let $\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{s}\right) \in\{\mathbf{e}, \operatorname{sgn}\}^{(s)}$. In this section we study the form of $E_{A}\left(X /|G|:\left\{K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)\right\}_{0}^{\infty}\right)$.

Let $i \in\{1, \ldots, s\}$. Suppose that the factor group $G / \operatorname{Ker} \chi_{i}$ is of order r_{i}^{\prime}. Put $r_{i}=r_{i}^{\prime}$ if r_{i}^{\prime} is even or $\mathbf{z}_{i}=\mathbf{e}$, and $r_{i}=2 r_{i}^{\prime}$ otherwise. Then the linear \mathbb{C}-character $\zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)$ is a homomorphism from $G \imath S_{n}$ to the cyclic group $\left\langle\omega_{r_{i}}\right\rangle$ generated by a primitive r_{i} th root $\omega_{r_{i}}$ of unity in \mathbb{C}. Define

$$
\Phi_{r_{i}}(A)=\bigcap_{\alpha \in \operatorname{Hom}\left(A,\left\langle\omega_{r_{i}}\right\rangle\right)} \operatorname{Ker} \alpha
$$

Then $\Phi_{r_{i}}(A)$ is a normal subgroup of A and the factor group $A / \Phi_{r_{i}}(A)$ is a finite abelian group. Write $R_{i}=A / \Phi_{r_{i}}(A)$, and let \bar{a} denote the coset $a \Phi_{r_{i}}(A)$ of $\Phi_{r_{i}}(A)$ in A containing $a \in A$. Given $\varphi \in \operatorname{Hom}\left(A, G \backslash S_{n}\right)$ and $\bar{a} \in R_{i}$, it is clear that $\zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)(\varphi(c))$ with $c \in \bar{a}$ is independent of the choice of c in \bar{a}.

Let $B \in \mathcal{F}_{A}$. We define a homomorphism $\operatorname{sgn}_{A / B}$ from A to \mathbb{C} by

$$
\operatorname{sgn}_{A / B}(a)=\left\{\begin{aligned}
1 & \text { if } a \in A \text { is an even permutation on } A / B \\
-1 & \text { if } a \in A \text { is an odd permutation on } A / B
\end{aligned}\right.
$$

where A / B is the left A-set consisting of all left cosets of B in A with the action given by $a . c B=a c B$ for all $a, c \in A$.

Suppose that $|A: B|=d$ and $T_{B}^{A}=\left\{a_{1}, \ldots, a_{d}\right\}$ is a left transversal of B in A. For each normal subgroup N of B containing the commutator subgroup B^{\prime}, let $V_{A \rightarrow B / N}$ be the transfer from A to the factor group B / N defined by

$$
V_{A \rightarrow B / N}(a)=\prod_{j=1}^{d} a_{j^{\prime}}^{-1} a a_{j} N \quad \text { with } \quad a a_{j} \in a_{j^{\prime}} B
$$

for all $a \in A$, which is independent of the choice of T_{B}^{A}, and is a homomorphism.
Let $\alpha \in \operatorname{Hom}\left(B, \mathbb{C}^{\times}\right), \mathbb{C}^{\times}$the multiplicative group of \mathbb{C}. Then $B^{\prime} \leq \operatorname{Ker} \alpha$. Let α_{0} be the homomorphism from B / B^{\prime} to \mathbb{C}^{\times}defined by $\alpha_{0}\left(b B^{\prime}\right)=\alpha(b)$ for all $b \in B$. Let $\alpha^{\otimes A}$ be the homomorphism from A to \mathbb{C}^{\times}given by

$$
\alpha^{\otimes A}(a)=\alpha_{0}\left(V_{A \rightarrow B / B^{\prime}}(a)\right)
$$

for all $a \in A$, which is the representation afforded by a tensor induced $\mathbb{C} A$-module (see [4, (13.12) Proposition]). Let $\kappa \in \operatorname{Hom}(B, G)$. Given $\bar{a} \in R_{i}$, it is clear that $\left(\chi_{i} \circ \kappa\right)^{\otimes A}(c)$ with $c \in \bar{a}$ is independent of the choice of c in \bar{a}.

Set $I=\left\{i \mid \mathbf{z}_{i}=\mathbf{s g n}\right\}$. Given $\bar{a} \in R_{i}$ with $i \in I, \operatorname{sgn}_{A / B}(c)$ with $c \in \bar{a}$ is independent of the choice of c in \bar{a}.

Put $R=R_{1} \times \cdots \times R_{s}$. Given $\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right) \in R$, we define

$$
\rho_{B}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)=\operatorname{sgn}_{A / B}\left(\prod_{i \in I} c_{i}\right) \sum_{\kappa \in \operatorname{Hom}(B, G)} \prod_{i=1}^{s}\left(\chi_{i} \circ \kappa\right)^{\otimes A}\left(c_{i}\right)
$$

We are successful in finding the following formula.

Theorem 2.1

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)\right)\right|}{|G|^{n} n!} X^{n} \\
&=\frac{1}{|R|} \sum_{\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right) \in R} \exp \left(\sum_{B \in \mathcal{F}_{A}} \frac{\rho_{B}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)}{|G||A: B|} X^{|A: B|}\right)
\end{aligned}
$$

Let us prove this theorem. We start with the following lemma, which plays a crucial role in this description of $E_{A}\left(X /|G|:\left\{K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)\right\}_{0}^{\infty}\right)$.

Lemma 2.2 Let $\varphi \in \operatorname{Hom}\left(A, G \imath S_{n}\right)$. Then for each integer i with $1 \leq i \leq s$,

$$
\frac{1}{\left|R_{i}\right|} \sum_{\bar{a} \in R_{i}} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)(\varphi(a))= \begin{cases}1 & \text { if } \operatorname{Im} \varphi \leq K\left(\chi_{i}, \mathbf{z}_{i}, n\right) \\ 0 & \text { otherwise },\end{cases}
$$

where the sum $\sum_{\bar{a} \in R_{i}}$ is over all left cosets $\bar{a} \in R_{i}$ with $a \in A$.

Proof. Define a \mathbb{C}-character α_{i} of R_{i} by setting

$$
\alpha_{i}(\bar{a})=\zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)(\varphi(a))
$$

for all $\bar{a} \in R_{i}$ with $a \in A$. Then $\operatorname{Im} \varphi \leq K\left(\chi_{i}, \mathbf{z}_{i}, n\right)$ if and only if α_{i} is the trivial \mathbb{C}-character of R_{i}. Hence it follows from the first orthogonality relation [4, (9.21) Proposition] that

$$
\frac{1}{\left|R_{i}\right|} \sum_{\bar{a} \in R_{i}} \alpha_{i}(\bar{a})= \begin{cases}1 & \text { if } \operatorname{Im} \varphi \leq K\left(\chi_{i}, \mathbf{z}_{i}, n\right) \\ 0 & \text { otherwise }\end{cases}
$$

which proves the lemma.
This lemma enables us to get the following proposition.

Proposition 2.3

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)\right)\right|}{n!} X^{n} \\
& \quad=\frac{1}{|R|} \sum_{\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right) \in R} \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\sum_{\varphi \in \operatorname{Hom}\left(A, G 2 S_{n}\right)} \prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right)\right\} X^{n}
\end{aligned}
$$

Proof. If $\varphi \in \operatorname{Hom}\left(A, G \backslash S_{n}\right)$, then by Lemma 2.2, we have

$$
\prod_{i=1}^{s}\left\{\frac{1}{\left|R_{i}\right|} \sum_{c_{i} \in R_{i}} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right)\right\}= \begin{cases}1 & \text { if } \operatorname{Im} \varphi \leq \bigcap_{i \in\{1, \ldots, s\}} K\left(\chi_{i}, \mathbf{z}_{i}, n\right) \\ 0 & \text { otherwise }\end{cases}
$$

Hence it turns out that

$$
\begin{aligned}
\mid \operatorname{Hom}(A, & \left.K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)\right) \mid \\
& =\sum_{\varphi \in \operatorname{Hom}\left(A, G i S_{n}\right)} \prod_{i=1}^{s}\left\{\frac{1}{\left|R_{i}\right|} \sum_{\overline{c_{i}} \in R_{i}} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right)\right\} \\
& =\frac{1}{|R|} \sum_{\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right) \in R_{1} \times \cdots \times R_{s}} \sum_{\varphi \in \operatorname{Hom}\left(A, G l S_{n}\right)} \prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right),
\end{aligned}
$$

completing the proof of the proposition.
We consider the Cartesian product $G \times[n]$ of G and $[n]$ to be the left $G \imath S_{n}$-set with the left action of $G \imath S_{n}$ given by

$$
\left(g_{1}, \ldots, g_{n}\right) h \cdot(g, i)=\left(g_{h(i)} g, h(i)\right)
$$

for all $\left(g_{1}, \ldots, g_{n}\right) \in G^{(n)}, h \in S_{n}$, and $(g, i) \in G \times[n][9,2.11]$, so that G 2 S_{n} is isomorphic to the automorphism group of the free right G-set $G \times[n]$ with the right action of G given by $(g, i) . y=(g y, i)$ for all $(g, i) \in G \times[n]$ and $y \in G$ (see [1, Proposition 6.11], [16, Proposition 1]).

