論文 敷砂を設置した大型 RC 梁の重錘落下衝撃挙動における重錘質量の 影響に関する数値解析的検討

今野 久志*1・岸 徳光*2・岡田 慎哉*3・三上 浩*4

要旨: 道路防災構造物の性能照査型耐衝撃設計法を確立するための基礎的な研究として, 敷砂を設置した 大型 RC 梁に対して, 落石質量が一定で落下高さが異なる場合や入力落石エネルギーが一定の条件下で重錘 質量が異なる場合の耐衝撃挙動に与える影響を数値解析により検討した。その結果, 敷砂を設置する場合に は, その緩衝効果により質量比が極端に小さい場合を除いて,入力エネルギーが同じであれば最大変位量や 残留変位量には大きな違いが現れないことが明らかとなった。

キーワード: 性能照査型耐衝撃設計, 数値解析, 大型 RC 梁, 質量比, 静的曲げ耐力

1. はじめに

落石防護施設等の衝撃作用を受ける鉄筋コンクリー ト(RC)製構造物の断面設計は,許容応力度法の下に 設計が行われている。しかし、許容応力度法により設 計された落石防護構造物では、耐力終局状態に至らしめ る入力エネルギーに対して非常に大きな安全余裕度を有 していることが明らかになっている¹⁾。昨今,建設コ ストの縮減が叫ばれている中,また,近年様々な構造物 の設計が許容応力度設計法から性能照査型設計法へ移行 してきていることから、 落石防護構造物においてもより 合理的な断面設計を行うことが要求されるようになって きている。落石防護構造物に対して性能照査型耐衝撃 設計法を確立するためには、要求される各性能に対して 断面設計を可能にしなければならない。しかしながら, 構造物の主要な構成要素である梁部材でさえも、合理的 な性能規定型の耐衝撃設計法が確立されていないのが現 状である²⁾。このような背景により,筆者らは落石防護 構造物の性能照査型耐衝撃設計法を確立するための基礎 的な研究として, RC 梁部材に着目した研究³⁾を進め てきており,過去に実施した断面寸法,主鉄筋量,純ス パン長を変化させた曲げ破壊が卓越する 36 体の RC 梁 の単一衝撃荷重載荷実験結果を統一的に整理している。 その結果から、残留変位と入力エネルギーにはほぼ線形 の関係があり、その直線勾配は静的曲げ耐力の逆数と高 い相関関係にあることに着目し、以下のような提案式を 示すに至っている⁴⁾。

 $P_u = 0.42 \cdot E/\delta \tag{1}$

ここで, P_u (kN) は静的曲げ耐力, E (kN·m) は入力

エネルギー, δ (m)は残留変位である。

このような提案式は、実験室レベルでの多様な RC 梁 の比較的広範囲な入力エネルギーに対応可能であり、性 能照査型耐衝撃設計法の確立に資する設計式と考えられ る。ここで、式 (1)を誘導するために使用した室内実験 結果は、重錘質量と試験体 RC 梁の質量が比較的近い範 囲での実験により得られたものである。実規模の大型 RC 梁まで上記提案式の適用範囲を拡大するためには、 RC 梁の重錘落下挙動、特に残留変位に対する重錘質量 の影響について検討することが必要である。そこで、筆 者らは、近年の目覚ましい数値解析法の発達により RC 構造物等の耐衝撃挙動を精度よくシミュレート可能⁵⁾ となっていることに着目し、数値解析的に重錘質量の影 響について検討を行った。その結果、質量比(W/B:梁 の支点間質量 B に対する重錘質量 W の比)に対する残 留変位の補正係数として、以下の式を提案している⁶。

$$\beta = 0.288 ln(W/B) + 0.9605 \tag{2}$$

今後,落石防護構造物,特にロックシェッド等の耐衝 撃設計法に上記提案式を拡張検討していくためには,緩 衝材を設置した大型 RC 梁に対する耐衝撃挙動について も検討することが必要であるものと考えられる。

