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Abstract 
Mixed and fluid film lubrication characteristics of hydrostatic spherical bearings for 
swash-plate-type axial piston pumps and motors are studied theoretically under 
non-steady-state conditions. The basic equations incorporating interference and 
contact of surface roughness are derived fundamentally through combination of the 
GW and PC models. Furthermore, a programming code that is applicable to the 
caulked-socket-type and open-socket-type bearings is developed. Effects of 
caulking, operating conditions, and the bearing dimension on the motion of the 
sphere and tribological performance of the bearings are examined. Salient 
conclusions are the following: The sphere’s eccentricity increases in the low supply 
pressure period. The time-lag of the load change engenders greater motion of the 
sphere. Caulking of the bearing socket suppresses the sphere’s motion. The bearing 
stiffness increases and power loss decreases for smaller recess angles. Minimum 
power loss is given under the condition that the bearing socket radius nearly equals 
the equivalent load radius. 
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1. Introduction 

Spherical bearings can support axial and radial loads simultaneously in limited spaces of 
hydraulic equipment and industrial machinery. In swash-plate-type axial piston pumps and 
motors, a spherical bearing(1) is mounted in a piston assembly to be used as a ball joint 
connecting the piston and the slipper(2), where the pistons are the prime component of the 
pumps and motors. The motion and lubrication of the pistons as well as those of the slippers 
are influenced by the behavior of the spherical bearings. Therefore, a need exists to examine 
their tribological characteristics and to develop a simulation model of them. 

Fundamental characteristics of both hydrostatic bearings and spherical bearings for 
machine elements(3,4) have been investigated for many years and published in several 
journals and books(5). The basic equations and the design charts can be referred in 
handbooks(6). Even so, the operating conditions are often limited to those of full fluid film 
lubrication and constant supply pressure. 

In fact, the spherical bearings used in hydraulic pumps and motors are rarely operated in 
a full film lubricating condition because the sphere diameter is smaller than the piston 
diameter, based on the design concept of compactness of the components: hydrostatic 
pressure is supplied from the cylinder bore to the spherical bearings through a restrictor; the *Received 5 July, 2007 (No. 07-0286) 
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bearing load is given by product of the cylinder-bore’s pressure and the cross-sectional area 
of the pistons. Consequently, the hydrostatic load-carrying capacity is smaller than the load, 
and the asperities of the surfaces in contact must support a fraction of the load. In other 
words, the bearings are imposed to operate in mixed lubrication(7). A discrepancy of 
assumptions exists between the ideal condition of fluid film lubrication and the real-world 
operations, which involve mixed lubrication. 

A few theoretical and experimental studies of spherical bearings that are applicable to 
hydraulic pumps and motors have been reported. A pioneering study of this subject was 
contributed by Yamaguchi(1). He applied the Reynolds equation to the hydrostatic spherical 
bearings while focusing on hydraulic piston pumps and motors, considering the dynamic 
motion of the bearings, and performed unsteady calculations in fluid film lubrication. Hazaki 
and Imai(8) experimented on the hydraulic motor and elucidated the behavior of hydraulic 
ball pistons. They described the ball piston mechanism, but did not address 
mixed-lubrication problems. Fang and Ikeya(9) performed an analytical study on the ball joint 
of a hydraulic motor. However, they discussed only a situation of fluid film lubrication. 
Recently, Yacout et al. (10) published theoretical results of hydrostatic spherical bearings in 
the steady state and discussed optimum conditions including roughness effects; they did not 
consider asperities contacting. Therefore, no study has been done with results that apply 
directly to design of ball-joints with functioning hydrostatic spherical bearings in hydraulic 
piston pumps and motors. 

The author has derived analytical solutions of hydrostatic spherical bearings under a 
steady state condition(11) and has shown the optimum size based on minimum power loss and 
maximum stiffness for fitted-type and clearance-type bearings as well as capillary and orifice 
restrictors. Afterward, he constructed a theoretical model of spherical bearings in mixed 
lubrication, calculated tribological characteristics in a steady state, and confirmed the 
numerical solutions using experimental data (12). Furthermore, he expanded the theoretical 
model and the programming code to an unsteady state and performed a computer simulation 
in unsteady conditions(13) for non-caulked socket (open socket)-type spherical bearings. 