Let v_{n} be the homomorphism from $G \imath S_{n}$ to S_{n} defined by

$$
v_{n}\left(\left(g_{1}, \ldots, g_{n}\right) h\right)=h
$$

for all $\left(g_{1}, \ldots, g_{n}\right) \in G^{(n)}$ and $h \in S_{n}$.
Set $\mathcal{F}_{A}(n)=\left\{B \in \mathcal{F}_{A}| | A: B \mid \leq n\right\}$. We now show a recurrence formula like Dey's theorem [5, (6.10)], namely,

Proposition 2.4 If n is a positive integer, then

$$
\begin{gathered}
\sum_{\varphi \in \operatorname{Hom}\left(A, G \backslash S_{n}\right)} \frac{\prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right)}{|G|^{n}(n-1)!} \\
=\sum_{B \in \mathcal{F}_{A}(n)} \frac{\rho_{B}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)}{|G|} \sum_{\psi \in \operatorname{Hom}\left(A, G \backslash S_{n-|A: B|}\right)} \frac{\prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n-|A: B|\right)\left(\psi\left(c_{i}\right)\right)}{|G|^{n-|A: B|}(n-|A: B|)!}
\end{gathered}
$$

with $c_{1}, \ldots, c_{s} \in A$.
The proof is analogous to that of [15, Theorem 3.1].
Proof of Proposition 2.4. If $B \in \mathcal{F}_{A}$, then we fix a left transversal T_{B}^{A} containing the identity ϵ_{A} of A. We denote by ϵ the identity of G.

Let $\varphi \in \operatorname{Hom}\left(A, G \imath S_{n}\right)$. Define a subgroup B of A by

$$
B=\left\{a \in A \mid v_{n}(\varphi(a))(1)=1\right\}
$$

and define a homomorphism κ from B to G by

$$
\varphi(b) \cdot(\epsilon, 1)=(\kappa(b), 1)
$$

for all $b \in B$. We then have $|A: B| \leq n$. Suppose that $T_{B}^{A}=\left\{a_{1}, \ldots, a_{d}\right\}$ with $a_{1}=\epsilon_{A}$ and $d=|A: B|$. Define an injection ι from $[d]$ into $[n]$ with $\iota(1)=1$ by

$$
\iota(j)=v_{n}\left(\varphi\left(a_{j}\right)\right)(1)
$$

for all $j \in[d]$, and define an element $\left(y_{1}, \ldots, y_{d}\right)$ of the Cartesian product $G^{(d)}$ of d copies of G with $y_{1}=\epsilon$ by

$$
\varphi\left(a_{j}\right) \cdot(\epsilon, 1)=\left(y_{j}, \iota(j)\right)
$$

for all $j \in[d]$. If $a \in A$ and if $j \in[d]$, then we have

$$
\begin{equation*}
\varphi(a) \cdot(\epsilon, \iota(j))=\left(y_{j^{\prime}} \kappa\left(a_{j^{\prime}}^{-1} a a_{j}\right) y_{j}^{-1}, \iota\left(j^{\prime}\right)\right) \quad \text { with } \quad a a_{j} \in a_{j^{\prime}} B . \tag{I}
\end{equation*}
$$

Suppose that $\{\iota(1), \ldots, \iota(d)\} \cup\left\{k_{1}, \ldots, k_{n-d}\right\}=[n]$ and $k_{1}<\cdots<k_{n-d}$. If $h \in \operatorname{Im}\left(v_{n} \circ \varphi\right)$, then we define a permutation \hat{h} on $[n-d]$ by $h\left(k_{t}\right)=k_{\hat{h}(t)}$ for all $t \in[n-d]$. Let ψ be the mapping from A to $G \imath S_{n-d}$ defined by

$$
\begin{equation*}
\psi(a)=\left(g_{k_{1}}, \ldots, g_{k_{n-d}}\right) \hat{h} \quad \text { with } \quad h=v_{n}(\varphi(a)), \varphi(a)=\left(g_{1}, \ldots, g_{n}\right) h \tag{II}
\end{equation*}
$$

for all $a \in A$. Then it is easily checked that ψ is a homomorphism.
We have got a quintet $\left(B, \kappa, \iota,\left(y_{1}, \ldots, y_{d}\right), \psi\right)$ satisfying the condition

$$
\left\{\begin{array}{l}
B \in \mathcal{F}_{A} \text { with } d=|A: B| \leq n \tag{III}\\
\kappa \in \operatorname{Hom}(B, G) \\
\iota \text { is an injection from }[d] \text { to }[n] \text { with } \iota(1)=1 \\
\left(y_{1}, \ldots, y_{d}\right) \in G^{(d)} \text { with } y_{1}=\epsilon \\
\psi \in \operatorname{Hom}\left(A, G \imath S_{n-d}\right)
\end{array}\right.
$$

and by (I) and (II), we obtain

$$
\begin{align*}
& \prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right) \\
& \quad=\operatorname{sgn}_{A / B}\left(\prod_{i \in I} c_{i}\right) \cdot \prod_{i=1}^{s}\left(\chi_{i} \circ \kappa\right)^{\otimes A}\left(c_{i}\right) \cdot \zeta\left(\chi_{i}, \mathbf{z}_{i}, n-d\right)\left(\psi\left(c_{i}\right)\right) \tag{IV}
\end{align*}
$$

The preceding map

$$
\Gamma: \varphi \rightarrow\left(B, \kappa, \iota,\left(y_{1}, \ldots, y_{d}\right), \psi\right)
$$

from $\operatorname{Hom}\left(A, G \imath S_{n}\right)$ to the set of quintets $\left(B, \kappa, \iota,\left(y_{1}, \ldots, y_{d}\right), \psi\right)$ satisfying (III) is clearly injective. Moreover, it is easily verified that Γ is surjective (see the proof of [15, Theorem 3.1]). Combining this fact with (IV), we have

$$
\begin{aligned}
\sum_{\varphi \in \operatorname{Hom}\left(A, G l S_{n}\right)} & \prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right) \\
= & \sum_{B \in \mathcal{F}_{A}(n)}\left\{\rho_{B}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)\right) \frac{(n-1)!}{(n-|A: B|)!}|G|^{|A: B|-1} \\
& \left.\quad \times \sum_{\psi \in \operatorname{Hom}\left(A, G l S_{n-|A: B|}\right)} \prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n-|A: B|\right)\left(\psi\left(c_{i}\right)\right)\right\} .
\end{aligned}
$$

This completes the proof of the proposition.
If $\chi_{1}=\cdots=\chi_{s}=1_{G}$ and if $\mathbf{z}_{1}=\cdots=\mathbf{z}_{s}=\mathbf{e}$, then this proposition is the recurrence formula [15, Theorem 3.1] of $\left|\operatorname{Hom}\left(A, G \backslash S_{n}\right)\right|$, which is a generalization of the recurrence formula [17, Satz] of $\left|\operatorname{Hom}\left(A, S_{n}\right)\right|$.