このような観点から、本研究では、敷砂緩衝材を設置 した小型から大型 RC 梁まで適用可能な性能照査型耐衝 撃設計法の確立に資する設計式を提案することを最終目 的に、大型 RC 梁に敷砂緩衝材を設置した場合に関する 各種数値解析を実施し、重錘質量の違いが大型 RC 梁の 耐衝撃挙動に与える影響について検討を行った。なお、 本数値解析には、三次元有限要素法に基づいた衝撃応答

*1	土木研究所寒地土木研究所 寒地構造チーム 主任研究員 博(工) (正会員)	
*2	室蘭工業大学 工学部建設システム工学科 教授 工博 (正会員)	
*3	土木研究所寒地土木研究所 寒地構造チーム 研究員 修(工) (正会員)	
*4	三井住友建設(株)技術研究所 主席研究員 博(工) (正会員)	
+		

図-1 数値解析用大型 RC 梁の形状寸法および配筋状況

表-1 解析ケース一覧

重錘	RC 梁	敷砂	質量比	落下高	入力
質量	質量	質量			エネルギー
W (t)	<i>B</i> (t)	<i>S</i> (t)	W/(B+S)	<i>H</i> (m)	E (kJ)
2			0.03	25	490
5			0.08	5, 10, 15	245, 490, 735
5	40	20		20, 25	980, 1,225
10			0.17	5	490
20			0.33	2.5	490

解析用汎用コード LS-DYNA (ver.970)⁷⁾を用いている。

2. 数值解析概要

2.1 大型 RC 梁の数値解析断面および解析ケース

図-1には、本数値解析で検討した敷砂緩衝材を設置 した大型 RC 梁の形状寸法および配筋状況を示してい る。数値解析用大型 RC 梁の形状寸法は、過去に実施し た大型 RC 梁の衝撃載荷実験および数値解析に使用した 1 断面の梁幅を敷砂緩衝材の設置を考慮して 2 倍の長さ としたものである。すなわち、梁高 1 m、梁幅 2 m の 矩形断面で純スパン長は 8 m としている。敷砂緩衝材 は、幅を 2 m、梁の軸方向に 7 m、敷砂厚を実構造物と 同様に 90 cm としている。コンクリート標準示方書に 基づいて算定した静的曲げ耐力は $P_{usc} = 1,811$ kN、静 的せん断耐力は $V_{usc} = 5,574$ kN、せん断余裕度 $\alpha_{sc} (=$ $V_{usc} / P_{usc})$ は、 $\alpha_{sc} = 3.08 > 1.0$ であり、設計的には静 載荷時に曲げ破壊で終局に至る断面設計となっている。

表-1には,解析ケースの一覧を示している。表に は,重錘質量W,支点間の梁の質量B,敷砂緩衝材の質 量S,質量比W/(B+S),落下高さH,入力エネルギー Eを示している。数値解析は,重錘質量をW = 5 tと し,落下高さをH = 5 mから5 mピッチで25 mまで 増加させた5ケースを基本として,さらに質量比の影 響を検討するために入力エネルギーをE = 490 kJに固 定して,重錘質量をW = 2, 5, 10, 20 t に変化させた 4 ケースについて実施した。なお、本研究では重錘質量 の影響についてのみ検討を行うことから,重錘の形状寸 法は質量によらず全て同一とした。すなわち,筆者らが 衝撃載荷実験において使用している質量 5 t の重錘(直 径 1 m,高さ 97 cm,底部が半径 80 cm の球状)と同一 の形状寸法であり,密度を調整することにより所定の重 錘質量としている。

2.2 数値解析モデルおよび解析条件

図-2 には、本数値解析で用いた大型 RC 梁の要素分割状況および配筋状況を示している。

解析モデルは、構造および荷重条件の対称性を考慮し てスパン方向および断面幅方向にそれぞれ 2 等分した 1/4 モデルとし、面対称を設定している。境界条件とし て, 重錘-敷砂間, 敷砂-コンクリート間, 支点治具-コンクリート間には面と面との接触・剥離を伴う滑り を考慮した接触面を定義している。敷砂緩衝材の外縁 部は、その面に対する法線方向の変位のみを拘束してい る。また、コンクリート-鉄筋要素間には完全付着を仮 定している。各要素において、コンクリート、敷砂、重 錘および支点治具には8節点固体要素,軸方向鉄筋お よびスターラップには2節点梁要素を用いてモデル化 している。各要素の積分点数に関しては、固体要素、梁 要素の場合でそれぞれ1点積分,4点積分としている。 また、減衰定数は質量比例分のみを考慮するものとし、 鉛直方向最低次固有振動数 (19.5 Hz) に対して 0.5 % と設定している。なお、本数値解析では自重を考慮し ている。これは、自重を考慮しないことによるリバウ ンド時の敷砂緩衝材の浮き上がりを防止することや、徐 荷後においても実情に即して敷砂の質量を考慮した RC 梁の動的応答特性を評価するためである。

