

On Wohlfahrt series and wreath products

メタデータ	言語: eng
	出版者: Elsevier B.V.
	公開日: 2007-12-11
	キーワード (Ja):
	キーワード (En): generating function, symmetric group,
	linear character, wreath product, reflection group,
	finite abelian group
	作成者: 竹ケ原, 裕元
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/285

On Wohlfahrt series and wreath products

著者	TAKEGAHARA Yugen
journal or	Advances in Mathematics
publication title	
volume	209
number	2
page range	526-546
year	2007-03
URL	http://hdl.handle.net/10258/285

doi: info:doi/10.1016/j.aim.2006.05.008

On Wohlfahrt series and wreath products

Yugen Takegahara

Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan E-mail: yugen@mmm.muroran-it.ac.jp

Abstract. Suppose that a group A contains only a finite number of subgroups of index d for each positive integer d. Let $G \wr S_n$ be the wreath product of a finite group G with the symmetric group S_n on $\{1, \ldots, n\}$. For each positive integer n, let K_n be a subgroup of $G \wr S_n$ containing the commutator subgroup of $G \wr S_n$. If the sequence $\{K_n\}_0^\infty$ satisfies a certain compatible condition, then the exponential generating function $\sum_{n=0}^{\infty} |\text{Hom}(A, K_n)| X^n / |G|^n n!$ of the sequence $\{|\text{Hom}(A, K_n)|\}_0^\infty$ takes the form of a sum of exponential functions.

1. Introduction

Let A be a group and \mathcal{F}_A the set of subgroups B of A of finite index |A : B|. Suppose that A contains only a finite number of subgroups of index d for each positive integer d. Then for any finite group K, the set Hom(A, K) of homomorphisms from A to K is a finite set. We denote by |Hom(A, K)| the number of homomorphisms from A to a finite group K. Let S_n be the symmetric group on $[n] = \{1, \ldots, n\}$ and S_0 the group consisting of only the identity. In [17] Wohlfahrt proves that

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, S_n)|}{n!} X^n = \exp\left(\sum_{B \in \mathcal{F}_A} \frac{1}{|A:B|} X^{|A:B|}\right).$$
(WF)

This formula interests us in various exponential formulas.

Given a sequence $\{K_n\}_0^\infty$ of finite groups, the Wohlfahrt series $E_A(X : \{K_n\}_0^\infty)$ is the exponential generating function

$$\sum_{n=0}^{\infty} \frac{|\mathrm{Hom}(A, K_n)|}{n!} X^n.$$

Previous studies of Wohlfahrt series have given some exponential formulas, each of which is a sum of exponential functions. In this paper we extend the approach to the exponential formulas. The approach is based on character theory of finite groups.

²⁰⁰⁰ Mathematics Subject Classification: 05A15, 20B30, 20C15, 20E22, 20F55, 20K01.

Keyword and phrases : generating function, symmetric group, linear character, wreath product, reflection group, finite abelian group.

$$G \wr H = \{(g_1, \ldots, g_n)h \mid (g_1, \ldots, g_n) \in G^{(n)}, h \in H\}$$

is the semidirect product $G^{(n)} \rtimes H$, in which each $h \in H$ acts as an inner automorphism on $G^{(n)}$:

$$h(g_1,\ldots,g_n)h^{-1} = (g_{h^{-1}(1)},\ldots,g_{h^{-1}(n)}).$$

We consider $G \wr S_0 = S_0$. In [10, 11, 15, 16] the Wohlfahrt formula (WF) is extended to formulas for $E_A(X : \{G \wr S_n\}_0^\infty)$ and $E_A(X/|G| : \{G \wr S_n\}_0^\infty)$ (cf. Corollary 2.7).

Let 1_{S_n} be the trivial \mathbb{C} -character of S_n and δ_n the linear \mathbb{C} -character of S_n such that $\delta_n(h)$ is the sign of h for all $h \in S_n$, where \mathbb{C} is the complex numbers. We denote by \mathbf{e} the sequence $\{1_{S_n}\}_0^\infty$ and denote by \mathbf{sgn} the sequence $\{\delta_n\}_0^\infty$. Let χ be a linear \mathbb{C} -character of G, and let $\zeta(\chi, \mathbf{e}, n)$ and $\zeta(\chi, \mathbf{sgn}, n)$ be linear \mathbb{C} -characters of $G \wr S_n$ defined by

$$\zeta(\chi, \mathbf{e}, n)((g_1, \dots, g_n)h) = \chi(g_1 \cdots g_n) \mathbf{1}_{S_n}(h)$$

and

$$\zeta(\chi, \mathbf{sgn}, n)((g_1, \dots, g_n)h) = \chi(g_1 \cdots g_n)\delta_n(h)$$

for all $(g_1, \ldots, g_n) \in G^{(n)}$ and $h \in S_n$. Given a linear \mathbb{C} -character ζ of $G \wr S_n$, there exists a linear \mathbb{C} -character χ_0 of G such that $\zeta = \zeta(\chi_0, \mathbf{e}, n)$ or $\zeta = \zeta(\chi_0, \mathbf{sgn}, n)$.

Let $\mathbf{z} \in \{\mathbf{e}, \mathbf{sgn}\}$. We define $K(\chi, \mathbf{z}, n)$ to be the kernel of $\zeta(\chi, \mathbf{z}, n)$, and consider $K(\chi, \mathbf{e}, 0) = K(\chi, \mathbf{sgn}, 0) = S_0$. Let $\mathbf{1}_G$ be the trivial \mathbb{C} -character of G, and let A_n be the alternating group on [n]. Then $G \wr S_n = K(\mathbf{1}_G, \mathbf{e}, n)$ and $G \wr A_n = K(\mathbf{1}_G, \mathbf{sgn}, n)$. The Wohlfahrt series $E_A(X : \{K(\mathbf{1}_G, \mathbf{z}, n) \cap K(\chi, \mathbf{e}, n)\}_0^\infty)$ with $|G/\operatorname{Ker} \chi| \leq 2$ is described as a sum of exponential functions by Müller and Shareshian [11]. The form of $E_A(X/|G| : \{G \wr A_n\}_0^\infty)$ is also studied in [16] (cf. Corollary 2.8). Moreover, $E_A(X/|G| : \{K(\chi, \mathbf{e}, n)\}_0^\infty)$ with $|G/\operatorname{Ker} \chi| = p$, where p is a prime, takes the form of a sum of exponential functions, and so does $E_A(X/|G| : \{K(\chi, \mathbf{sgn}, n)\}_0^\infty)$ with $|G/\operatorname{Ker} \chi| = 2$ [16, Theorem 1].

Given linear \mathbb{C} -characters χ_1, \ldots, χ_s of G and an element $(\mathbf{z}_1, \ldots, \mathbf{z}_s)$ of the Cartesian product $\{\mathbf{e}, \mathbf{sgn}\}^{(s)}$ of s copies of $\{\mathbf{e}, \mathbf{sgn}\}$, we define

$$K(\chi_1,\ldots,\,\chi_s,\mathbf{z}_1,\ldots,\,\mathbf{z}_s,n) = \bigcap_{i\in\{1,\ldots,\,s\}} K(\chi_i,\mathbf{z}_i,n).$$

Every subgroup of $G \wr S_n$ containing the commutator subgroup of $G \wr S_n$ is considered as such a subgroup, because any subgroup of a finite abelian group is expressed as the intersection of kernels of linear \mathbb{C} -characters. In Section 2 we study the form of

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, K(\chi_1, \dots, \chi_s, \mathbf{z}_1, \dots, \mathbf{z}_s, n))|}{|G|^n n!} X^n,$$

which is described as a sum of exponential functions (cf. Theorem 2.1).

Let *m* be a positive integer, and let ω be a primitive *m*th root of unity in \mathbb{C} . If *G* is the cyclic group $\langle \omega \rangle$ generated by ω and if $\chi(\omega) = \omega^{m/r}$, where *r* is a divisor of *m*, then we identify $K(\chi, \mathbf{e}, n)$ with the imprimitive complex pseudo-reflection group G(m, r, n) [8], and define

$$H(m, r, n) = K(\chi, \mathbf{e}, n) \cap (G \wr A_n) (= K(\chi, \mathbf{1}_G, \mathbf{e}, \mathbf{sgn}, n))$$

and

$$L(m, r, n) = K(\chi, \mathbf{sgn}, n).$$

The form of $E_A(X/p: \{G(p, p, n)\}_0^\infty)$ and the form of $E_A(X/2: \{L(2, 2, n)\}_0^\infty)$ are studied in [16]. In Section 3 we study the form of $E_A(X/m: \{K_n\}_0^\infty)$ where K_n is G(m, r, n), H(m, r, n) or L(m, r, n) (cf. Theorem 3.2).