As a result of Proposition 2.4, we obtain the following proposition.
Proposition 2.5 Suppose that $c_{1}, \ldots, c_{s} \in A$. Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{|G|^{n} n!}\left\{\sum_{\varphi \in \operatorname{Hom}\left(A, G l S_{n}\right)} \prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right)\right\} X^{n} \\
&=\exp \left(\sum_{B \in \mathcal{F}_{A}} \frac{\rho_{B}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)}{|G||A: B|} X^{|A: B|}\right)
\end{aligned}
$$

Proof. Put $\gamma_{\varphi}(n)=\prod_{i=1}^{s} \zeta\left(\chi_{i}, \mathbf{z}_{i}, n\right)\left(\varphi\left(c_{i}\right)\right)$ with $\varphi \in \operatorname{Hom}\left(A, G \imath S_{n}\right)$, and put $\beta(B)=\rho_{B}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)$ with $B \in \mathcal{F}_{A}$ for convenience. We denote by $\Xi(n)$ the set of sequences $\left(n_{B}\right)_{B \in \mathcal{F}_{A}}$ of nonnegative integers n_{B} corresponding to $B \in \mathcal{F}_{A}$ such that $\sum_{B \in \mathcal{F}_{A}} n_{B}|A: B|=n$, and abbreviate $\left(n_{B}\right)_{B \in \mathcal{F}_{A}}$ to $\left(n_{B}\right)$. It suffices to show that for each nonnegative integer n,

$$
\sum_{\varphi \in \operatorname{Hom}\left(A, G l S_{n}\right)} \frac{\gamma_{\varphi}(n)}{|G|^{n} n!}=\sum_{\left(n_{B}\right) \in \Xi(n)} \prod_{B \in \mathcal{F}_{A}} \frac{\beta(B)^{n_{B}}}{|G|^{n_{B}}|A: B|^{n_{B} n_{B}!}}
$$

We use induction on n. Evidently, this formula is true if $n=0$. Suppose that $n \geq 1$. Then Proposition 2.4 yields

$$
\begin{aligned}
\sum_{\varphi \in \operatorname{Hom}\left(A, G l S_{n}\right)} & \frac{\gamma_{\varphi}(n)}{|G|^{n}(n-1)!} \\
& =\sum_{B \in \mathcal{F}_{A}(n)} \frac{\beta(B)}{|G|} \sum_{\psi \in \operatorname{Hom}\left(A, G l S_{n-|A: B|}\right)} \frac{\gamma_{\psi}(n-|A: B|)}{|G|^{n-|A: B|}(n-|A: B|)!}
\end{aligned}
$$

Moreover, given $B \in \mathcal{F}_{A}(n)$, the inductive assumption means that

$$
\begin{aligned}
& \sum_{\psi \in \operatorname{Hom}\left(A, G l S_{n-|A: B|}\right)} \frac{\gamma_{\psi}(n-|A: B|)}{|G|^{n-|A: B|}(n-|A: B|)!} \\
&=\sum_{\left(n_{K}\right) \in \Xi(n-|A: B|)} \prod_{K \in \mathcal{F}_{A}} \frac{\beta(K)^{n_{K}}}{|G|^{n_{K}}|A: K|^{n_{K}} n_{K}!}
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& \sum_{\varphi \in \operatorname{Hom}\left(A, G l S_{n}\right)} \frac{\gamma_{\varphi}(n)}{|G|^{n} n!} \\
&=\frac{1}{n} \sum_{B \in \mathcal{F}_{A}(n)} \frac{\beta(B)}{|G|} \sum_{\left(n_{K}\right) \in \Xi(n-|A: B|)} \prod_{K \in \mathcal{F}_{A}} \frac{\beta(K)^{n_{K}}}{|G|^{n_{K}|A: K|^{n_{K} n_{K}!}}} \\
&=\frac{1}{n} \sum_{B \in \mathcal{F}_{A}(n)} \sum_{\left(n_{K}\right) \in \Xi(n)} n_{B}|A: B| \prod_{K \in \mathcal{F}_{A}} \frac{\beta(K)^{n_{K}}}{|G|^{n_{K}|A: K|^{n_{K} n_{K}!}}} \\
&=\frac{1}{n} \sum_{\left(n_{K}\right) \in \Xi(n)}\left(\sum_{B \in \mathcal{F}_{A}(n)} n_{B}|A: B|\right) \prod_{K \in \mathcal{F}_{A}} \frac{\beta(K)^{n_{K}}}{|G|^{n_{K}|A: K|^{n_{K}} n_{K}!}} \\
&=\sum_{\left(n_{K}\right) \in \Xi(n)} \prod_{K \in \mathcal{F}_{A}} \frac{\beta(K)^{n_{K}}}{|G|^{n_{K}|A: K|^{n_{K}} n_{K}!}},
\end{aligned}
$$

as required.
Remark 2.6 Proposition 2.5 is also a consequence of a categorical fact, namely, [16, Propsition 5] (see the second half of the proof of [16, Theroem 1]). It should be stated in this connection that the categorical proof of the Wohlfahrt formula (WF) was given by Yoshida (see [18, 6.4]).

By virtue of Propositions 2.3 and 2.5, we have established Theorem 2.1.
Recall that $G \imath S_{n}=K\left(1_{G}, \mathbf{e}, n\right)$ and $G \imath A_{n}=K\left(1_{G}, \mathbf{s g n}, n\right)$. The next results are corollaries to Theorem 2.1.

Corollary 2.7 ([10, 11, 15, 16]) We have

$$
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, G \imath S_{n}\right)\right|}{|G|^{n} n!} X^{n}=\exp \left(\sum_{B \in \mathcal{F}_{A}} \frac{|\operatorname{Hom}(B, G)|}{|G||A: B|} X^{|A: B|}\right)
$$

Corollary 2.8 ([16]) We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, G \imath A_{n}\right)\right|}{|G|^{n} n!} X^{n} \\
& \quad=\frac{1}{\left|A: \Phi_{2}(A)\right|} \sum_{\bar{c} \in A / \Phi_{2}(A)} \exp \left(\sum_{B \in \mathcal{F}_{A}} \frac{\operatorname{sgn}_{A / B}(c) \cdot|\operatorname{Hom}(B, G)|}{|G||A: B|} X^{|A: B|}\right)
\end{aligned}
$$

Remark 2.9 When A is a finite cyclic group, Corollary 2.7 is shown in [3, 12] and Corollary 2.8 is shown in [3].

3. Imprimitive complex pseudo reflection groups and related groups

Keep the notation of Section 2, and suppose that $G=\langle\omega\rangle$ with ω a primitive m th root of unity in \mathbb{C}. Assume that for any integer i with $1 \leq i \leq s, \chi_{i}(\omega)=\omega^{q_{i}}$, where q_{i} is a positive integer. Let $B \in \mathcal{F}_{A}$, and define

$$
\Phi_{m}(B)=\bigcap_{\alpha \in \operatorname{Hom}(B,\langle\omega\rangle)} \operatorname{Ker} \alpha .
$$

Let $i \in\{1, \ldots, s\}$. Since the order of $\langle\omega\rangle / \operatorname{Ker} \chi_{i}$ divides r_{i}, it follows that $q_{i} r_{i}$ is a multiple of m. Then the order of $V_{A \rightarrow B / \Phi_{m}(B)}\left(c^{q_{i}}\right)$ with $c \in A$ divides r_{i}. Hence, given $\bar{a} \in R_{i}, V_{A \rightarrow B / \Phi_{m}(B)}\left(c^{q_{i}}\right)$ with $c \in \bar{a}$ is independent of the choice of c in \bar{a}.

Now define a homomorphism $F_{A \rightarrow B / \Phi_{m}(B)}^{\left(q_{1}, \ldots, q_{s}\right)}$ from R to $B / \Phi_{m}(B)$ by

$$
F_{A \rightarrow B / \Phi_{m}(B)}^{\left(q_{1}, \ldots, q_{s}\right)}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)=V_{A \rightarrow B / \Phi_{m}(B)}\left(\prod_{i=1}^{s} c_{i}^{q_{i}}\right)
$$

for all $\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right) \in R$. Let $c_{1}, \ldots, c_{s} \in A$. We can identify $\operatorname{Hom}(B,\langle\omega\rangle)$ with $\operatorname{Hom}\left(B / \Phi_{m}(B),\langle\omega\rangle\right)$. Hence it turns out that

$$
\begin{aligned}
\sum_{\kappa \in \operatorname{Hom}(B,\langle\omega\rangle)} \prod_{i=1}^{s}\left(\chi_{i} \circ \kappa\right)^{\otimes A}\left(c_{i}\right) & =\sum_{\kappa \in \operatorname{Hom}\left(B / \Phi_{m}(B),\langle\omega\rangle\right)} \prod_{i=1}^{s} \kappa\left(V_{A \rightarrow B / \Phi_{m}(B)}\left(c_{i}\right)\right)^{q_{i}} \\
& =\sum_{\kappa \in \operatorname{Hom}\left(B / \Phi_{m}(B),\langle\omega\rangle\right)} \kappa\left(F_{A \rightarrow B / \Phi_{m}(B)}^{\left(q_{1}, \ldots, \Phi_{s}\right)}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)\right) .
\end{aligned}
$$