This paper presents a dynamic simulation of hydrostatic spherical bearings applicable to 
ball joints of hydraulic piston pumps and motors. The bearing motion and tribological 
characteristics in mixed to fluid film lubrication are clarified, including the effects of 
caulking of the bearing socket, roughness interaction, and asperity contact. 

 

2. Nomenclature 

 C : radial clearance =R2−R1 
 h   : clearance =h/C 
 K : bulk modulus of fluid 
 L   : power loss ( )SoRp/L s

3
10ω=  

 m  : mass ( )SoRp/Cm s
2

10
2ω=  

 p   : pressure ( )Sop/p s0=  
 rp  : recess pressure ( )Sop/p sr 0=  
 sp   : supply pressure ( )Sop/p ss 0=  
 Q  : flow rate ( )3

1R/Q ω=  

 Rw  : equivalent load radius ( )[ ] 2/1/ spW π=  

 R1 : sphere radius 
 R2 : bearing socket radius 
 z,,r θ   : coordinates C/z,,R/r θ= 1  
 So : parameter ( ) 0

2
16 sp/C/Rµω=  

 T  : torque ( )SoRp/T s
3

10=  
 rV  : recess volume ( )3

10 KR/SoVp rs=  
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 W  : load; load-carrying capacity ( )SoRp/W s
2

10=  
 β : capillary restrictor parameter 
 ∆τ : time-lag 
 ε : eccentricity ratio =e/C 
 θe : bearing socket angle 
 θr : recess angle 
 µ : viscosity 
 σ : equivalent surface roughness =(σ1

2+σ2
2)1/2 

 τ : time =Ωt 
 Ω : representative angular velocity 
 ω : angular velocity of sphere 
subscripts 
 a : asperity 
 f : fluid 
 0 : reference 
 1 : sphere 
 2 : seat 
 

3. Basic equations 

A typical piston assembly, which consists of a piston, a ball joint and a slipper, is shown 
in Fig. 1. It is the primary tribological component of swash-plate-type axial piston pumps and 
motors. The ball joint is the most important element, connecting the piston and the slipper; it 
functions as a hydrostatic spherical bearing. A schematic showing hydrostatic spherical 
bearings is portrayed in Fig. 2. The assumptions used for this study are: the sphere rotates 
around the z axis at a constant angular velocity ω under the dynamic supply pressure ps and 
the concentric load W shown in Fig. 3, where 0<τ<π/2 and 3π/2<τ<2π correspond to the 
high-pressure period and π/2<τ<3π/2 corresponds to the low-pressure one. The mixed 
lubrication model(14) used for this study consists fundamentally of the asperity contact 
mechanism proposed by Greenwood and Williamson(15) and the average flow model by Patir 
and Cheng(16), further including the adsorbed film around asperities. The roughness is 
assumed as isotropic, the standard plane is rigid, and the liquid’s physical properties are 
constant. 

Following the GW model, pressure ap  in contact at the infinitesimal apparent contact 
area is given as apaea ppp +=  (subscripts e and p respectively denote elastic and plastic 
deformation of the asperity in contact), and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Piston assembly of swash-plate-type axial piston pumps and motors 
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Fig. 2  Modeling and coordinates of hydrostatic spherical bearings with a caulked socket 

 

 

 

 

 
 

Fig. 3  Changes in supply pressure ps /ps0 and load W/W0 
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The parameters are the following: de

* is separation; 'E  is the equivalent elastic modulus 
( )Sop/'E s0= ; aH  is the hardness of softer materials ( )Sop/Ha s0= ; 
( )( )22 'E/Ha/'w **

p σβ= ; β' is the equivalent radius of asperity summit; η is the asperity 
density; σ*=0.7σ, ψ(s) is the standard probability density function deviation 
=(2π)−1/2exp(−s2/2). 