The Weyl group $W(D_n)$ of type D_n is isomorphic to G(2, 2, n). When A is a finite abelian group, the explicit forms of $E_A(X : \{G \wr A_n\}_0^\infty)$ and $E_A(X : \{W(D_n)\}_0^\infty)$ are given in [11]. In Section 4 we study the form of $E_P(X/p : \{G(p, p, n)\}_0^\infty)$ where Pis a finite abelian p-group, together with that of $E_P(X/2 : \{L(2, 2, n)\}_0^\infty)$ and that of $E_P(X : \{A_n\}_0^\infty)$ where P is a finite abelian 2-group (cf. Theorems 4.8 and 4.12). The argument about the descriptions of these Wohlfahrt series is essentially due to Müller and Shareshian (see [11, Section 4]).

In Sections 5 and 6 we present some examples.

2. The form of Wohlfahrt series

Let χ_1, \ldots, χ_s be linear \mathbb{C} -characters of G, and let $(\mathbf{z}_1, \ldots, \mathbf{z}_s) \in \{\mathbf{e}, \mathbf{sgn}\}^{(s)}$. In this section we study the form of $E_A(X/|G| : \{K(\chi_1, \ldots, \chi_s, \mathbf{z}_1, \ldots, \mathbf{z}_s, n)\}_0^{\infty})$.

Let $i \in \{1, \ldots, s\}$. Suppose that the factor group $G/\operatorname{Ker} \chi_i$ is of order r'_i . Put $r_i = r'_i$ if r'_i is even or $\mathbf{z}_i = \mathbf{e}$, and $r_i = 2r'_i$ otherwise. Then the linear \mathbb{C} -character $\zeta(\chi_i, \mathbf{z}_i, n)$ is a homomorphism from $G \wr S_n$ to the cyclic group $\langle \omega_{r_i} \rangle$ generated by a primitive r_i th root ω_{r_i} of unity in \mathbb{C} . Define

$$\Phi_{r_i}(A) = \bigcap_{\alpha \in \operatorname{Hom}(A, \langle \omega_{r_i} \rangle)} \operatorname{Ker} \alpha.$$

Then $\Phi_{r_i}(A)$ is a normal subgroup of A and the factor group $A/\Phi_{r_i}(A)$ is a finite abelian group. Write $R_i = A/\Phi_{r_i}(A)$, and let \overline{a} denote the coset $a\Phi_{r_i}(A)$ of $\Phi_{r_i}(A)$ in A containing $a \in A$. Given $\varphi \in \text{Hom}(A, G \wr S_n)$ and $\overline{a} \in R_i$, it is clear that $\zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c))$ with $c \in \overline{a}$ is independent of the choice of c in \overline{a} .

Let $B \in \mathcal{F}_A$. We define a homomorphism $\operatorname{sgn}_{A/B}$ from A to \mathbb{C} by

$$\operatorname{sgn}_{A/B}(a) = \begin{cases} 1 & \text{if } a \in A \text{ is an even permutation on } A/B, \\ -1 & \text{if } a \in A \text{ is an odd permutation on } A/B, \end{cases}$$

where A/B is the left A-set consisting of all left cosets of B in A with the action given by a.cB = acB for all $a, c \in A$.

Suppose that |A : B| = d and $T_B^A = \{a_1, \ldots, a_d\}$ is a left transversal of B in A. For each normal subgroup N of B containing the commutator subgroup B', let $V_{A \to B/N}$ be the transfer from A to the factor group B/N defined by

$$V_{A \to B/N}(a) = \prod_{j=1}^{d} a_{j'}^{-1} a a_j N \quad \text{with} \quad a a_j \in a_{j'} B$$

for all $a \in A$, which is independent of the choice of T_B^A , and is a homomorphism.

Let $\alpha \in \text{Hom}(B, \mathbb{C}^{\times})$, \mathbb{C}^{\times} the multiplicative group of \mathbb{C} . Then $B' \leq \text{Ker} \alpha$. Let α_0 be the homomorphism from B/B' to \mathbb{C}^{\times} defined by $\alpha_0(bB') = \alpha(b)$ for all $b \in B$. Let $\alpha^{\otimes A}$ be the homomorphism from A to \mathbb{C}^{\times} given by

$$\alpha^{\otimes A}(a) = \alpha_0(V_{A \to B/B'}(a))$$

for all $a \in A$, which is the representation afforded by a tensor induced $\mathbb{C}A$ -module (see [4, (13.12) Proposition]). Let $\kappa \in \text{Hom}(B, G)$. Given $\overline{a} \in R_i$, it is clear that $(\chi_i \circ \kappa)^{\otimes A}(c)$ with $c \in \overline{a}$ is independent of the choice of c in \overline{a} .

Set $I = \{i \mid \mathbf{z}_i = \mathbf{sgn}\}$. Given $\overline{a} \in R_i$ with $i \in I$, $\operatorname{sgn}_{A/B}(c)$ with $c \in \overline{a}$ is independent of the choice of c in \overline{a} .

Put $R = R_1 \times \cdots \times R_s$. Given $(\overline{c_1}, \ldots, \overline{c_s}) \in R$, we define

$$\rho_B(\overline{c_1},\ldots,\overline{c_s}) = \operatorname{sgn}_{A/B}\left(\prod_{i\in I} c_i\right) \sum_{\kappa\in\operatorname{Hom}(B,G)} \prod_{i=1}^s (\chi_i\circ\kappa)^{\otimes A}(c_i).$$

We are successful in finding the following formula.

Theorem 2.1

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, K(\chi_1, \dots, \chi_s, \mathbf{z}_1, \dots, \mathbf{z}_s, n))|}{|G|^n n!} X^n$$
$$= \frac{1}{|R|} \sum_{(\overline{c_1}, \dots, \overline{c_s}) \in R} \exp\left(\sum_{B \in \mathcal{F}_A} \frac{\rho_B(\overline{c_1}, \dots, \overline{c_s})}{|G| |A : B|} X^{|A : B|}\right).$$

Let us prove this theorem. We start with the following lemma, which plays a crucial role in this description of $E_A(X/|G| : \{K(\chi_1, \ldots, \chi_s, \mathbf{z}_1, \ldots, \mathbf{z}_s, n)\}_0^\infty)$.

Lemma 2.2 Let $\varphi \in \text{Hom}(A, G \wr S_n)$. Then for each integer *i* with $1 \le i \le s$,

$$\frac{1}{|R_i|} \sum_{\overline{a} \in R_i} \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(a)) = \begin{cases} 1 & \text{if } \operatorname{Im} \varphi \leq K(\chi_i, \mathbf{z}_i, n), \\ 0 & \text{otherwise,} \end{cases}$$

where the sum $\sum_{\overline{a} \in R_i}$ is over all left cosets $\overline{a} \in R_i$ with $a \in A$.

Proof. Define a \mathbb{C} -character α_i of R_i by setting

$$\alpha_i(\overline{a}) = \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(a))$$

for all $\overline{a} \in R_i$ with $a \in A$. Then $\operatorname{Im} \varphi \leq K(\chi_i, \mathbf{z}_i, n)$ if and only if α_i is the trivial \mathbb{C} -character of R_i . Hence it follows from the first orthogonality relation [4, (9.21) Proposition] that

$$\frac{1}{|R_i|} \sum_{\overline{a} \in R_i} \alpha_i(\overline{a}) = \begin{cases} 1 & \text{if } \operatorname{Im} \varphi \leq K(\chi_i, \mathbf{z}_i, n), \\ 0 & \text{otherwise,} \end{cases}$$

which proves the lemma. \Box

This lemma enables us to get the following proposition.

Proposition 2.3

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, K(\chi_1, \dots, \chi_s, \mathbf{z}_1, \dots, \mathbf{z}_s, n))|}{n!} X^n$$
$$= \frac{1}{|R|} \sum_{(\overline{c_1}, \dots, \overline{c_s}) \in R} \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \sum_{\varphi \in \operatorname{Hom}(A, G \wr S_n)} \prod_{i=1}^s \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i)) \right\} X^n.$$

Proof. If $\varphi \in \text{Hom}(A, G \wr S_n)$, then by Lemma 2.2, we have

$$\prod_{i=1}^{s} \left\{ \frac{1}{|R_i|} \sum_{\overline{c_i \in R_i}} \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i)) \right\} = \begin{cases} 1 & \text{if } \operatorname{Im} \varphi \leq \bigcap_{i \in \{1, \dots, s\}} K(\chi_i, \mathbf{z}_i, n), \\ 0 & \text{otherwise.} \end{cases}$$

Hence it turns out that

$$\begin{aligned} |\operatorname{Hom}(A, K(\chi_1, \dots, \chi_s, \mathbf{z}_1, \dots, \mathbf{z}_s, n))| \\ &= \sum_{\varphi \in \operatorname{Hom}(A, G \wr S_n)} \prod_{i=1}^s \left\{ \frac{1}{|R_i|} \sum_{\overline{c_i} \in R_i} \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i)) \right\} \\ &= \frac{1}{|R|} \sum_{(\overline{c_1}, \dots, \overline{c_s}) \in R_1 \times \dots \times R_s} \sum_{\varphi \in \operatorname{Hom}(A, G \wr S_n)} \prod_{i=1}^s \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i)), \end{aligned}$$

completing the proof of the proposition. \Box

We consider the Cartesian product $G \times [n]$ of G and [n] to be the left $G \wr S_n$ -set with the left action of $G \wr S_n$ given by

$$(g_1, \ldots, g_n)h.(g, i) = (g_{h(i)}g, h(i))$$

for all $(g_1, \ldots, g_n) \in G^{(n)}$, $h \in S_n$, and $(g, i) \in G \times [n]$ [9, 2.11], so that $G \wr S_n$ is isomorphic to the automorphism group of the free right G-set $G \times [n]$ with the right action of G given by (g, i).y = (gy, i) for all $(g, i) \in G \times [n]$ and $y \in G$ (see [1, Proposition 6.11], [16, Proposition 1]).