Moreover, the \mathbb{C}-character

$$
\sum_{\kappa \in \operatorname{Hom}\left(B / \Phi_{m}(B),\langle\omega\rangle\right)} \kappa
$$

of $B / \Phi_{m}(B)$ is afforded by the left regular module $\mathbb{C}\left(B / \Phi_{m}(B)\right)$. Thus
$\sum_{\kappa \in \operatorname{Hom}(B,\langle\omega\rangle)} \prod_{i=1}^{s}\left(\chi_{i} \circ \kappa\right)^{\otimes A}\left(c_{i}\right)=\left\{\begin{array}{cl}\left|B: \Phi_{m}(B)\right| & \text { if }\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right) \in \operatorname{Ker} F_{A \rightarrow B / \Phi_{m}(B)}^{\left(q_{1}, \ldots, q_{s}\right)}, \\ 0 & \text { otherwise. }\end{array}\right.$
Combining the preceding fact with Theorem 2.1, we conclude that

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)\right)\right|}{m^{n} n!} X^{n} \\
& =\frac{1}{|R|} \sum_{\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right) \in R} \exp \left(\sum_{B \in \Omega_{A}\left(\overline{(\overline{1}}, \ldots, \overline{c_{s}}\right)} \operatorname{sgn}_{A / B}\left(\prod_{i \in I} c_{i}\right) \frac{\left|B: \Phi_{m}(B)\right|}{m|A: B|} X^{|A: B|}\right) \tag{V}
\end{align*}
$$

where

$$
\Omega_{A}\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right)=\left\{B \in \mathcal{F}_{A} \mid\left(\overline{c_{1}}, \ldots, \overline{c_{s}}\right) \in \operatorname{Ker} F_{A \rightarrow B / \Phi_{m}(B)}^{\left(q_{1}, \ldots, q_{s}\right)}\right\} .
$$

Remark 3.1 There exists a divisor r of m such that $K\left(\chi_{1}, \ldots, \chi_{s}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{s}, n\right)$ is $G(m, r, n), H(m, r, n)$, or $L(m, r, n)$.

The following theorem is an immediate consequence of the formula (V).
Theorem 3.2 Let r be a divisor of m. Given $c \in A$, set

$$
\Omega_{A}(\bar{c})=\left\{B \in \mathcal{F}_{A} \mid c^{m / r} \in \operatorname{Ker} V_{A \rightarrow B / \Phi_{m}(B)}\right\}
$$

Put $r_{0}=r$ if r is even, and $r_{0}=2 r$ if r is odd. Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, G(m, r, n))|}{m^{n} n!} X^{n} \\
& =\frac{1}{\left|A: \Phi_{r}(A)\right|} \sum_{\bar{c} \in A / \Phi_{r}(A)} \exp \left(\sum_{B \in \Omega_{A}(\bar{c})} \frac{\left|B: \Phi_{m}(B)\right|}{m|A: B|} X^{|A: B|}\right) \\
& \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, H(m, r, n))|}{m^{n} n!} X^{n} \\
& =\frac{1}{\left|A: \Phi_{r}(A)\right|\left|A: \Phi_{2}(A)\right|} \\
& \quad \times \sum_{\left(\bar{c}_{1}, \bar{c}_{2}\right) \in\left(A / \Phi_{r}(A)\right) \times\left(A / \Phi_{2}(A)\right)} \exp \left(\sum_{B \in \Omega_{A}\left(\bar{c}_{1}\right)} \operatorname{sgn}_{A / B}\left(c_{2}\right) \frac{\left|B: \Phi_{m}(B)\right|}{m|A: B|} X^{|A: B|}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, L(m, r, n))|}{m^{n} n!} X^{n} \\
& \quad=\frac{1}{\left|A: \Phi_{r_{0}}(A)\right|} \sum_{\bar{c} \in A / \Phi_{r_{0}}(A)} \exp \left(\sum_{B \in \Omega_{A}(\bar{c})} \operatorname{sgn}_{A / B}(c) \frac{\left|B: \Phi_{m}(B)\right|}{m|A: B|} X^{|A: B|}\right)
\end{aligned}
$$

Corollary 3.3 ([16]) Keep the notation of Theorem 3.2, and assume further that $m=r=2$. Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, W\left(D_{n}\right)\right)\right|}{2^{n} n!} X^{n} \\
&=\frac{1}{\left|A: \Phi_{2}(A)\right|} \sum_{\bar{c} \in A / \Phi_{2}(A)} \exp \left(\sum_{B \in \Omega_{A}(\bar{c})} \frac{\left|B: \Phi_{2}(B)\right|}{2|A: B|} X^{|A: B|}\right)
\end{aligned}
$$

Example 3.4 Suppose that A is a finite cyclic group of order ℓ and is generated by an element c. Let p be a prime. For a subgroup B of A, we have

$$
\operatorname{sgn}_{A / B}(c)=\left\{\begin{array}{rll}
1 & \text { if }|A: B| & \text { is odd } \\
-1 & \text { if }|A: B| & \text { is even }
\end{array}\right.
$$

and $V_{A \rightarrow B / \Phi_{p}(B)}(c)=c^{|A: B|} \Phi_{p}(B)$. Considering A as $\mathbb{Z} / \ell \mathbb{Z}$, we obtain the following.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z} / \ell \mathbb{Z}, S_{n}\right)\right|}{n!} X^{n}=\exp \left(\sum_{d \mid \ell} \frac{1}{d} X^{d}\right) \tag{1}
\end{equation*}
$$

(2)

$$
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z} / \ell \mathbb{Z}, A_{n}\right)\right|}{n!} X^{n}=\frac{1}{2} \exp \left(\sum_{d \mid \ell} \frac{1}{d} X^{d}\right)+\frac{1}{2} \exp \left(\sum_{d \mid \ell} \frac{(-1)^{d-1}}{d} X^{d}\right)
$$

(3)

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z} / \ell \mathbb{Z}, G(p, p, n))|}{p^{n} n!} & X^{n} \\
& =\frac{1}{p} \exp \left(\sum_{\substack{d \mid \ell \\
p+(\ell / d)}} \frac{1}{p d} X^{d}\right)\left\{\exp \left(\sum_{\substack{d|\ell \\
p|(\ell / d)}} \frac{1}{d} X^{d}\right)+p-1\right\}
\end{aligned}
$$

(4)

$$
\begin{aligned}
\sum_{n=0}^{\infty} & \frac{|\operatorname{Hom}(\mathbb{Z} / \ell \mathbb{Z}, H(p, p, n))|}{p^{n} n!} X^{n} \\
\quad & =\frac{1}{2 p} \exp \left(\sum_{\substack{d \mid \ell \\
p \nmid \ell / d)}} \frac{1}{p d} X^{d}\right)\left\{\exp \left(\sum_{\substack{d|\ell \\
p|(\ell / d)}} \frac{1}{d} X^{d}\right)+p-1\right\} \\
& +\frac{1}{2 p} \exp \left(\sum_{\substack{d \mid \ell \\
p \nmid(\ell / d)}} \frac{(-1)^{d-1}}{p d} X^{d}\right)\left\{\exp \left(\sum_{\substack{d|\ell \\
p|(\ell / d)}} \frac{(-1)^{d-1}}{d} X^{d}\right)+p-1\right\} .
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z} / \ell \mathbb{Z}, L(2,2, n))|}{2^{n} n!} X^{n} \\
& \quad=\frac{1}{2} \exp \left(\sum_{\substack{d \mid \ell \\
2 \nmid \ell / d)}} \frac{1}{2 d} X^{d}\right)\left\{\exp \left(\sum_{\substack{d|\ell \\
2| \ell / d)}} \frac{1}{d} X^{d}\right)+\exp \left(-\sum_{\substack{d \mid \ell \\
2 \nmid \ell / d), 2 \mid d}} \frac{1}{d} X^{d}\right)\right\} .
\end{aligned}
$$

Remark 3.5 The formula (1) is given in [2] and (2) is given in [13, Chapter 4, Problem 22] and [3]. When $p=2$, the formula (3) is shown in [3].