Following the PC model, the unsteady axi-symmetric Reynolds equation is given as 
 

3

1 1

1 sin 2cos
sin

tan tan1
2 2

f

T s
T s

p dh
d

C hh
R R

εφ θ θ
θ θ θ ω τ

θ σ θ φφ
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∂ ∂ Ω
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  ∂ ∂ × + + + +     ∂ ∂    

 

.

 (3) 

 
Therein, Th  is the local clearance, and both φ and φs are the roughness parameters. The 
boundary condition of fluid pressure ( )τθ,p f  is ( ) ( )τ=τθ rrf p,p  and ( ) 0=τθ ,p ef . 

The nominal clearance h  is given as 
 

1 cosh ε θ= +  . (4) 
 
The total load-carrying capacity is given by summing the load-carrying capacity based 
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on the asperities in contact aW  and the capacity based on the fluid fW . 
 

( )
0

2 cos sin
e

a f a fW W p p d
θ

π θ θ θ+ = − +∫  (5) 

 
Therein, 0=ap  and rf pp =  in the recess (0<θ<θr ). 

With consideration of fluid compressibility and displacement in the recess, the recess 
pressure ( )τrp  is given as 

 

( ) 2

1

sinr
r r r r

dp C dV Q Q
d R d

εθ π θ
ω τ ω τ
Ω Ω

= − −  . (6) 

 
Therein, the flow rate ( )θQ  (θr≤θ≤θe) through the land and the flow rate through the 
capillary restrictor rQ  are 

 

( ) 3

1 1 1

sin sinf
T s

pC C dQ h h
R R R d

σ ε
θ π θ φ φ θ

θ ω τ

 ∂    Ω
= − + +    

∂     
 and (7) 

 





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
β
−





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
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π= rs

r
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R
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1

 . (8) 

 
Therein, β is the capillary restrictor parameter =4C3lc/(3rc

4), lc is the capillary restrictor 
length, and rc is the restrictor radius (See previous papers(11−13) for a case with an orifice 
restrictor). 

The frictional torque ( )fa TTT +=  is calculated by summing the torque caused by the 
asperity aT , and that of the fluid fT  given as 

 

( )
0

sin 1e
a p e p ad rA

p

T dA dA dAτθ ξτ ξ τ
τ

     = + + −        
∫∫  and (9) 
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∫  . (10) 

 
Therein, rA  is the real contact area 2

1R/Ar= , 0A  is the apparent contact area, ξ is the 
breakdown ratio of an adsorbed film, τ  is shear stress ( )Sops0/τ= ,  and fφ  and fsφ  are 
the roughness parameters after Patir and Cheng; subscript ad is the adsorbed film. 

The mean power loss mL  is defined by summing and averaging the power loss QmL  
attributable to the leakage flow rate, ( )eout QQ θ=  and the loss TmL  of frictional torque: 

 

( )2

0

1
2m s out Qm TmL p Q T d L L

π
τ

π
= + = +∫  . (11) 

 
The equation of motion of the sphere along the z−axis [ ( )C/ 2Ω= gg  ] is 
 

mWWW
d
dm fa g

2

2

22









ω
Ω

−++=
τ
ε









ω
Ω  . (12) 

 
Under the condition of the plain spherical arc seat in full film lubrication, Eqs. (3), (5), 

(7) and (10) can be solved analytically; the solutions are shown in the Appendix(11, 12) . 
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4. Numerical parameters 

Equation (3) is discretized using the finite difference method; Eqs. (6) and (12) are 
solved using the Runge-Kutta method. The mesh of time τ in one cycle is divided uniformly 
by 105–107. The calculation is performed until the relative errors of ε, dε/dτ and rp  at τ=0 
and 2π become less than 10−3, which indicates that the appropriate initial conditions of ε, 
dε/dτ and rp  at τ=0 and 2π, and the continuity of the parameters, are satisfied. In addition, 
the solutions are confirmed by calculating further once with the half mesh in terms of τ. 