Let v_n be the homomorphism from $G \wr S_n$ to S_n defined by

$$v_n((g_1,\ldots,g_n)h)=h$$

for all $(g_1, \ldots, g_n) \in G^{(n)}$ and $h \in S_n$.

Set $\mathcal{F}_A(n) = \{B \in \mathcal{F}_A \mid |A : B| \le n\}$. We now show a recurrence formula like Dey's theorem [5, (6.10)], namely,

Proposition 2.4 If n is a positive integer, then

$$\sum_{\varphi \in \operatorname{Hom}(A,G \wr S_n)} \frac{\prod_{i=1}^s \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i))}{|G|^n (n-1)!}$$

$$=\sum_{B\in\mathcal{F}_A(n)}\frac{\rho_B(\overline{c_1},\ldots,\overline{c_s})}{|G|}\sum_{\psi\in\operatorname{Hom}(A,G\wr S_{n-|A:B|})}\frac{\prod_{i=1}^s\zeta(\chi_i,\mathbf{z}_i,n-|A:B|)(\psi(c_i))}{|G|^{n-|A:B|}(n-|A:B|)!}$$

with $c_1, \ldots, c_s \in A$.

The proof is analogous to that of [15, Theorem 3.1].

Proof of Proposition 2.4. If $B \in \mathcal{F}_A$, then we fix a left transversal T_B^A containing the identity ϵ_A of A. We denote by ϵ the identity of G.

Let $\varphi \in \text{Hom}(A, G \wr S_n)$. Define a subgroup B of A by

$$B = \{ a \in A \mid v_n(\varphi(a))(1) = 1 \},\$$

and define a homomorphism κ from B to G by

$$\varphi(b).(\epsilon,1) = (\kappa(b),1)$$

for all $b \in B$. We then have $|A:B| \leq n$. Suppose that $T_B^A = \{a_1, \ldots, a_d\}$ with $a_1 = \epsilon_A$ and d = |A:B|. Define an injection ι from [d] into [n] with $\iota(1) = 1$ by

$$\iota(j) = \upsilon_n(\varphi(a_j))(1)$$

for all $j \in [d]$, and define an element (y_1, \ldots, y_d) of the Cartesian product $G^{(d)}$ of d copies of G with $y_1 = \epsilon$ by

$$\varphi(a_j).(\epsilon, 1) = (y_j, \iota(j))$$

for all $j \in [d]$. If $a \in A$ and if $j \in [d]$, then we have

$$\varphi(a).(\epsilon,\iota(j)) = (y_{j'}\kappa(a_{j'}^{-1}aa_j)y_j^{-1},\iota(j')) \quad \text{with} \quad aa_j \in a_{j'}B.$$
(I)

Suppose that $\{\iota(1), \ldots, \iota(d)\} \cup \{k_1, \ldots, k_{n-d}\} = [n]$ and $k_1 < \cdots < k_{n-d}$. If $h \in \operatorname{Im}(\upsilon_n \circ \varphi)$, then we define a permutation \hat{h} on [n-d] by $h(k_t) = k_{\hat{h}(t)}$ for all $t \in [n-d]$. Let ψ be the mapping from A to $G \wr S_{n-d}$ defined by

$$\psi(a) = (g_{k_1}, \dots, g_{k_{n-d}})\hat{h} \quad \text{with} \quad h = \upsilon_n(\varphi(a)), \ \varphi(a) = (g_1, \dots, g_n)h \quad (\text{II})$$

for all $a \in A$. Then it is easily checked that ψ is a homomorphism.

We have got a quintet $(B, \kappa, \iota, (y_1, \ldots, y_d), \psi)$ satisfying the condition

$$\begin{cases}
B \in \mathcal{F}_A \text{ with } d = |A:B| \leq n, \\
\kappa \in \text{Hom}(B,G), \\
\iota \text{ is an injection from } [d] \text{ to } [n] \text{ with } \iota(1) = 1 \\
(y_1, \ldots, y_d) \in G^{(d)} \text{ with } y_1 = \epsilon, \\
\psi \in \text{Hom}(A, G \wr S_{n-d}),
\end{cases}$$
(III)

and by (I) and (II), we obtain

$$\prod_{i=1}^{s} \zeta(\chi_{i}, \mathbf{z}_{i}, n)(\varphi(c_{i})) = \operatorname{sgn}_{A/B} \left(\prod_{i \in I} c_{i} \right) \cdot \prod_{i=1}^{s} (\chi_{i} \circ \kappa)^{\otimes A}(c_{i}) \cdot \zeta(\chi_{i}, \mathbf{z}_{i}, n-d)(\psi(c_{i})).$$
(IV)

The preceding map

$$\Gamma : \varphi \to (B, \kappa, \iota, (y_1, \ldots, y_d), \psi)$$

from Hom $(A, G \wr S_n)$ to the set of quintets $(B, \kappa, \iota, (y_1, \ldots, y_d), \psi)$ satisfying (III) is clearly injective. Moreover, it is easily verified that Γ is surjective (see the proof of [15, Theorem 3.1]). Combining this fact with (IV), we have

$$\sum_{\varphi \in \operatorname{Hom}(A,G \wr S_n)} \prod_{i=1}^s \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i))$$

$$= \sum_{B \in \mathcal{F}_A(n)} \left\{ \rho_B(\overline{c_1}, \dots, \overline{c_s})) \frac{(n-1)!}{(n-|A:B|)!} |G|^{|A:B|-1} \times \sum_{\psi \in \operatorname{Hom}(A,G \wr S_{n-|A:B|})} \prod_{i=1}^s \zeta(\chi_i, \mathbf{z}_i, n-|A:B|)(\psi(c_i)) \right\}.$$

This completes the proof of the proposition. \Box

If $\chi_1 = \cdots = \chi_s = 1_G$ and if $\mathbf{z}_1 = \cdots = \mathbf{z}_s = \mathbf{e}$, then this proposition is the recurrence formula [15, Theorem 3.1] of $|\text{Hom}(A, G \wr S_n)|$, which is a generalization of the recurrence formula [17, Satz] of $|\text{Hom}(A, S_n)|$.

As a result of Proposition 2.4, we obtain the following proposition.

Proposition 2.5 Suppose that $c_1, \ldots, c_s \in A$. Then

$$\sum_{n=0}^{\infty} \frac{1}{|G|^n n!} \left\{ \sum_{\varphi \in \operatorname{Hom}(A, G \wr S_n)} \prod_{i=1}^s \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i)) \right\} X^n$$
$$= \exp\left(\sum_{B \in \mathcal{F}_A} \frac{\rho_B(\overline{c_1}, \dots, \overline{c_s})}{|G| |A : B|} X^{|A:B|} \right).$$

Proof. Put $\gamma_{\varphi}(n) = \prod_{i=1}^{s} \zeta(\chi_i, \mathbf{z}_i, n)(\varphi(c_i))$ with $\varphi \in \text{Hom}(A, G \wr S_n)$, and put $\beta(B) = \rho_B(\overline{c_1}, \ldots, \overline{c_s})$ with $B \in \mathcal{F}_A$ for convenience. We denote by $\Xi(n)$ the set of sequences $(n_B)_{B \in \mathcal{F}_A}$ of nonnegative integers n_B corresponding to $B \in \mathcal{F}_A$ such that $\sum_{B \in \mathcal{F}_A} n_B |A:B| = n$, and abbreviate $(n_B)_{B \in \mathcal{F}_A}$ to (n_B) . It suffices to show that for each nonnegative integer n,

$$\sum_{\varphi \in \operatorname{Hom}(A,G \wr S_n)} \frac{\gamma_{\varphi}(n)}{|G|^n n!} = \sum_{(n_B) \in \Xi(n)} \prod_{B \in \mathcal{F}_A} \frac{\beta(B)^{n_B}}{|G|^{n_B} |A:B|^{n_B} n_B!}$$

We use induction on n. Evidently, this formula is true if n = 0. Suppose that $n \ge 1$. Then Proposition 2.4 yields

$$\sum_{\varphi \in \operatorname{Hom}(A,G\wr S_n)} \frac{\gamma_{\varphi}(n)}{|G|^n (n-1)!} = \sum_{B \in \mathcal{F}_A(n)} \frac{\beta(B)}{|G|} \sum_{\psi \in \operatorname{Hom}(A,G\wr S_{n-|A:B|})} \frac{\gamma_{\psi}(n-|A:B|)}{|G|^{n-|A:B|} (n-|A:B|)!}.$$