4. Finite abelian p-groups

Suppose that A is a finite abelian group. Let \widehat{A} be the set of irreducible \mathbb{C} characters of A, and define a multiplication in \widehat{A} by $\alpha_{1} \alpha_{2}(a)=\alpha_{1}(a) \alpha_{2}(a)$ for all $\alpha_{1}, \alpha_{2} \in \widehat{A}$ and $a \in A$. Then \widehat{A} becomes a group, and the groups A and \widehat{A} are isomorphic $[7,5.1]$. If B is a subgroup of A, we put

$$
B^{\perp}=\{\alpha \in \widehat{A} \mid \alpha(b)=1 \text { for all } b \in B\}
$$

If U is a subgroup of \widehat{A}, then we put

$$
U^{\perp}=\{a \in A \mid \alpha(a)=1 \text { for all } \alpha \in U\}
$$

We use the following lemmas, which are parts of $[7,5.5,5.6]$.
Lemma 4.1 ([7]) Let B be a subgroup of A. Then

$$
\widehat{A / B} \cong B^{\perp} \quad \text { and } \quad \widehat{A} / B^{\perp} \cong \widehat{B}
$$

Lemma 4.2 ([7]) Let B be a subgroup of A, and let U be a subgroup of \widehat{A}. Then

$$
B^{\perp \perp}=B \quad \text { and } \quad U^{\perp \perp}=U
$$

Lemma 4.3 ([7]) Let B_{1}, B_{2} be subgroups of A. Then

$$
\left(B_{1} \cap B_{2}\right)^{\perp}=B_{1}^{\perp} B_{2}^{\perp} \quad \text { and } \quad\left(B_{1} B_{2}\right)^{\perp}=B_{1}^{\perp} \cap B_{2}^{\perp}
$$

Lemma 4.4 ([7]) Let U_{1}, U_{2} be subgroups of \widehat{A}. Then

$$
\left(U_{1} \cap U_{2}\right)^{\perp}=U_{1}^{\perp} U_{2}^{\perp} \quad \text { and } \quad\left(U_{1} U_{2}\right)^{\perp}=U_{1}^{\perp} \cap U_{2}^{\perp}
$$

Let ϵ_{A} be the identity of A. For each positive integer k, we define

$$
\Omega_{k}(A)=\left\{a \in A \mid a^{k}=\epsilon_{A}\right\} \quad \text { and } \quad \mho_{k}(A)=\left\{a^{k} \mid a \in A\right\}
$$

We provide a part of $[7,5.8]$, namely,
Lemma $4.5([7]) \Omega_{k}(A)^{\perp}=\mho_{k}(\widehat{A})$, and equivalently, $\Omega_{k}(A)=\mho_{k}(\widehat{A})^{\perp}$.

A partition is a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}, \ldots\right)$ of nonnegative integers containing only finitely many non-zero terms where $\lambda_{1} \geq \cdots \geq \lambda_{t} \geq \cdots$. Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}, \ldots\right)$, we define

$$
m_{i}(\lambda)=\sharp\left\{t \mid \lambda_{t}=i\right\}
$$

and

$$
\lambda_{i}^{\prime}=\sharp\left\{t \mid \lambda_{t} \geq i\right\}
$$

Then $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{i}^{\prime}, \ldots\right)$ is a partition, and is called the conjugate of λ.
Let p be a prime. If P is a finite abelian p-group, then there is a unique partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}, 0, \ldots\right)$ such that P is isomorphic to the direct product

$$
\mathbb{Z} / p^{\lambda_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{\lambda_{\ell}} \mathbb{Z}
$$

of cyclic p-groups $\mathbb{Z} / p^{\lambda_{1}} \mathbb{Z}, \ldots, \mathbb{Z} / p^{\lambda_{\ell}} \mathbb{Z}$, and we call λ the type of P.
Now let P be a finite abelian p-group, and let ϵ_{P} be the identity of P. We have

$$
\Phi_{p}(P)=\mho_{p}(P) \quad \text { and } \quad P / \Phi_{p}(P) \cong \Omega_{p}(P)
$$

In order to describe the Wohlfahrt series $E_{P}\left(X / p:\{G(p, p, n)\}_{0}^{\infty}\right)$, we must show the following.

Lemma 4.6 Let P_{0} be a subgroup of P. Suppose that $c \in P$ and $c \notin \Phi_{p}(P)$. Then $c \notin \operatorname{Ker} V_{P \rightarrow P_{0} / \Phi_{p}\left(P_{0}\right)}$ if and only if $P=\langle c\rangle P_{0}$ and P_{0} contains $\Omega_{p}(P)$.

Proof. We have $\Phi_{p}\left(P_{0}\right)=\mho_{p}\left(P_{0}\right)$ and $V_{P \rightarrow P_{0} / \Phi_{p}\left(P_{0}\right)}(c)=c^{\left|P: P_{0}\right|} \Phi_{p}\left(P_{0}\right)$. Assume that $c \notin \operatorname{Ker} V_{P \rightarrow P_{0} / \Phi_{p}\left(P_{0}\right)}$. Then $c^{\left|P: P_{0}\right|} \notin \mho_{p}\left(P_{0}\right)$, and thereby $P=\langle c\rangle P_{0}$. Moreover, if P_{0} does not contain $\Omega_{p}(P)$, then $c^{\left|P: P_{0}\right|}=\epsilon_{P}$, contrary to the assumption. Hence P_{0} contains $\Omega_{p}(P)$. Conversely, assume that $P=\langle c\rangle P_{0}$ and P_{0} contains $\Omega_{p}(P)$. Since $c \notin \Phi_{p}(P)$, it follows that $c \notin \operatorname{Ker} V_{P \rightarrow P / \Phi_{p}(P)}$. Hence we assume that $P \neq P_{0}$. Clearly, $c^{\left|P: P_{0}\right| / p} \notin P_{0}$. Now suppose that $c^{\left|P: P_{0}\right|} \in \mathcal{V}_{p}\left(P_{0}\right)$ and a is an element of P_{0} such that $a^{p}=c^{\left|P: P_{0}\right|}$. Then $a^{-1} c^{\left|P: P_{0}\right| / p}$ is not contained in P_{0} and is of order p. But every element of order p in P is contained in P_{0}. This is a contradiction. Thus $c^{\left|P: P_{0}\right|} \notin \mho_{p}\left(P_{0}\right)$, and hence $c \notin \operatorname{Ker} V_{P_{0} \rightarrow P_{0} / \Phi_{p}\left(P_{0}\right)}$, which proves the lemma.

Suppose that P is of type $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}, 0, \ldots\right)$ and $P=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{\ell}\right\rangle$, where $\left\langle a_{i}\right\rangle$ is a cyclic group generated by a_{i} and is of order $p^{\lambda_{i}}$. We assume that $\lambda_{\ell}>0$, and set

$$
T(P)=\left\{a_{1}^{e_{1}} \cdots a_{\ell}^{e_{\ell}} \mid 0 \leq e_{1}, \ldots, e_{\ell} \leq p-1\right\}
$$

which is a left transversal of $\Phi_{p}(P)$ in P. Given a positive integer j, we define $T_{j}(P)$ to be the set of all elements of order p^{j} in $T(P)$. Then

$$
\sharp T_{j}(P)=p^{\lambda_{1}^{\prime}-\lambda_{j+1}^{\prime}}-p^{\lambda_{1}^{\prime}-\lambda_{j}^{\prime}} .
$$

We have the following.

Lemma 4.7 Suppose that $c \in T_{j}(P)$. Let k be a nonnegative integer, and let $\mathcal{M}(\langle c\rangle ; k)$ be the set of all subgroups P_{0} of P containing $\Omega_{p}(P)$ such that $P=\langle c\rangle P_{0}$ and $\left|P: P_{0}\right|=p^{k}$. Then

$$
\sharp \mathcal{M}(\langle c\rangle ; k)=\left\{\begin{array}{lll}
0 & \text { if } & k \geq j, \\
p^{w_{\lambda}(k)} & \text { if } & k<j,
\end{array}\right.
$$

where

$$
w_{\lambda}(k)=\left\{k \sum_{i=k+1}^{\lambda_{1}} m_{i}(\lambda)+\sum_{i=1}^{k}(i-1) m_{i}(\lambda)\right\}-k .
$$

Proof. Suppose that $P_{0} \in \mathcal{M}(\langle c\rangle ; k)$. Then by Lemma 4.5, P_{0}^{\perp} is contained in $\mho_{p}(\widehat{P})$. Since $P^{\perp}=\left\{1_{P}\right\}$, it follows from Lemma 4.3 that $\langle c\rangle^{\perp} \cap P_{0}^{\perp}=\left\{1_{P}\right\}$, where 1_{P} is the trivial character of P. Moreover, by Lemma 4.1 we have

$$
P / P_{0} \cong \widehat{P / P_{0}} \cong P_{0}^{\perp} .
$$

Thus P_{0}^{\perp} is a cyclic group of $\mho_{p}(\widehat{P})$ such that $\langle c\rangle^{\perp} \cap P_{0}^{\perp}=\left\{1_{P}\right\}$ and $\left|P_{0}^{\perp}\right|=p^{k}$.
Now let $\mathcal{N}\left(\langle c\rangle^{\perp} ; k\right)$ be the set of all cyclic subgroups U of $\mho_{p}(\widehat{P})$ such that $\langle c\rangle^{\perp} \cap U=\left\{1_{P}\right\}$ and $|U|=p^{k}$. If $P_{0} \in \mathcal{M}(\langle c\rangle ; k)$, then by the preceding argument, $P_{0}^{\perp} \in \mathcal{N}\left(\langle c\rangle^{\perp} ; k\right)$. Define a map f from $\mathcal{M}(\langle c\rangle ; k)$ to $\mathcal{N}\left(\langle c\rangle^{\perp} ; k\right)$ by $f\left(P_{0}\right)=P_{0}^{\perp}$ for all $P_{0} \in \mathcal{M}(\langle c\rangle ; k)$. Then Lemma 4.2 implies that f is injective.