2.3 材料物性モデル

図-3には、本数値解析で用いたコンクリート,鉄筋お よび敷砂緩衝材の相当応力-相当ひずみ関係を、表-2 には物性値一覧を示している。

図-3(a)には、コンクリートに関する相当応力-相

図-2 要素分割状況および配筋状況

表-2 物性値一覧

林水川	密度	強度	弾性係数	ポアソン比
4344	ρ (ton/m ³)	(MPa)	E(GPa)	ν
コンクリート	2.35	30	20	0.167
軸方向鉄筋	7 95	400	206	0.3
スターラップ	, 7.85	390		
敷砂緩衝材	1.60	-	10(除荷)	0.06
重錘,支点治具 定着鋼板	7.85	-	206	0.3

当ひずみ関係を示している。圧縮側に関しては、相当ひ ずみが 1,500 µ に達した状態でコンクリートが降伏す るものと仮定し、完全弾塑性体のバイリニア型にモデル 化した。引張強度は圧縮強度の 1/10 を仮定している。 降伏の判定には Drucker - Prager の降伏条件式を採用し ている。

図-3(b) には,鉄筋に関する相当応力-相当ひずみ関 係を示している。構成則には,降伏後の塑性硬化係数 H' を考慮した等方弾塑性体モデルを採用している。降伏の 判定は, von Mises の降伏条件に従うこととした。塑性 硬化係数 H'は、弾性係数 Esの1%を仮定している。

図-3(c) には、敷砂の緩衝特性を評価するための応 カーひずみ関係を示している。本研究で適用した敷砂の 材料構成則モデルは、筆者らが過去に実施した敷砂緩衝 材に対する衝撃載荷実験結果 ($W = 3 \text{ t}, H = 5 \sim 30 \text{ m}$) と数値解析結果の比較検討により適用の妥当性を検証し たものであり⁸⁾、次式のように示される。

$$\sigma_{sand} = 50 \varepsilon_{sand}^2 \tag{3}$$

ここで、 σ_{sand} は相当応力 (MPa)、 ε_{sand} は体積ひずみである。荷重の除荷勾配は $E_{ul} = 10$ GPa と仮定した。

重鈍,支点治具および定着鋼板に関しては,類似の実験においても塑性変形が生じていないことを確認していることより,弾性体と仮定した。また,密度,弾性係数およびポアソン比は,**表-2**に示されている値を採用している。

3. 数值解析結果

3.1 各種応答波形

図-4 には、入力エネルギーを *E* = 490 kJ に統一し、 重錘質量を *W* = 2、5、10、20 t と変化させた場合の各 種応答波形を最大値と共に示している。

ここで、重錘衝撃力は重錘が敷砂緩衝材に衝突するこ とによって発生する衝撃力であり、伝達衝撃力は敷砂緩 衝材を介して RC 梁上面に直接作用する衝撃力である。 本数値解析では、重錘衝撃力、伝達衝撃力および支点反 力は、それぞれの接触面に作用する合力を用いて評価す ることとしている。

重錘衝撃力波形は,何れの解析ケースにおいても振 幅の大きい三角形状の半波とその後に続く振幅の小さい 波形に高周波成分の波形が合成された性状を示してい る。重錘質量が2tの場合には,波形の立ち上がりが鋭 くピーク値発生までの時間が短い三角形状の半波を示し ており,波形の継続時間は90 ms 程度である。重錘質量 の増加とともに波形の立ち上がりは緩やかとなり,最大 重錘衝撃力が減少し,波形の継続時間が増加している。