The representative numerical parameters are the following:  C/R1=10−3, m =3.76 × 10−5, 
Rw/R1=1, R1=10 mm, So=5 (corresponding to ps=10 MPa and µ=27.2 mPa·s), rV =0.05, 
β=3.29 × 10−3 (corresponding to rc=0.3 mm), ∆τ=0 rad, θe=2π/3 rad, θr=π/6, σ/C=0.1 and 
Ω/ω=1. These parameters are fundamentally specified by reference to geometry and 
conditions of hydraulic equipment. 

 

5. Results and discussion 

Figures 4–6 show the motion of the sphere and the changes in bearing characteristics for 
both caulked-socket-type (θe=2π/3) and an open (non-caulked)-socket-type (θe=π/2) 
bearings. In Fig. 4, the eccentricity ratio ε is small in the high-pressure period and large in the 
low-pressure period for both types, whereas the ratio ε of the open-type socket is markedly 
large in the low-pressure period. The changes in the recess pressure ratio pr/ps0 are similar. 

In Fig. 5, the surfaces contact in the latter half time of the high-pressure period. Referring 
to the bearing's schematic in Fig. 2, it is apparent that, for the caulked-type bearing, in the 
high-pressure period, the surfaces contact on the lower side of the socket, i.e., the recess edge 
(θ=θr), the surfaces contact on the upper side of the socket, i.e. the caulked socket edge 
(θ=θe). At the transition of the pressures from high to low-pressure periods, for both types of 
the bearings, cavitation in the bearing socket is apt to occur (Acav /A0 >0) because the fluid 
pressure falls substantially as a result of the negative squeeze film action. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Effect of caulking on changes in eccentricity ratio ε and recess pressure ratio pr/ps0 (∆τ=0 rad, θr=π/6, 
Ω/ω=1, R1/Rw=1) 

 
 
 
 
 
 
 
 
 

Fig. 5  Effect of caulking on changes in ratios of contact area Acnt /A0 and cavitation area Acav /A0 (∆τ=0 rad, 
θr=π/6, Ω/ω=1, R1/Rw=1) 
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In Fig. 6, the maximum pressure pa max/ps0 in contact and the leakage flow rate outQ  of the 
caulked-socket-type bearing are shown as markedly smaller than those of the 
open-socket-type bearing. In particular, the increases in pa max/ps0 before the transition from 
high-pressure to low-pressure periods and outQ  after the transitions are reduced because the 
motion of the sphere is suppressed by caulking; then the squeeze film action is lessened. 

Figures 7 and 8 respectively display the influence of the end angle θe and the recess angle 
θr of the bearing socket on the difference ∆ε in the eccentricity ratios of the maximum εmax 
and minimum εmin and the mean power loss mL  , adding the maximum pressure *

maxap   in 
contact during the cycle and the mean leakage flow rate moutQ  . As the end angle θe decreases, 
the fluctuation ∆ε increases; in other words, the bearing stiffness decreases (Fig. 7). In this 
case, the loss mL  minimizes close to θe=π/2. In contrast, as the recess angle θr decreases, 
both fluctuation ∆ε and the loss mL  decrease (Fig. 8). The reason of the smaller loss mL  at 
the small angle θr is that the solid contact friction based on the pressure *

maxap  is more 
effective than the leakage moutQ .  A small recess angle θr would thus be preferable from the 
viewpoints of lower power loss and higher bearing stiffness. 

Figure 9 shows the effect of the cyclically changing speed of the supply pressure and 
load fluctuation, corresponding to a rotational speed of a cylinder-block of axial piston 
pumps, on the maximum εmax and minimum εmin of the eccentricity ratios of the sphere and 
mean power loss mL . The speed of the change is given as the representative angular velocity 
Ω/ω, where the angular velocity ω of the sphere is maintained as constant. As the velocity 
Ω/ω decreases, i.e., at lower speed operation, the ratios εmin and εmax decrease, so that the 
surfaces begin to contact close to the recess edge, engendering greater solid friction in mixed 
lubrication and consequently greater power loss. 