Moreover, given $B \in \mathcal{F}_A(n)$, the inductive assumption means that

$$\sum_{\psi \in \operatorname{Hom}(A,G\wr S_{n-|A:B|})} \frac{\gamma_{\psi}(n-|A:B|)}{|G|^{n-|A:B|}(n-|A:B|)!} = \sum_{(n_K)\in \Xi(n-|A:B|)} \prod_{K\in \mathcal{F}_A} \frac{\beta(K)^{n_K}}{|G|^{n_K}|A:K|^{n_K}n_K!}$$

Hence we obtain

$$\sum_{\varphi \in \operatorname{Hom}(A,G\wr S_n)} \frac{\gamma_{\varphi}(n)}{|G|^n n!} = \frac{1}{n} \sum_{B \in \mathcal{F}_A(n)} \frac{\beta(B)}{|G|} \sum_{(n_K) \in \Xi(n-|A:B|)} \prod_{K \in \mathcal{F}_A} \frac{\beta(K)^{n_K}}{|G|^{n_K}|A:K|^{n_K} n_K!} \\ = \frac{1}{n} \sum_{B \in \mathcal{F}_A(n)} \sum_{(n_K) \in \Xi(n)} n_B|A:B| \prod_{K \in \mathcal{F}_A} \frac{\beta(K)^{n_K}}{|G|^{n_K}|A:K|^{n_K} n_K!} \\ = \frac{1}{n} \sum_{(n_K) \in \Xi(n)} \left(\sum_{B \in \mathcal{F}_A(n)} n_B|A:B| \right) \prod_{K \in \mathcal{F}_A} \frac{\beta(K)^{n_K}}{|G|^{n_K}|A:K|^{n_K} n_K!} \\ = \sum_{(n_K) \in \Xi(n)} \prod_{K \in \mathcal{F}_A} \frac{\beta(K)^{n_K}}{|G|^{n_K}|A:K|^{n_K} n_K!},$$

as required. \Box

Remark 2.6 Proposition 2.5 is also a consequence of a categorical fact, namely, [16, Propsition 5] (see the second half of the proof of [16, Theroem 1]). It should be stated in this connection that the categorical proof of the Wohlfahrt formula (WF) was given by Yoshida (see [18, 6.4]).

By virtue of Propositions 2.3 and 2.5, we have established Theorem 2.1.

Recall that $G \wr S_n = K(1_G, \mathbf{e}, n)$ and $G \wr A_n = K(1_G, \mathbf{sgn}, n)$. The next results are corollaries to Theorem 2.1.

Corollary 2.7 ([10, 11, 15, 16]) We have

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, G \wr S_n)|}{|G|^n n!} X^n = \exp\left(\sum_{B \in \mathcal{F}_A} \frac{|\operatorname{Hom}(B, G)|}{|G| |A : B|} X^{|A:B|}\right).$$

Corollary 2.8 ([16]) We have

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, G \wr A_n)|}{|G|^n n!} X^n$$
$$= \frac{1}{|A:\Phi_2(A)|} \sum_{\overline{c} \in A/\Phi_2(A)} \exp\left(\sum_{B \in \mathcal{F}_A} \frac{\operatorname{sgn}_{A/B}(c) \cdot |\operatorname{Hom}(B,G)|}{|G| |A:B|} X^{|A:B|}\right).$$

Remark 2.9 When A is a finite cyclic group, Corollary 2.7 is shown in [3, 12] and Corollary 2.8 is shown in [3].

3. Imprimitive complex pseudo reflection groups and related groups

Keep the notation of Section 2, and suppose that $G = \langle \omega \rangle$ with ω a primitive *m*th root of unity in \mathbb{C} . Assume that for any integer *i* with $1 \leq i \leq s$, $\chi_i(\omega) = \omega^{q_i}$, where q_i is a positive integer. Let $B \in \mathcal{F}_A$, and define

$$\Phi_m(B) = \bigcap_{\alpha \in \operatorname{Hom}(B, \langle \omega \rangle)} \operatorname{Ker} \alpha.$$

Let $i \in \{1, \ldots, s\}$. Since the order of $\langle \omega \rangle / \text{Ker } \chi_i$ divides r_i , it follows that $q_i r_i$ is a multiple of m. Then the order of $V_{A \to B/\Phi_m(B)}(c^{q_i})$ with $c \in A$ divides r_i . Hence, given $\overline{a} \in R_i$, $V_{A \to B/\Phi_m(B)}(c^{q_i})$ with $c \in \overline{a}$ is independent of the choice of c in \overline{a} .

Now define a homomorphism $F_{A \to B/\Phi_m(B)}^{(q_1, \dots, q_s)}$ from R to $B/\Phi_m(B)$ by

$$F_{A \to B/\Phi_m(B)}^{(q_1, \dots, q_s)}(\overline{c_1}, \dots, \overline{c_s}) = V_{A \to B/\Phi_m(B)}\left(\prod_{i=1}^s c_i^{q_i}\right)$$

for all $(\overline{c_1}, \ldots, \overline{c_s}) \in R$. Let $c_1, \ldots, c_s \in A$. We can identify $\operatorname{Hom}(B, \langle \omega \rangle)$ with $\operatorname{Hom}(B/\Phi_m(B), \langle \omega \rangle)$. Hence it turns out that

$$\sum_{\kappa \in \operatorname{Hom}(B,\langle\omega\rangle)} \prod_{i=1}^{s} (\chi_{i} \circ \kappa)^{\otimes A}(c_{i}) = \sum_{\kappa \in \operatorname{Hom}(B/\Phi_{m}(B),\langle\omega\rangle)} \prod_{i=1}^{s} \kappa \left(V_{A \to B/\Phi_{m}(B)}(c_{i}) \right)^{q_{i}} = \sum_{\kappa \in \operatorname{Hom}(B/\Phi_{m}(B),\langle\omega\rangle)} \kappa \left(F_{A \to B/\Phi_{m}(B)}^{(q_{1},\ldots,q_{s})}(\overline{c_{1}},\ldots,\overline{c_{s}}) \right).$$

Moreover, the C-character

$$\sum_{\in \operatorname{Hom}(B/\Phi_m(B),\langle\omega\rangle)} \kappa$$

of $B/\Phi_m(B)$ is afforded by the left regular module $\mathbb{C}(B/\Phi_m(B))$. Thus

$$\sum_{\kappa \in \operatorname{Hom}(B,\langle \omega \rangle)} \prod_{i=1}^{s} (\chi_{i} \circ \kappa)^{\otimes A}(c_{i}) = \begin{cases} |B : \Phi_{m}(B)| & \text{if } (\overline{c_{1}}, \dots, \overline{c_{s}}) \in \operatorname{Ker} F_{A \to B/\Phi_{m}(B)}^{(q_{1},\dots,q_{s})}, \\ 0 & \text{otherwise.} \end{cases}$$

Combining the preceding fact with Theorem 2.1, we conclude that

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, K(\chi_1, \dots, \chi_s, \mathbf{z}_1, \dots, \mathbf{z}_s, n))|}{m^n n!} X^n$$

$$= \frac{1}{|R|} \sum_{(\overline{c_1}, \dots, \overline{c_s}) \in R} \exp\left(\sum_{B \in \Omega_A(\overline{c_1}, \dots, \overline{c_s})} \operatorname{sgn}_{A/B} \left(\prod_{i \in I} c_i\right) \frac{|B : \Phi_m(B)|}{m|A : B|} X^{|A:B|}\right), \quad (V)$$

where

$$\Omega_A(\overline{c_1},\ldots,\overline{c_s}) = \left\{ B \in \mathcal{F}_A \mid (\overline{c_1},\ldots,\overline{c_s}) \in \operatorname{Ker} F_{A \to B/\Phi_m(B)}^{(q_1,\ldots,q_s)} \right\}.$$

Remark 3.1 There exists a divisor r of m such that $K(\chi_1, \ldots, \chi_s, \mathbf{z}_1, \ldots, \mathbf{z}_s, n)$ is G(m, r, n), H(m, r, n), or L(m, r, n).

The following theorem is an immediate consequence of the formula (V).