Suppose that $U \in \mathcal{N}\left(\langle c\rangle^{\perp} ; k\right)$. Then by Lemma 4.5, U^{\perp} contains $\Omega_{p}(P)$. Since $\left\{1_{P}\right\}^{\perp}=P$, it follows from Lemmas 4.2 and 4.4 that $P=\langle c\rangle U^{\perp}$. Moreover, by Lemmas 4.1 and 4.2, we have

$$
P / U^{\perp} \cong \widehat{P / U^{\perp}} \cong U,
$$

whence $\left|P: U^{\perp}\right|=|U|=p^{k}$. Thus we obtain $U^{\perp} \in \mathcal{M}(\langle c\rangle ; k)$. This fact, together with Lemma 4.2, means that f is surjective. Consequently, f is bijective.

In order to prove the statement, it suffices to verify that

$$
\sharp \mathcal{N}\left(\langle c\rangle^{\perp} ; k\right)=\left\{\begin{array}{lll}
0 & \text { if } & k \geq j, \\
p^{w_{\lambda}(k)} & \text { if } & k<j .
\end{array}\right.
$$

Suppose that $c=a_{1}^{e_{1}} \cdots a_{\ell}^{e_{\ell}}$, where e_{1}, \ldots, e_{ℓ} are nonnegative integers less than p. Since $c \neq \epsilon_{P}$, we assume that $e_{i}=0$ with $i<t_{0}$ and $e_{t_{0}} \neq 0$, where $1 \leq t_{0} \leq \ell$. Put

$$
D=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{t_{0}-1}\right\rangle \times\left\langle a_{t_{0}+1}\right\rangle \times \cdots \times\left\langle a_{\ell}\right\rangle .
$$

Then $P=\langle c\rangle \times D$, and hence $\widehat{P}=\langle c\rangle^{\perp} \times D^{\perp}$ by Lemma 4.3. Moreover, it follows from Lemma 4.1 that

$$
D^{\perp} \cong \widehat{P} /\langle c\rangle^{\perp} \cong \widehat{\langle c\rangle} \cong\langle c\rangle \quad \text { and }\langle c\rangle^{\perp} \cong \widehat{P} / D^{\perp} \cong \widehat{D} \cong D
$$

Thus there exists a bijection from $\mathcal{N}\left(\langle c\rangle^{\perp} ; k\right)$ to the set $\mathcal{W}(D ; k)$ of all cyclic subgroups Y of $\mho_{p}(P)$ such that $D \cap Y=\left\{\epsilon_{P}\right\}$ and $|Y|=p^{k}$. If $k \geq j$, then clearly $\mathcal{W}(D ; k)=\emptyset$, and hence $\sharp \mathcal{N}\left(\langle c\rangle^{\perp} ; k\right)=\sharp \mathcal{W}(D ; k)=0$. Suppose that $k<j$. We set $I_{1}=\left\{t \mid \lambda_{t}>k, t \neq t_{0}\right\}$ and $I_{2}=\left\{t \mid \lambda_{t} \leq k\right\}$. For each sequence $\left(n_{1}, \ldots, n_{t_{0}-1}, n_{t_{0}+1}, \ldots, n_{\ell}\right)$ of positive integers, put

$$
y_{\left(n_{1}, \ldots, n_{t_{0}-1}, n_{t_{0}+1}, \ldots, n_{\ell}\right)}=c^{p^{j-k}}\left(\prod_{t \in I_{1}} a_{t}^{p^{\lambda_{t}-k} n_{t}}\right)\left(\prod_{t \in I_{2}} a_{t}^{p n_{t}}\right) .
$$

Then

$$
\mathcal{W}(D ; k)=\left\{\begin{array}{ll}
\left\langle y_{\left(n_{1}, \ldots, n_{t_{0}-1}, n_{t_{0}+1}, \ldots, n_{\ell}\right)}\right\rangle & \begin{array}{l}
1 \leq n_{t} \leq p^{k} \quad \text { if } \quad t \in I_{1}, \\
1 \leq n_{t} \leq p^{\lambda_{t}-1}
\end{array} \text { if } \quad t \in I_{2}
\end{array}\right\}
$$

and $\sharp \mathcal{W}(D ; k)=p^{w_{\lambda}(k)}$. Thus we conclude that $\sharp \mathcal{N}\left(\langle c\rangle^{\perp} ; k\right)=p^{w_{\lambda}(k)}$, and the proof is completed.

Theorem 3.2, together with Lemmas 4.6 and 4.7, enables us to get the following.
Theorem 4.8 Keep the notation of Lemma 4.7. We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(P, G(p, p, n))|}{p^{n} n!} X^{n} \\
&=\frac{1}{p^{\ell}}\left\{\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(P,(\mathbb{Z} / p \mathbb{Z}) \imath S_{n}\right)\right|}{p^{n} n!} X^{n}\right\} \\
& \times\left\{1+\sum_{j \geq 1}\left(p^{\lambda_{1}^{\prime}-\lambda_{j+1}^{\prime}}-p^{\lambda_{1}^{\prime}-\lambda_{j}^{\prime}}\right) \exp \left(-p^{\ell-1} \sum_{k=0}^{j-1} p^{w_{\lambda}(k)-k} X^{p^{k}}\right)\right\} .
\end{aligned}
$$

We now turn to the forms of $E_{P}\left(X / 2:\{L(2,2, n)\}_{0}^{\infty}\right)$ and $E_{P}\left(X:\left\{A_{n}\right\}_{0}^{\infty}\right)$. First, we need a consequence of [15, Lemma 2.1], namely,

Lemma 4.9 Let P_{0} be a subgroup of P, and let $c \in P$. Then $\operatorname{sgn}_{P / P_{0}}(c)=-1$ if and only if $P \neq P_{0}$ and $P=\langle c\rangle P_{0}$.

The proof of the next lemma is straightforward.
Lemma 4.10 Let P_{0} be a subgroup of P, and let $c \in P-\left\{\epsilon_{P}\right\}$. Then $P=\langle c\rangle \times P_{0}$ if and only if $P=\langle c\rangle P_{0}$ and P_{0} does not contain $\Omega_{p}(P)$.

By an argument similar to that in the proof of Lemma 4.7, we get the following.

Lemma 4.11 Suppose that $c \in T_{j}(P)$. Let k be a nonnegative integer. Then the number of all subgroups P_{0} of P such that $P=\langle c\rangle P_{0}$ and $\left|P: P_{0}\right|=p^{k}$ is 0 if $k>j$, and is $p^{s_{\lambda}(k)}$ if $k \leq j$, where

$$
s_{\lambda}(k)=\left\{k \sum_{i=k+1}^{\lambda_{1}} m_{i}(\lambda)+\sum_{i=1}^{k} i m_{i}(\lambda)\right\}-k
$$

Combining Theorem 3.2 with Lemmas 4.6, 4.9, 4.10, and 4.11, we can now state the following.