For bearing and seal parts used in hydraulic pumps and motors, the load is fundamentally 
proportional to the discharge pressure. For the present spherical bearing model, the change in 
the load synchronizes with the change in the supply pressure. However, because of friction 
between the mating moving parts in the pumps and motors, e.g., frictional parts between 
pistons and cylinder bores as well as compressibility of liquids, the load change slightly 
proceeds or delays the pressure change occasionally. 

 
 
 
 
 
 
 
 
 

Fig. 6  Effect of caulking on changes in maximum pressure pa max /ps0 in contact and leakage flow rate outQ  

(∆τ=0 rad, θr=π/6, Ω/ω=1, R1/Rw=1) 

 
 
 
 
 
 
 
 
 

Fig. 7  Effect of end angle θe of bearing socket on eccentricity ratio ∆ε fluctuation and mean power loss mL  

(∆τ=0 rad, θr=π/6 rad, Ω/ω=1, R1/Rw=1) 
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Figure 10 presents the effect of the time-lag ∆τ of the load on the maximum and 
minimum eccentricity ratios, εmax and εmin , of the sphere. In calculation, the time-dependent 
input data of the load W/W0 is shifted with the lag ∆τ against the change in the supply 
pressure ps/ps0 as Fig. 3: When the time-lag ∆τ is negative, the load advances the pressure. 
Under the condition of ∆τ<0, the influence of ∆τ is greater. As the absolute values of |∆τ| 
increase, the ratio εmax becomes noticeably large. The caulked socket enables suppression of 
the large sphere motion for the wide range of ∆τ, which contributes to stabilizing the bearing 
behavior. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Effect of recess angle θr of bearing socket on eccentricity ratio ∆ε fluctuation, mean power loss mL  , 

maximum pressure *
maxap  in contact and mean leakage flow rate moutQ  (∆τ=0 rad, θe=2π/3 rad, Ω/ω=1, 

R1/Rw=1) 

 
 
 
 
 
 
 
 
 

Fig. 9  Effect of angular velocity Ω/ω on maximum and minimum eccentricity ratios εmax and εmin of the 
sphere and mean power loss mL  (∆τ=0 rad, θe=2π/3 rad, θr=π/6 rad, R1/Rw=1) 

 
 
 
 
 
 
 
 
 

Fig. 10  Effect of time-lag ∆τ and caulking on maximum and minimum eccentricity ratios εmax and εmin of the 
sphere (θr=π/6 rad, Ω/ω=1, R1/Rw=1) 
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Figure 11 depicts the effect of the sphere radius R1/Rw on the mean power loss Lm /Lm0 
and dynamic stiffness λ/λ0 , where λ is defined as λ=(|W|max−|W|min)/(εmax−εmin), the 
equivalent radius Rw of the load is kept constant, and the loss and the stiffness are normalized 
by the power loss Lm0 and the stiffness λ0 of the caulked-socket-type bearing at R1/Rw=1. It is 
readily apparent that the optimum sphere radius that gives the power loss being minimized 
exists close to the condition of R1/Rw≅1 for both socket-type bearings. Smaller loss Lm /Lm0 is 
given with the caulked-socket-type bearing in a wide range of R1/Rw, whereas the minimum 
of Lm /Lm0 of the open-socket-type bearing is slightly smaller than that of Lm /Lm0 of the 
open-socket-type. 