Theorem 3.2 Let r be a divisor of m. Given $c \in A$, set

$$\Omega_A(\overline{c}) = \{ B \in \mathcal{F}_A \mid c^{m/r} \in \operatorname{Ker} V_{A \to B/\Phi_m(B)} \}.$$

Put $r_0 = r$ if r is even, and $r_0 = 2r$ if r is odd. Then

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, G(m, r, n))|}{m^n n!} X^n$$

$$= \frac{1}{|A : \Phi_r(A)|} \sum_{\overline{c} \in A/\Phi_r(A)} \exp\left(\sum_{B \in \Omega_A(\overline{c})} \frac{|B : \Phi_m(B)|}{m|A : B|} X^{|A:B|}\right),$$

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, H(m, r, n))|}{m^n n!} X^n$$

$$= \frac{1}{|A : \Phi_r(A)||A : \Phi_2(A)|}$$

$$\times \sum_{(\bar{c}_1, \bar{c}_2) \in (A/\Phi_r(A)) \times (A/\Phi_2(A))} \exp\left(\sum_{B \in \Omega_A(\bar{c}_1)} \operatorname{sgn}_{A/B}(c_2) \frac{|B : \Phi_m(B)|}{m|A : B|} X^{|A:B|}\right),$$

and

$$\begin{split} \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, L(m, r, n))|}{m^n n!} X^n \\ &= \frac{1}{|A: \Phi_{r_0}(A)|} \sum_{\overline{c} \in A/\Phi_{r_0}(A)} \exp\left(\sum_{B \in \Omega_A(\overline{c})} \operatorname{sgn}_{A/B}(c) \frac{|B: \Phi_m(B)|}{m|A:B|} X^{|A:B|}\right). \end{split}$$

Corollary 3.3 ([16]) Keep the notation of Theorem 3.2, and assume further that m = r = 2. Then

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, W(D_n))|}{2^n n!} X^n$$
$$= \frac{1}{|A:\Phi_2(A)|} \sum_{\bar{c}\in A/\Phi_2(A)} \exp\left(\sum_{B\in\Omega_A(\bar{c})} \frac{|B:\Phi_2(B)|}{2|A:B|} X^{|A:B|}\right).$$

Example 3.4 Suppose that A is a finite cyclic group of order ℓ and is generated by an element c. Let p be a prime. For a subgroup B of A, we have

$$\operatorname{sgn}_{A/B}(c) = \begin{cases} 1 & \text{if } |A:B| & \text{is odd,} \\ -1 & \text{if } |A:B| & \text{is even,} \end{cases}$$

and $V_{A \to B/\Phi_p(B)}(c) = c^{|A:B|} \Phi_p(B)$. Considering A as $\mathbb{Z}/\ell\mathbb{Z}$, we obtain the following. (1)

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/\ell\mathbb{Z}, S_n)|}{n!} X^n = \exp\left(\sum_{d|\ell} \frac{1}{d} X^d\right).$$

(2)

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/\ell\mathbb{Z}, A_n)|}{n!} X^n = \frac{1}{2} \exp\left(\sum_{d|\ell} \frac{1}{d} X^d\right) + \frac{1}{2} \exp\left(\sum_{d|\ell} \frac{(-1)^{d-1}}{d} X^d\right).$$
(3)

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/\ell\mathbb{Z}, G(p, p, n))|}{p^n n!} X^n$$
$$= \frac{1}{p} \exp\left(\sum_{d \mid \ell \ p \nmid \ell \ell/d)} \frac{1}{pd} X^d\right) \left\{ \exp\left(\sum_{d \mid \ell \ p \mid \ell \ell/d)} \frac{1}{d} X^d\right) + p - 1 \right\}$$

(4)

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/\ell\mathbb{Z}, H(p, p, n))|}{p^n n!} X^n$$

$$= \frac{1}{2p} \exp\left(\sum_{d \mid \ell \ p \nmid (\ell/d)} \frac{1}{pd} X^d\right) \left\{ \exp\left(\sum_{d \mid \ell \ p \mid (\ell/d)} \frac{1}{d} X^d\right) + p - 1 \right\}$$

$$+ \frac{1}{2p} \exp\left(\sum_{d \mid \ell \ p \nmid (\ell/d)} \frac{(-1)^{d-1}}{pd} X^d\right) \left\{ \exp\left(\sum_{d \mid \ell \ p \mid (\ell/d)} \frac{(-1)^{d-1}}{d} X^d\right) + p - 1 \right\}.$$

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/\ell\mathbb{Z}, L(2, 2, n))|}{2^n n!} X^n$$
$$= \frac{1}{2} \exp\left(\sum_{\substack{d \mid \ell \\ 2 \nmid (\ell/d)}} \frac{1}{2d} X^d\right) \left\{ \exp\left(\sum_{\substack{d \mid \ell \\ 2 \mid (\ell/d)}} \frac{1}{d} X^d\right) + \exp\left(-\sum_{\substack{d \mid \ell \\ 2 \nmid (\ell/d), 2 \mid d}} \frac{1}{d} X^d\right) \right\}.$$

Remark 3.5 The formula (1) is given in [2] and (2) is given in [13, Chapter 4, Problem 22] and [3]. When p = 2, the formula (3) is shown in [3].

4. Finite abelian *p*-groups

Suppose that A is a finite abelian group. Let \widehat{A} be the set of irreducible \mathbb{C} characters of A, and define a multiplication in \widehat{A} by $\alpha_1\alpha_2(a) = \alpha_1(a)\alpha_2(a)$ for all $\alpha_1, \alpha_2 \in \widehat{A}$ and $a \in A$. Then \widehat{A} becomes a group, and the groups A and \widehat{A} are
isomorphic [7, 5.1]. If B is a subgroup of A, we put

$$B^{\perp} = \{ \alpha \in A \mid \alpha(b) = 1 \text{ for all } b \in B \}.$$

If U is a subgroup of \widehat{A} , then we put

$$U^{\perp} = \{ a \in A \mid \alpha(a) = 1 \text{ for all } \alpha \in U \}.$$

We use the following lemmas, which are parts of [7, 5.5, 5.6].

Lemma 4.1 ([7]) Let B be a subgroup of A. Then

$$\widehat{A}/\widehat{B} \cong B^{\perp}$$
 and $\widehat{A}/B^{\perp} \cong \widehat{B}$.

Lemma 4.2 ([7]) Let B be a subgroup of A, and let U be a subgroup of \widehat{A} . Then

$$B^{\perp\perp} = B$$
 and $U^{\perp\perp} = U$

Lemma 4.3 ([7]) Let B_1 , B_2 be subgroups of A. Then

$$(B_1 \cap B_2)^{\perp} = B_1^{\perp} B_2^{\perp}$$
 and $(B_1 B_2)^{\perp} = B_1^{\perp} \cap B_2^{\perp}$.

Lemma 4.4 ([7]) Let U_1, U_2 be subgroups of \widehat{A} . Then

$$(U_1 \cap U_2)^{\perp} = U_1^{\perp} U_2^{\perp}$$
 and $(U_1 U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.

Let ϵ_A be the identity of A. For each positive integer k, we define

$$\Omega_k(A) = \{ a \in A \mid a^k = \epsilon_A \} \quad \text{and} \quad \mho_k(A) = \{ a^k \mid a \in A \}.$$

We provide a part of [7, 5.8], namely,

Lemma 4.5 ([7]) $\Omega_k(A)^{\perp} = \mathcal{O}_k(\widehat{A})$, and equivalently, $\Omega_k(A) = \mathcal{O}_k(\widehat{A})^{\perp}$.

A partition is a sequence $\lambda = (\lambda_1, \ldots, \lambda_t, \ldots)$ of nonnegative integers containing only finitely many non-zero terms where $\lambda_1 \geq \cdots \geq \lambda_t \geq \cdots$. Given a partition $\lambda = (\lambda_1, \ldots, \lambda_t, \ldots)$, we define

$$m_i(\lambda) = \sharp\{t \mid \lambda_t = i\}$$

and

$$\lambda_i' = \sharp \{ t \mid \lambda_t \ge i \}.$$

Then $\lambda' = (\lambda'_1, \dots, \lambda'_i, \dots)$ is a partition, and is called the conjugate of λ .

Let p be a prime. If P is a finite abelian p-group, then there is a unique partition $\lambda = (\lambda_1, \ldots, \lambda_\ell, 0, \ldots)$ such that P is isomorphic to the direct product

$$\mathbb{Z}/p^{\lambda_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/p^{\lambda_\ell}\mathbb{Z}$$

of cyclic *p*-groups $\mathbb{Z}/p^{\lambda_1}\mathbb{Z}, \ldots, \mathbb{Z}/p^{\lambda_\ell}\mathbb{Z}$, and we call λ the type of *P*.

Now let P be a finite abelian p-group, and let ϵ_P be the identity of P. We have

 $\Phi_p(P) = \mho_p(P)$ and $P/\Phi_p(P) \cong \Omega_p(P)$.

In order to describe the Wohlfahrt series $E_P(X/p : \{G(p, p, n)\}_0^\infty)$, we must show the following.

Lemma 4.6 Let P_0 be a subgroup of P. Suppose that $c \in P$ and $c \notin \Phi_p(P)$. Then $c \notin \operatorname{Ker} V_{P \to P_0/\Phi_p(P_0)}$ if and only if $P = \langle c \rangle P_0$ and P_0 contains $\Omega_p(P)$.