Theorem 4.12 Keep the notation of Lemma 4.11, and assume further that $p=2$. Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(P, L(2,2, n))|}{2^{n} n!} X^{n} \\
&=\frac{1}{2^{\ell}}\left\{\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(P,(\mathbb{Z} / 2 \mathbb{Z}) \imath S_{n}\right)\right|}{2^{n} n!} X^{n}\right\} \\
& \times\left\{1+\sum_{j \geq 1}\left(2^{\lambda_{1}^{\prime}-\lambda_{j+1}^{\prime}}-2^{\lambda_{1}^{\prime}-\lambda_{j}^{\prime}}\right) \exp \left(-2^{\ell-1} \sum_{k=0}^{j} 2^{s_{\lambda}(k)-k} X^{2^{k}}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(P, A_{n}\right)\right|}{n!} X^{n} \\
&=\frac{1}{2^{\ell}}\left\{\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(P, S_{n}\right)\right|}{n!} X^{n}\right\} \\
& \times\left\{1+\sum_{j \geq 1}\left(2^{\lambda_{1}^{\prime}-\lambda_{j+1}^{\prime}}-2^{\lambda_{1}^{\prime}-\lambda_{j}^{\prime}}\right) \exp \left(-2 \sum_{k=1}^{j} 2^{s_{\lambda}(k)-k} X^{2^{k}}\right)\right\}
\end{aligned}
$$

Remark 4.13 The form of $E_{P}\left(X:\left\{A_{n}\right\}_{0}^{\infty}\right)$ in the theorem above is also a consequence of Lemma 4.11 and [15, Theorem 1.1].

5. Explicit formulas

Keep the notation of Section 4, and further assume that $\lambda_{1}=\cdots=\lambda_{\ell-1}=u$ and $\lambda_{\ell}=v$, where $\ell \geq 1$ and $u \geq v>0$. Then $P \simeq\left(\mathbb{Z} / p^{u} \mathbb{Z}\right)^{(\ell-1)} \times \mathbb{Z} / p^{v} \mathbb{Z}$, whence $\sharp T_{u}(P)=p^{\ell}-p$ and $\sharp T_{v}(P)=p-1$.

Example 5.1 By Theorem 4.8, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\left(\mathbb{Z} / p^{u} \mathbb{Z}\right)^{(\ell-1)} \times \mathbb{Z} / p^{v} \mathbb{Z}, G(p, p, n)\right)\right|}{p^{n} n!} X^{n} \\
&= \frac{1}{p^{\ell}}\left\{\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\left(\mathbb{Z} / p^{u} \mathbb{Z}\right)^{(\ell-1)} \times \mathbb{Z} / p^{v} \mathbb{Z},(\mathbb{Z} / p \mathbb{Z}) \imath S_{n}\right)\right|}{p^{n} n!} X^{n}\right\} \\
& \times\left\{1+(p-1) \exp \left(-p^{\ell-1} \sum_{k=0}^{v-1} p^{(\ell-2) k} X^{p^{k}}\right)\right. \\
&\left.+\left(p^{\ell}-p\right) \exp \left(-p^{\ell-1} \sum_{k=0}^{v-1} p^{(\ell-2) k} X^{p^{k}}-p^{\ell-1} \sum_{k=v}^{u-1} p^{(\ell-3) k+v-1} X^{p^{k}}\right)\right\}
\end{aligned}
$$

By Theorem 4.12,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\left(\mathbb{Z} / 2^{u} \mathbb{Z}\right)^{(\ell-1)} \times \mathbb{Z} / 2^{v} \mathbb{Z}, L(2,2, n)\right)\right|}{2^{n} n!} X^{n} \\
&= \frac{1}{2^{\ell}}\left\{\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\left(\mathbb{Z} / 2^{u} \mathbb{Z}\right)^{(\ell-1)} \times \mathbb{Z} / 2^{v} \mathbb{Z},(\mathbb{Z} / 2 \mathbb{Z}) \imath S_{n}\right)\right|}{2^{n} n!} X^{n}\right\} \\
& \times\left\{1+\exp \left(-2^{\ell-1} \sum_{k=0}^{v} 2^{(\ell-2) k} X^{2^{k}}\right)\right. \\
&\left.+\left(2^{\ell}-2\right) \exp \left(-2^{\ell-1} \sum_{k=0}^{v} 2^{(\ell-2) k} X^{2^{k}}-2^{\ell-1} \sum_{k=v+1}^{u} 2^{(\ell-3) k+v} X^{2^{k}}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\left(\mathbb{Z} / 2^{u} \mathbb{Z}\right)^{(\ell-1)} \times \mathbb{Z} / 2^{v} \mathbb{Z}, A_{n}\right)\right|}{n!} X^{n} \\
&= \frac{1}{2^{\ell}}\left\{\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\left(\mathbb{Z} / 2^{u} \mathbb{Z}\right)^{(\ell-1)} \times \mathbb{Z} / 2^{v} \mathbb{Z}, S_{n}\right)\right|}{n!} X^{n}\right\} \\
& \times\left\{1+\exp \left(-2 \sum_{k=1}^{v} 2^{(\ell-2) k} X^{2^{k}}\right)\right. \\
&\left.\quad+\left(2^{\ell}-2\right) \exp \left(-2 \sum_{k=1}^{v} 2^{(\ell-2) k} X^{2^{k}}-2 \sum_{k=v+1}^{u} 2^{(\ell-3) k+v} X^{2^{k}}\right)\right\}
\end{aligned}
$$

Remark 5.2 The formulas of $E_{P}\left(X:\left\{W\left(D_{n}\right)\right\}_{0}^{\infty}\right)$ and $E_{P}\left(X:\left\{A_{n}\right\}_{0}^{\infty}\right)$ where $P=\left(\mathbb{Z} / 2^{u} \mathbb{Z}\right)^{(\ell)}$ are due to Müller and Shareshian [11].

We next suppose that $P \cong \mathbb{Z} / p^{u} \mathbb{Z} \times \mathbb{Z} / p^{v} \mathbb{Z}$, where $u \geq v>0$. Given a nonnegative integer k, let $N_{P}(k)$ be the number of subgroups of order p^{k} in P.

Proposition 5.3 Let k be a nonnegative integer. Then

$$
N_{P}(k)= \begin{cases}1+p+\cdots+p^{k} & \text { if } 0 \leq k<v \\ 1+p+\cdots+p^{v} & \text { if } v \leq k \leq u \\ 1+p+\cdots+p^{u+v-k} & \text { if } u<k \leq u+v\end{cases}
$$

Proof. We proceed by induction on $u+v$. Obviously, the assertion is true if $u+v=0$. Assume that $u+v>0$ and $P=\langle a\rangle \times\langle b\rangle$, where a has order p^{u} and b order p^{v}. Put $M=\left\langle a^{p}\right\rangle \times\langle b\rangle$. If $k<v$, then $N_{P}(k)=N_{M}(k)$ because every subgroup of order less than p^{v} is contained in M, and hence by the inductive assumption,

$$
N_{P}(k)=1+p+\cdots+p^{k}
$$

Case (1) Assume that $u=v$. Then by [14, Corollary], we obtain

$$
N_{P}(v)=N_{M}(v-1)+p^{v} .
$$

Hence by the inductive assumption,

$$
N_{P}(v)=1+p+\cdots+p^{v}
$$

Case (2) Assume that $u>v$. If $v \leq k<u$, then clearly $N_{P}(k)=N_{M}(k)$. Moreover, it follows from [14, Corollary] that

$$
N_{P}(u)=N_{M}(u-1)
$$

Hence if $v \leq k \leq u$, then by the inductive assumption,

$$
N_{P}(k)=1+p+\cdots+p^{v} .
$$

Since $N_{P}(k)=N_{P}(u+v-k)$, the assertion of the proposition follows.
It is easy to prove the following.
Lemma 5.4 Let k be a positive integer. Then the number of cyclic subgroups of order p^{k} in P is $p^{k-1}+p^{k}$ if $0<k \leq v$, and is p^{v} if $v<k \leq u$.

The next result is a consequence of Proposition 5.3 and Lemma 5.4.

Proposition 5.5 We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z} / p^{u} \mathbb{Z} \times \mathbb{Z} / p^{v} \mathbb{Z}, S_{n}\right)\right|}{p^{n} n!} X^{n} \\
&=\exp \left(\sum_{k=0}^{v-1} \frac{1+\cdots+p^{k}}{p^{k}} X^{p^{k}}+\sum_{k=v}^{u}\right. \frac{1+\cdots+p^{v}}{p^{k}} X^{p^{k}} \\
&\left.+\sum_{k=u+1}^{u+v} \frac{1+\cdots+p^{u+v-k}}{p^{k}} X^{p^{k}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z} / p^{u} \mathbb{Z} \times \mathbb{Z} / p^{v} \mathbb{Z},(\mathbb{Z} / p \mathbb{Z}) \backslash S_{n}\right)\right|}{p^{n} n!} X^{n} \\
&=\exp \left(\sum_{k=0}^{v-1} \frac{p+\cdots+p^{k+1}}{p^{k}} X^{p^{k}}+\sum_{k=v}^{u-1} \frac{p+\cdots+p^{v}}{p^{k}} X^{p^{k}}+\sum_{k=v}^{u-1} \frac{p^{v}}{p^{k}} X^{p^{k}}\right. \\
&\left.\quad+\sum_{k=u}^{u+v-1} \frac{p+\cdots+p^{u+v-k}}{p^{k}} X^{p^{k}}+\sum_{k=u}^{u+v} \frac{p^{u+v-k-1}}{p^{k}} X^{p^{k}}\right) .
\end{aligned}
$$

We are now in position to determine the form of $E_{P}\left(X / p:\{G(p, p, n)\}_{0}^{\infty}\right)$, $E_{P}\left(X / 2:\{L(2,2, n)\}_{0}^{\infty}\right)$, and $E_{P}\left(X:\left\{A_{n}\right\}_{0}^{\infty}\right)$.