 
 

 

 

 

 

 

 

 

 
Fig. 11  Effect of sphere radius R1/Rw on normalized mean power loss Lm /Lm0 and dynamic stiffness 0λλ /  

(∆τ=0 rad, θr=π/6 rad, Ω/ω=1) 

 

6. Concluding remarks 

To overcome the discrepancy in the bearing’s operation between the conventional 
theory’s assumption based on fluid film lubrication and a practical operating condition 
enforced in mixed lubrication, hydrostatic ball joints of swash-plate-type axial piston pumps 
and motors are modeled as hydrostatic spherical bearings including caulking of the bearing 
socket, cyclic change in the load, roughness interaction, and asperity contact. Subsequently, a 
series of the governing equations are derived and the computer code is developed. The 
tribological behavior of the caulked-socket-type and open-socket-type hydrostatic spherical 
bearings is simulated in mixed and fluid film lubrication under a non-steady-state condition. 
The numerical simulation reveals the following. 

The sphere’s eccentricity increases in the low supply pressure period. As the time-lag of 
the load increases, the sphere jumps greatly, especially for the open-type socket bearing. The 
caulked socket enables suppression of sphere jumping and maintains the bearing stability: 
the bearing performance is improved by caulking. 

The pressure in contact is large at the termination of the high-pressure period and the 
leakage flow rate is large at the commencement of the high-pressure period. Under the 
low-speed conditions, both the maximum and minimum of the eccentricity ratios decrease 
and the power losses increase. 

As the recess angle decreases, the power loss decreases and the bearing stiffness 
increases. Within the calculation parameters, the power loss is minimized in the condition 
where the socket radius of the bearing almost equals the equivalent radius of the load, which 
gives an optimal dimension of the piston assembly. 
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Appendix 

For a plane hydrostatic spherical bearing with a rigid body in fluid film lubrication the 
Reynolds equation is given as: 

 
31 sin 2cos

sin
p dh

d
εθ θ

θ θ θ ω τ
∂ ∂ Ω  = ∂ ∂ 

 . (A1) 

 
Therein, the clearance is given as cosh ε θ=  for the fitted-type bearing and 1 cosh ε θ= +  
for the clearance-type bearing. Solving Eq. (A1) with cosx θ= , one obtains 
 

( ) ( ) ( ) ( )
τ
ε

∆ε
−+∆−∆

ω
Ω

+⋅
∆
−

=
d
d

G
GGGGxGGxGGp

G
xGGxp reer

r
e

3
1111  . (A2) 

 
Assuming that cavitation is negligible, Eq.(A2) is integrated in terms of x over x=xe∼xr, the 
load-carrying capacity fW  is given as 

 

τ
ε

∆ε
∆∆−∆∆

ω
Ω

π−
∆
∆

π=
d
d

G
IGIGp

G
IW rf 3

12  . (A3) 

 
Putting X=εx (fitted-type bearing) or X=1+εx (clearance-type bearing), the leakage flow 

rate ( )xQ  is 
 

( ) ( )








τ
ε

ω
Ω

+
∂
∂−π

=
d
d

R
C

x
pX

C/R
xXxQ

1

2

1

21  . (A4) 

 
The frictional torque fT  is 
 

13f
C JT
R

π
ε

∆
=  . (A5) 

 
The parameters G , I  and J are defined below. For clearance-type bearings, the equations are 
the same by putting ε=1 in Eqs. (A2), (A3) and (A5). It is noteworthy that the fitted-type 
bearing is invalid for rough surfaces (σ>0) and caulked sockets (θe≥π/2). 

The parameters ∆G=G(xe)−G(xr), ∆I=I(xe)−I(xr), ∆J=J(xe)−J(xr), ∆G1=G1(xe)−G1(xr), 
∆G2=G2(xe)−G2(xr) and ∆I1= I1(xe)−I1(xr) are given as follows. 

a) For fitted-type bearings 
 

( ) ( ) ( )2 21 2 log 1 1 2G x = / x + /x /−  (A6) 

( ) ( )21 2I x = / x  (A7) 

( ) 2 2 logJ x = x / x−  (A8) 

( ) ( )2
1 log 1/ 1 / 2G x x= −  (A9) 

( ) ( )2
2 1/ 2G x x= −  (A10) 

( ) ( )2
1 log 1/ 2I x x x= − −  (A11) 

 
b) For clearance-type bearings (superscript represents ε; no superscript means ε≠0, ±1) 
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