Proof. We have $\Phi_p(P_0) = \mho_p(P_0)$ and $V_{P \to P_0/\Phi_p(P_0)}(c) = c^{|P:P_0|} \Phi_p(P_0)$. Assume that $c \notin \operatorname{Ker} V_{P \to P_0/\Phi_p(P_0)}$. Then $c^{|P:P_0|} \notin \mho_p(P_0)$, and thereby $P = \langle c \rangle P_0$. Moreover, if P_0 does not contain $\Omega_p(P)$, then $c^{|P:P_0|} = \epsilon_P$, contrary to the assumption. Hence P_0 contains $\Omega_p(P)$. Conversely, assume that $P = \langle c \rangle P_0$ and P_0 contains $\Omega_p(P)$. Since $c \notin \Phi_p(P)$, it follows that $c \notin \operatorname{Ker} V_{P \to P/\Phi_p(P)}$. Hence we assume that $P \neq P_0$. Clearly, $c^{|P:P_0|/p} \notin P_0$. Now suppose that $c^{|P:P_0|} \in \mho_p(P_0)$ and *a* is an element of P_0 such that $a^p = c^{|P:P_0|}$. Then $a^{-1}c^{|P:P_0|/p}$ is not contained in P_0 and is of order *p*. But every element of order *p* in *P* is contained in P_0 . This is a contradiction. Thus $c^{|P:P_0|} \notin \mho_p(P_0)$, and hence $c \notin \operatorname{Ker} V_{P_0 \to P_0/\Phi_p(P_0)}$, which proves the lemma. □

Suppose that P is of type $\lambda = (\lambda_1, \ldots, \lambda_\ell, 0, \ldots)$ and $P = \langle a_1 \rangle \times \cdots \times \langle a_\ell \rangle$, where $\langle a_i \rangle$ is a cyclic group generated by a_i and is of order p^{λ_i} . We assume that $\lambda_\ell > 0$, and set

$$T(P) = \{a_1^{e_1} \cdots a_{\ell}^{e_{\ell}} \mid 0 \le e_1, \dots, e_{\ell} \le p-1\},\$$

which is a left transversal of $\Phi_p(P)$ in P. Given a positive integer j, we define $T_j(P)$ to be the set of all elements of order p^j in T(P). Then

$$\sharp T_j(P) = p^{\lambda_1' - \lambda_{j+1}'} - p^{\lambda_1' - \lambda_j'}.$$

We have the following.

Lemma 4.7 Suppose that $c \in T_j(P)$. Let k be a nonnegative integer, and let $\mathcal{M}(\langle c \rangle; k)$ be the set of all subgroups P_0 of P containing $\Omega_p(P)$ such that $P = \langle c \rangle P_0$ and $|P:P_0| = p^k$. Then

$$\sharp \mathcal{M}(\langle c \rangle; k) = \begin{cases} 0 & \text{if } k \ge j, \\ p^{w_{\lambda}(k)} & \text{if } k < j, \end{cases}$$

where

$$w_{\lambda}(k) = \left\{ k \sum_{i=k+1}^{\lambda_1} m_i(\lambda) + \sum_{i=1}^k (i-1)m_i(\lambda) \right\} - k.$$

Proof. Suppose that $P_0 \in \mathcal{M}(\langle c \rangle; k)$. Then by Lemma 4.5, P_0^{\perp} is contained in $\mathcal{O}_p(\widehat{P})$. Since $P^{\perp} = \{1_P\}$, it follows from Lemma 4.3 that $\langle c \rangle^{\perp} \cap P_0^{\perp} = \{1_P\}$, where 1_P is the trivial character of P. Moreover, by Lemma 4.1 we have

$$P/P_0 \cong \widehat{P/P_0} \cong P_0^{\perp}.$$

Thus P_0^{\perp} is a cyclic group of $\mathfrak{V}_p(\widehat{P})$ such that $\langle c \rangle^{\perp} \cap P_0^{\perp} = \{1_P\}$ and $|P_0^{\perp}| = p^k$.

Now let $\mathcal{N}(\langle c \rangle^{\perp}; k)$ be the set of all cyclic subgroups U of $\mathcal{O}_p(\widehat{P})$ such that $\langle c \rangle^{\perp} \cap U = \{1_P\}$ and $|U| = p^k$. If $P_0 \in \mathcal{M}(\langle c \rangle; k)$, then by the preceding argument, $P_0^{\perp} \in \mathcal{N}(\langle c \rangle^{\perp}; k)$. Define a map f from $\mathcal{M}(\langle c \rangle; k)$ to $\mathcal{N}(\langle c \rangle^{\perp}; k)$ by $f(P_0) = P_0^{\perp}$ for all $P_0 \in \mathcal{M}(\langle c \rangle; k)$. Then Lemma 4.2 implies that f is injective.

Suppose that $U \in \mathcal{N}(\langle c \rangle^{\perp}; k)$. Then by Lemma 4.5, U^{\perp} contains $\Omega_p(P)$. Since $\{1_P\}^{\perp} = P$, it follows from Lemmas 4.2 and 4.4 that $P = \langle c \rangle U^{\perp}$. Moreover, by Lemmas 4.1 and 4.2, we have

$$P/U^{\perp} \cong \widehat{P}/U^{\perp} \cong U,$$

whence $|P: U^{\perp}| = |U| = p^k$. Thus we obtain $U^{\perp} \in \mathcal{M}(\langle c \rangle; k)$. This fact, together with Lemma 4.2, means that f is surjective. Consequently, f is bijective.

In order to prove the statement, it suffices to verify that

$$\sharp \mathcal{N}(\langle c \rangle^{\perp}; k) = \begin{cases} 0 & \text{if } k \ge j, \\ p^{w_{\lambda}(k)} & \text{if } k < j. \end{cases}$$

Suppose that $c = a_1^{e_1} \cdots a_{\ell}^{e_{\ell}}$, where e_1, \ldots, e_{ℓ} are nonnegative integers less than p. Since $c \neq \epsilon_P$, we assume that $e_i = 0$ with $i < t_0$ and $e_{t_0} \neq 0$, where $1 \le t_0 \le \ell$. Put

$$D = \langle a_1 \rangle \times \cdots \times \langle a_{t_0-1} \rangle \times \langle a_{t_0+1} \rangle \times \cdots \times \langle a_\ell \rangle.$$

Then $P = \langle c \rangle \times D$, and hence $\hat{P} = \langle c \rangle^{\perp} \times D^{\perp}$ by Lemma 4.3. Moreover, it follows from Lemma 4.1 that

$$D^{\perp} \cong \widehat{P}/\langle c \rangle^{\perp} \cong \widehat{\langle c \rangle} \cong \langle c \rangle \quad \text{and} \quad \langle c \rangle^{\perp} \cong \widehat{P}/D^{\perp} \cong \widehat{D} \cong D.$$

Thus there exists a bijection from $\mathcal{N}(\langle c \rangle^{\perp}; k)$ to the set $\mathcal{W}(D; k)$ of all cyclic subgroups Y of $\mathcal{O}_p(P)$ such that $D \cap Y = \{\epsilon_P\}$ and $|Y| = p^k$. If $k \geq j$, then clearly $\mathcal{W}(D; k) = \emptyset$, and hence $\sharp \mathcal{N}(\langle c \rangle^{\perp}; k) = \sharp \mathcal{W}(D; k) = 0$. Suppose that k < j. We set $I_1 = \{t \mid \lambda_t > k, t \neq t_0\}$ and $I_2 = \{t \mid \lambda_t \leq k\}$. For each sequence $(n_1, \ldots, n_{t_0-1}, n_{t_0+1}, \ldots, n_\ell)$ of positive integers, put

$$y_{(n_1,\dots,n_{t_0-1},n_{t_0+1},\dots,n_{\ell})} = c^{p^{j-k}} \left(\prod_{t \in I_1} a_t^{p^{\lambda_t - k} n_t}\right) \left(\prod_{t \in I_2} a_t^{pn_t}\right).$$

Then

$$\mathcal{W}(D;k) = \left\{ \left\langle y_{(n_1,\dots,n_{t_0-1},n_{t_0+1},\dots,n_{\ell})} \right\rangle \left| \begin{array}{cc} 1 \le n_t \le p^k & \text{if } t \in I_1, \\ 1 \le n_t \le p^{\lambda_t - 1} & \text{if } t \in I_2 \end{array} \right\},$$

and $\#\mathcal{W}(D;k) = p^{w_{\lambda}(k)}$. Thus we conclude that $\#\mathcal{N}(\langle c \rangle^{\perp};k) = p^{w_{\lambda}(k)}$, and the proof is completed. \Box

Theorem 3.2, together with Lemmas 4.6 and 4.7, enables us to get the following.