Theorem 5.6 We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z} / p^{u} \mathbb{Z} \times \mathbb{Z} / p^{v} \mathbb{Z}, G(p, p, n)\right)\right|}{p^{n} n!} X^{n} \\
& =\frac{1}{p^{2}} \exp \left(\sum_{k=1}^{v-1} \frac{p+\cdots+p^{k}}{p^{k}} X^{p^{k}}+\sum_{k=v}^{u-1} \frac{p+\cdots+p^{v}}{p^{k}} X^{p^{k}}\right. \\
& \left.\quad+\sum_{k=u}^{u+v-1} \frac{p+\cdots+p^{u+v-k}}{p^{k}} X^{p^{k}}+\sum_{k=u}^{u+v} \frac{p^{u+v-k-1}}{p^{k}} X^{p^{k}}\right) \\
& \quad \times\left\{\exp \left(\sum_{k=0}^{v-1} p X^{p^{k}}+\sum_{k=v}^{u-1} \frac{p^{v}}{p^{k}} X^{p^{k}}\right)+(p-1) \exp \left(\sum_{k=v}^{u-1} \frac{p^{v}}{p^{k}} X^{p^{k}}\right)+p(p-1)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z} / 2^{u} \mathbb{Z} \times \mathbb{Z} / 2^{v} \mathbb{Z}, L(2,2, n)\right)\right|}{2^{n} n!} X^{n} \\
& =\frac{1}{2^{2}} \exp \left(\sum_{k=1}^{v-1} \frac{2+\cdots+2^{k}}{2^{k}} X^{2^{k}}+\sum_{k=v}^{u-1} \frac{2+\cdots+2^{v}}{2^{k}} X^{2^{k}}-\sum_{k=v}^{u-1} \frac{2^{v}}{2^{k}} X^{2^{k}}\right. \\
& \left.\quad-\frac{2}{2^{u}} X^{2^{u}}+\sum_{k=u+1}^{u+v-1} \frac{2+\cdots+2^{u+v-k}}{2^{k}} X^{2^{k}}+\sum_{k=u}^{u+v} \frac{2^{u+v-k-1}}{2^{k}} X^{2^{k}}\right) \\
& \quad \times\left\{\exp \left(\sum_{k=0}^{v} 2 X^{2^{k}}+\sum_{k=v+1}^{u} \frac{2^{v+1}}{2^{k}} X^{2^{k}}\right)+\exp \left(\sum_{k=v+1}^{u} \frac{2^{v+1}}{2^{k}} X^{2^{k}}\right)+2\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z} / 2^{u} \mathbb{Z} \times \mathbb{Z} / 2^{v} \mathbb{Z}, A_{n}\right)\right|}{n!} X^{n} \\
&= \frac{1}{2^{2}} \exp \left(X-\sum_{k=1}^{u} \frac{1}{2^{k}} X^{2^{k}}+\sum_{k=u+1}^{u+v} \frac{1+\cdots+2^{u+v-k}}{2^{k}} X^{2^{k}}\right) \\
& \quad \times\left\{\exp \left(\sum_{k=1}^{v} 2 X^{2^{k}}+\sum_{k=v+1}^{u} \frac{2^{v+1}}{2^{k}} X^{2^{k}}\right)+\exp \left(\sum_{k=v+1}^{u} \frac{2^{v+1}}{2^{k}} X^{2^{k}}\right)+2\right\}
\end{aligned}
$$

Remark 5.7 In [15, Exapmle 6.2], the formula of $E_{P}\left(X / 2:\left\{W\left(D_{n}\right)\right\}_{0}^{\infty}\right)$, where $P=\mathbb{Z} / 2^{u} \mathbb{Z} \times \mathbb{Z} / 2^{v} \mathbb{Z}$, is not correct, and neither is the formula of $E_{P}\left(X:\left\{A_{n}\right\}_{0}^{\infty}\right)$; either of them has a wrong term.

6. The additive group of p-adic integers

Let \mathbb{Z}_{p} be the additive group of p-adic integers. The subgroups of finite index in \mathbb{Z}_{p} are $p^{k} \mathbb{Z}_{p}, k=0,1,2, \ldots$. Moreover, $\mathbb{Z}_{p} / p^{k} \mathbb{Z}_{p} \cong \mathbb{Z} / p^{k} \mathbb{Z}$ for each nonnegative integer k. In [6] Dress and Yoshida pointed out that

$$
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z}_{p}, S_{n}\right)\right|}{n!} X^{n}=\exp \left(\sum_{k=0}^{\infty} \frac{1}{p^{k}} X^{p^{k}}\right) ;
$$

this is called the Artin-Hasse exponential. We conclude this paper with a presentation of the following consequences of Theorem 3.2 :

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z}_{2}, A_{n}\right)\right|}{n!} X^{n}=\frac{1}{2} \exp \left(\sum_{k=0}^{\infty} \frac{1}{2^{k}} X^{2^{k}}\right)+\frac{1}{2} \exp \left(X-\sum_{k=1}^{\infty} \frac{1}{2^{k}} X^{2^{k}}\right) \\
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(\mathbb{Z}_{p}, G(p, p, n)\right)\right|}{p^{n} n!} X^{n}=\frac{1}{p} \exp \left(\sum_{k=0}^{\infty} \frac{1}{p^{k}} X^{p^{k}}\right)+\frac{p-1}{p} .
\end{gathered}
$$

References

[1] S. Bouc, Non-additive exact functors and tensor induction for Mackey functors, Mem. Amer. Math. Soc. 144 (683) (2000).
[2] S. Chowla, I. N. Herstein, and W. R. Scott, The solutions of $x^{d}=1$ in symmetric groups, Norske Vid. Selsk. Forh. (Trondheim) 25 (1952), 29-31.
[3] N. Chigira, The solutions of $x^{d}=1$ in finite groups, J. Algebra 180 (1996), 653-661.
[4] C. W. Curtis and I. Reiner, "Methods of Representation Theory," vol. I, WileyInterscience, New York, 1981.
[5] I. M. S. Dey, Schreier systems in free products, Proc. Glasgow Math. Assoc. 7 (1965), 61-79.
[6] A. W. M. Dress and T. Yoshida, On p-divisibility of the Frobenius numbers of symmetric groups, 1991, preprint.
[7] B. Huppert, "Character theory of finite groups," de Gruyter Expositions in Mathematics, 25, Walter de Gruyter, Berlin, 1998
[8] R. Kane, "Reflection Groups and Invariant Theory," CMS Books in Mathematics 5, Springer-Verlag, New York, 2001.
[9] A. Kerber, "Representations of Permutation Groups I," Lecture Notes in Math., vol. 240, Springer-Verlag, Berlin, 1971
[10] T. Müller, Enumerating representations in finite wreath products, Adv. Math. 153 (2000), 118-154.
[11] T. Müller and J. Shareshian, Enumerating representations in finite wreath products II: Explicit Formulas Adv. Math. 171 (2002), 276-331.
[12] S. Okada, Wreath products by the symmetric groups and product posets of Young's lattices, J. Combin. Theory Ser. A 55 (1990), 14-32.
[13] J. Riordan, "An Introduction to Combinatorial Analysis," Wiley, New York, 1958.
[14] T. Stehling, On computing the number of subgroups of a finite abelian group, Combinatorica 12 (1992), 475-479.
[15] Y. Takegahara, A generating function for the number of homomorphisms from a finitely generated abelian group to an alternating group, J. Algebra 248 (2002), 554-574.
[16] Y. Takegahara, Generating functions for permutation representations, J. Algebra 281 (2004), 68-82.
[17] K. Wohlfahrt, Über einen Satz von Dey und die Modulgruppe, Arch. Math. (Basel) 29 (1977), 455-457.
[18] T. Yoshida, Categorical aspects of generating functions (I): exponential formulas and Krull-Schmidt categories, J. Algebra 240 (2001), 40-82.