Theorem 4.8 Keep the notation of Lemma 4.7. We have

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(P, G(p, p, n))|}{p^n n!} X^n$$

$$= \frac{1}{p^{\ell}} \left\{ \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(P, (\mathbb{Z}/p\mathbb{Z}) \wr S_n)|}{p^n n!} X^n \right\}$$

$$\times \left\{ 1 + \sum_{j \ge 1} (p^{\lambda'_1 - \lambda'_{j+1}} - p^{\lambda'_1 - \lambda'_j}) \exp\left(-p^{\ell-1} \sum_{k=0}^{j-1} p^{w_{\lambda}(k) - k} X^{p^k}\right) \right\}.$$

We now turn to the forms of $E_P(X/2 : \{L(2,2,n)\}_0^\infty)$ and $E_P(X : \{A_n\}_0^\infty)$. First, we need a consequence of [15, Lemma 2.1], namely,

Lemma 4.9 Let P_0 be a subgroup of P, and let $c \in P$. Then $\operatorname{sgn}_{P/P_0}(c) = -1$ if and only if $P \neq P_0$ and $P = \langle c \rangle P_0$.

The proof of the next lemma is straightforward.

Lemma 4.10 Let P_0 be a subgroup of P, and let $c \in P - \{\epsilon_P\}$. Then $P = \langle c \rangle \times P_0$ if and only if $P = \langle c \rangle P_0$ and P_0 does not contain $\Omega_p(P)$.

By an argument similar to that in the proof of Lemma 4.7, we get the following.

Lemma 4.11 Suppose that $c \in T_j(P)$. Let k be a nonnegative integer. Then the number of all subgroups P_0 of P such that $P = \langle c \rangle P_0$ and $|P : P_0| = p^k$ is 0 if k > j, and is $p^{s_\lambda(k)}$ if $k \leq j$, where

$$s_{\lambda}(k) = \left\{ k \sum_{i=k+1}^{\lambda_1} m_i(\lambda) + \sum_{i=1}^k i m_i(\lambda) \right\} - k.$$

Combining Theorem 3.2 with Lemmas 4.6, 4.9, 4.10, and 4.11, we can now state the following.

Theorem 4.12 Keep the notation of Lemma 4.11, and assume further that p = 2. Then

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(P, L(2, 2, n))|}{2^n n!} X^n$$

= $\frac{1}{2^{\ell}} \left\{ \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(P, (\mathbb{Z}/2\mathbb{Z}) \wr S_n)|}{2^n n!} X^n \right\}$
 $\times \left\{ 1 + \sum_{j \ge 1} (2^{\lambda'_1 - \lambda'_{j+1}} - 2^{\lambda'_1 - \lambda'_j}) \exp\left(-2^{\ell-1} \sum_{k=0}^j 2^{s_\lambda(k) - k} X^{2^k}\right) \right\},$

and

$$\begin{split} \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(P,A_n)|}{n!} X^n \\ &= \frac{1}{2^{\ell}} \left\{ \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(P,S_n)|}{n!} X^n \right\} \\ &\quad \times \left\{ 1 + \sum_{j \ge 1} (2^{\lambda'_1 - \lambda'_{j+1}} - 2^{\lambda'_1 - \lambda'_j}) \exp\left(-2\sum_{k=1}^j 2^{s_\lambda(k) - k} X^{2^k}\right) \right\}. \end{split}$$

Remark 4.13 The form of $E_P(X : \{A_n\}_0^\infty)$ in the theorem above is also a consequence of Lemma 4.11 and [15, Theorem 1.1].

5. Explicit formulas

Keep the notation of Section 4, and further assume that $\lambda_1 = \cdots = \lambda_{\ell-1} = u$ and $\lambda_\ell = v$, where $\ell \ge 1$ and $u \ge v > 0$. Then $P \simeq (\mathbb{Z}/p^u \mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/p^v \mathbb{Z}$, whence $\sharp T_u(P) = p^\ell - p$ and $\sharp T_v(P) = p - 1$. **Example 5.1** By Theorem 4.8, we have

$$\begin{split} \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}((\mathbb{Z}/p^{u}\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/p^{v}\mathbb{Z}, G(p, p, n))|}{p^{n}n!} X^{n} \\ &= \frac{1}{p^{\ell}} \left\{ \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}((\mathbb{Z}/p^{u}\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/p^{v}\mathbb{Z}, (\mathbb{Z}/p\mathbb{Z}) \wr S_{n})|}{p^{n}n!} X^{n} \right\} \\ &\quad \times \left\{ 1 + (p-1) \exp\left(-p^{\ell-1} \sum_{k=0}^{v-1} p^{(\ell-2)k} X^{p^{k}} \right) \\ &\quad + (p^{\ell} - p) \exp\left(-p^{\ell-1} \sum_{k=0}^{v-1} p^{(\ell-2)k} X^{p^{k}} - p^{\ell-1} \sum_{k=v}^{u-1} p^{(\ell-3)k+v-1} X^{p^{k}} \right) \right\}. \end{split}$$

By Theorem 4.12,

$$\begin{split} \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}((\mathbb{Z}/2^{u}\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/2^{v}\mathbb{Z}, L(2, 2, n))|}{2^{n}n!} X^{n} \\ &= \frac{1}{2^{\ell}} \left\{ \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}((\mathbb{Z}/2^{u}\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/2^{v}\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z}) \wr S_{n})|}{2^{n}n!} X^{n} \right\} \\ &\quad \times \left\{ 1 + \exp\left(-2^{\ell-1}\sum_{k=0}^{v} 2^{(\ell-2)k} X^{2^{k}}\right) \\ &\quad + (2^{\ell} - 2) \exp\left(-2^{\ell-1}\sum_{k=0}^{v} 2^{(\ell-2)k} X^{2^{k}} - 2^{\ell-1}\sum_{k=v+1}^{u} 2^{(\ell-3)k+v} X^{2^{k}}\right) \right\}, \end{split}$$

and

$$\begin{split} \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}((\mathbb{Z}/2^{u}\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/2^{v}\mathbb{Z}, A_{n})|}{n!} X^{n} \\ &= \frac{1}{2^{\ell}} \left\{ \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}((\mathbb{Z}/2^{u}\mathbb{Z})^{(\ell-1)} \times \mathbb{Z}/2^{v}\mathbb{Z}, S_{n})|}{n!} X^{n} \right\} \\ &\quad \times \left\{ 1 + \exp\left(-2\sum_{k=1}^{v} 2^{(\ell-2)k} X^{2^{k}}\right) \\ &\quad + (2^{\ell} - 2) \exp\left(-2\sum_{k=1}^{v} 2^{(\ell-2)k} X^{2^{k}} - 2\sum_{k=v+1}^{u} 2^{(\ell-3)k+v} X^{2^{k}}\right) \right\}. \end{split}$$

Remark 5.2 The formulas of $E_P(X : \{W(D_n)\}_0^\infty)$ and $E_P(X : \{A_n\}_0^\infty)$ where $P = (\mathbb{Z}/2^u \mathbb{Z})^{(\ell)}$ are due to Müller and Shareshian [11].

We next suppose that $P \cong \mathbb{Z}/p^u \mathbb{Z} \times \mathbb{Z}/p^v \mathbb{Z}$, where $u \ge v > 0$. Given a nonnegative integer k, let $N_P(k)$ be the number of subgroups of order p^k in P.

Proposition 5.3 Let k be a nonnegative integer. Then

$$N_P(k) = \begin{cases} 1 + p + \dots + p^k & \text{if } 0 \le k < v, \\ 1 + p + \dots + p^v & \text{if } v \le k \le u, \\ 1 + p + \dots + p^{u+v-k} & \text{if } u < k \le u+v. \end{cases}$$

Proof. We proceed by induction on u+v. Obviously, the assertion is true if u+v = 0. Assume that u+v > 0 and $P = \langle a \rangle \times \langle b \rangle$, where a has order p^u and b order p^v . Put $M = \langle a^p \rangle \times \langle b \rangle$. If k < v, then $N_P(k) = N_M(k)$ because every subgroup of order less than p^v is contained in M, and hence by the inductive assumption,

$$N_P(k) = 1 + p + \dots + p^k$$

Case (1) Assume that u = v. Then by [14, Corollary], we obtain

$$N_P(v) = N_M(v-1) + p^v.$$

Hence by the inductive assumption,

$$N_P(v) = 1 + p + \dots + p^v.$$

Case (2) Assume that u > v. If $v \le k < u$, then clearly $N_P(k) = N_M(k)$. Moreover, it follows from [14, Corollary] that

$$N_P(u) = N_M(u-1).$$

Hence if $v \leq k \leq u$, then by the inductive assumption,

$$N_P(k) = 1 + p + \dots + p^v$$

Since $N_P(k) = N_P(u + v - k)$, the assertion of the proposition follows. \Box

It is easy to prove the following.

Lemma 5.4 Let k be a positive integer. Then the number of cyclic subgroups of order p^k in P is $p^{k-1} + p^k$ if $0 < k \le v$, and is p^v if $v < k \le u$.

The next result is a consequence of Proposition 5.3 and Lemma 5.4.

Proposition 5.5 We have

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/p^u\mathbb{Z} \times \mathbb{Z}/p^v\mathbb{Z}, S_n)|}{p^n n!} X^n$$
$$= \exp\left(\sum_{k=0}^{v-1} \frac{1 + \dots + p^k}{p^k} X^{p^k} + \sum_{k=v}^{u} \frac{1 + \dots + p^v}{p^k} X^{p^k} + \sum_{k=u+1}^{u+v} \frac{1 + \dots + p^{u+v-k}}{p^k} X^{p^k}\right)$$

and

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/p^{u}\mathbb{Z} \times \mathbb{Z}/p^{v}\mathbb{Z}, (\mathbb{Z}/p\mathbb{Z}) \wr S_{n})|}{p^{n}n!} X^{n}$$

$$= \exp\left(\sum_{k=0}^{v-1} \frac{p + \dots + p^{k+1}}{p^{k}} X^{p^{k}} + \sum_{k=v}^{u-1} \frac{p + \dots + p^{v}}{p^{k}} X^{p^{k}} + \sum_{k=v}^{u-1} \frac{p^{v}}{p^{k}} X^{p^{k}} + \sum_{k=u}^{u+v-1} \frac{p + \dots + p^{u+v-k}}{p^{k}} X^{p^{k}} + \sum_{k=u}^{u+v-k-1} \frac{p^{u+v-k-1}}{p^{k}} X^{p^{k}}\right).$$

We are now in position to determine the form of $E_P(X/p : \{G(p, p, n)\}_0^\infty)$, $E_P(X/2 : \{L(2, 2, n)\}_0^\infty)$, and $E_P(X : \{A_n\}_0^\infty)$.

Theorem 5.6 We have

$$\begin{split} \sum_{n=0}^{\infty} \frac{|\mathrm{Hom}(\mathbb{Z}/p^{u}\mathbb{Z} \times \mathbb{Z}/p^{v}\mathbb{Z}, G(p, p, n))|}{p^{n}n!} X^{n} \\ &= \frac{1}{p^{2}} \exp\left(\sum_{k=1}^{v-1} \frac{p + \dots + p^{k}}{p^{k}} X^{p^{k}} + \sum_{k=v}^{u-1} \frac{p + \dots + p^{v}}{p^{k}} X^{p^{k}} \right. \\ &\quad + \frac{\sum_{k=u}^{u+v-1} \frac{p + \dots + p^{u+v-k}}{p^{k}} X^{p^{k}} + \sum_{k=u}^{u+v} \frac{p^{u+v-k-1}}{p^{k}} X^{p^{k}} \right) \\ &\times \left\{ \exp\left(\sum_{k=0}^{v-1} p X^{p^{k}} + \sum_{k=v}^{u-1} \frac{p^{v}}{p^{k}} X^{p^{k}}\right) + (p-1) \exp\left(\sum_{k=v}^{u-1} \frac{p^{v}}{p^{k}} X^{p^{k}}\right) + p(p-1) \right\}, \end{split}$$

$$\begin{split} \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/2^{u}\mathbb{Z} \times \mathbb{Z}/2^{v}\mathbb{Z}, L(2, 2, n))|}{2^{n}n!} X^{n} \\ &= \frac{1}{2^{2}} \exp\left(\sum_{k=1}^{v-1} \frac{2 + \dots + 2^{k}}{2^{k}} X^{2^{k}} + \sum_{k=v}^{u-1} \frac{2 + \dots + 2^{v}}{2^{k}} X^{2^{k}} - \sum_{k=v}^{u-1} \frac{2^{v}}{2^{k}} X^{2^{k}} \right. \\ &\quad \left. - \frac{2}{2^{u}} X^{2^{u}} + \sum_{k=u+1}^{u+v-1} \frac{2 + \dots + 2^{u+v-k}}{2^{k}} X^{2^{k}} + \sum_{k=u}^{u+v} \frac{2^{u+v-k-1}}{2^{k}} X^{2^{k}} \right) \right. \\ &\quad \times \left\{ \exp\left(\sum_{k=0}^{v} 2X^{2^{k}} + \sum_{k=v+1}^{u} \frac{2^{v+1}}{2^{k}} X^{2^{k}}\right) + \exp\left(\sum_{k=v+1}^{u} \frac{2^{v+1}}{2^{k}} X^{2^{k}}\right) + 2 \right\}, \end{split}$$

and

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}/2^{u}\mathbb{Z} \times \mathbb{Z}/2^{v}\mathbb{Z}, A_{n})|}{n!} X^{n}$$

$$= \frac{1}{2^{2}} \exp\left(X - \sum_{k=1}^{u} \frac{1}{2^{k}} X^{2^{k}} + \sum_{k=u+1}^{u+v} \frac{1 + \dots + 2^{u+v-k}}{2^{k}} X^{2^{k}}\right)$$

$$\times \left\{ \exp\left(\sum_{k=1}^{v} 2X^{2^{k}} + \sum_{k=v+1}^{u} \frac{2^{v+1}}{2^{k}} X^{2^{k}}\right) + \exp\left(\sum_{k=v+1}^{u} \frac{2^{v+1}}{2^{k}} X^{2^{k}}\right) + 2\right\}.$$

Remark 5.7 In [15, Exapple 6.2], the formula of $E_P(X/2 : \{W(D_n)\}_0^\infty)$, where $P = \mathbb{Z}/2^u \mathbb{Z} \times \mathbb{Z}/2^v \mathbb{Z}$, is not correct, and neither is the formula of $E_P(X : \{A_n\}_0^\infty)$; either of them has a wrong term.

6. The additive group of *p*-adic integers

Let \mathbb{Z}_p be the additive group of *p*-adic integers. The subgroups of finite index in \mathbb{Z}_p are $p^k \mathbb{Z}_p$, $k = 0, 1, 2, \ldots$ Moreover, $\mathbb{Z}_p/p^k \mathbb{Z}_p \cong \mathbb{Z}/p^k \mathbb{Z}$ for each nonnegative integer *k*. In [6] Dress and Yoshida pointed out that

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}_p, S_n)|}{n!} X^n = \exp\left(\sum_{k=0}^{\infty} \frac{1}{p^k} X^{p^k}\right);$$

this is called the Artin-Hasse exponential. We conclude this paper with a presentation of the following consequences of Theorem 3.2:

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}_2, A_n)|}{n!} X^n = \frac{1}{2} \exp\left(\sum_{k=0}^{\infty} \frac{1}{2^k} X^{2^k}\right) + \frac{1}{2} \exp\left(X - \sum_{k=1}^{\infty} \frac{1}{2^k} X^{2^k}\right);$$
$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(\mathbb{Z}_p, G(p, p, n))|}{p^n n!} X^n = \frac{1}{p} \exp\left(\sum_{k=0}^{\infty} \frac{1}{p^k} X^{p^k}\right) + \frac{p-1}{p}.$$

References

- S. Bouc, Non-additive exact functors and tensor induction for Mackey functors, Mem. Amer. Math. Soc. 144 (683) (2000).
- [2] S. Chowla, I. N. Herstein, and W. R. Scott, The solutions of $x^d = 1$ in symmetric groups, Norske Vid. Selsk. Forh. (Trondheim) **25** (1952), 29–31.
- [3] N. Chigira, The solutions of $x^d = 1$ in finite groups, J. Algebra **180** (1996), 653–661.
- [4] C. W. Curtis and I. Reiner, "Methods of Representation Theory," vol. I, Wiley-Interscience, New York, 1981.
- [5] I. M. S. Dey, Schreier systems in free products, Proc. Glasgow Math. Assoc. 7 (1965), 61–79.
- [6] A. W. M. Dress and T. Yoshida, On *p*-divisibility of the Frobenius numbers of symmetric groups, 1991, preprint.
- [7] B. Huppert, "Character theory of finite groups," de Gruyter Expositions in Mathematics, 25, Walter de Gruyter, Berlin, 1998
- [8] R. Kane, "Reflection Groups and Invariant Theory," CMS Books in Mathematics 5, Springer-Verlag, New York, 2001.
- [9] A. Kerber, "Representations of Permutation Groups I," Lecture Notes in Math., vol. 240, Springer-Verlag, Berlin, 1971
- [10] T. Müller, Enumerating representations in finite wreath products, Adv. Math. 153 (2000), 118–154.
- [11] T. Müller and J. Shareshian, Enumerating representations in finite wreath products II: Explicit Formulas Adv. Math. 171 (2002), 276–331.
- [12] S. Okada, Wreath products by the symmetric groups and product posets of Young's lattices, J. Combin. Theory Ser. A 55 (1990), 14–32.
- [13] J. Riordan, "An Introduction to Combinatorial Analysis," Wiley, New York, 1958.
- [14] T. Stehling, On computing the number of subgroups of a finite abelian group, Combinatorica 12 (1992), 475–479.
- [15] Y. Takegahara, A generating function for the number of homomorphisms from a finitely generated abelian group to an alternating group, J. Algebra 248 (2002), 554–574.
- [16] Y. Takegahara, Generating functions for permutation representations, J. Algebra 281 (2004), 68–82.
- [17] K. Wohlfahrt, Über einen Satz von Dey und die Modulgruppe, Arch. Math. (Basel) 29 (1977), 455–457.
- [18] T. Yoshida, Categorical aspects of generating functions (I): exponential formulas and Krull-Schmidt categories, J. Algebra 240 (2001), 40–82.