伝達衝撃力波形は,何れの解析ケースにおいても重錘 衝突時より若干遅れて励起している。これは重錘が敷砂 に衝突した後の衝撃力の波動伝播時間に起因するものと 考えられる。重錘衝突初期の伝達衝撃力波形の分布性状 は,落下高さの低い場合には2つのピークを有する主 波動と,それに続く振幅の小さい半波波形より構成され ている。また,波形の継続時間は重錘衝撃力の継続時間 とほぼ対応しており,また重錘質量の増加とともに主波 動に続く正弦波の振幅も大きくなる傾向を示している。

支点反力波形についても、伝達衝撃力波形と同様に重 錘衝突時よりも若干遅れて励起している。支点反力波形

は、三角形状の波動に高周波成分が合成された波形性状 を示しており、周期は重錘質量の増加とともに長くなる 傾向が示されている。支点反力の最大値については重 錘質量によらず、いずれの解析ケースについても 2,300 kN 程度の大きさとなっている。

載荷点変位波形は,支点反力波形と同様に重錘衝突 時より若干遅れて励起しており,いずれも正弦半波状の 主波動とそれに続く減衰振動波形から構成されている。 また,重錘質量の増加に伴い,変位波形が励起されるま での継続時間やピーク値発生時間は延びる傾向にあり, 同時に主波動の周期も長くなる傾向にある。

3.2 敷砂緩衝材への重錘貫入量

図-5には、入力エネルギーをE = 490 kJに固定し、 重錘質量をW = 2、5、10、20 t と変化させた場合にお ける敷砂緩衝材への重錘貫入量の経時変化を示してい る。敷砂への最大重錘貫入量は、重錘質量の増加とと もに大きくなる傾向を示し、重錘質量が2 t の場合には 56 cm、20 t の場合には 84 cm となっている。

一方,重錘の貫入速度については,重錘質量が小さ く落下高さの大きい場合が,重錘質量が大きく落下高さ の小さい場合に比較して速くなっていることが分かる。 また,重錘質量の増加に対応して最大貫入量に達するま での経過時間が長くなっている。この重錘貫入速度や最 大貫入量の違いが重錘衝撃力の最大値や波形の立ち上が り勾配,波形継続時間等の違いに対応しているものと推 察される。

3.3 重錘衝撃力と伝達衝撃力

表-3には、本数値解析結果による重錘衝撃力 P、伝 達衝撃力 P_i 、重錘衝撃力 Pに対する伝達衝撃力 P_i の比 およびラーメの定数 λ の一覧を示している。ここで、 ラーメの定数 λ は、ロックシェッドの設計参考図書で ある落石対策便覧⁹⁾における衝撃力の算出式より逆算 的に求めたものである。

衝撃力の算出式は、以下のとおりである。

$$P = 2.108(m \cdot g)^{2/3} \cdot \lambda^{2/5} \cdot H^{3/5} \cdot \alpha$$
 (4)

ここに、 P:落石の衝撃力 (kN)
 m:落石の質量 (t)
 g:重力加速度 (m/s²)

重錘	落下高	重錘	伝達		ラーメ
質量		衝擊力	衝擊力	P_t / P	の定数
<i>W</i> (t)	<i>H</i> (m)	P(kN)	P_t (kN)		$\lambda (kN/m^2)$
2	25	2,296	2,172	0.95	1,927
	5	1,207	1,146	0.95	937
	10	2,017	1,728	0.86	1,196
5	15	2,987	2,297	0.77	1,738
	20	3,031	2,787	0.92	1,171
	25	3,372	3,421	1.01	1,094
10	5	1,547	1,881	1.22	549
20	2.5	1,422	1,740	1.22	396

表-3 数值解析結果一覧

λ: ラーメの定数 (kN/m²)

H: 落石の落下高 (m)

α:砂層厚と落石直径の比から決定される 割り増し係数

表より、重錘衝撃力 Pに対する伝達衝撃力 P_t の比を 見ると、重錘質量を W = 5tに固定し落下高さを増加さ せた解析ケースでは、 P_t / P の値が 0.8 ~ 1.0 程度の値 を示しており、重錘衝撃力と伝達衝撃力はほぼ同程度の 値となっている。重錘質量が 10 t および 20 t の場合に は、 P_t / P は 1.2 となり、伝達衝撃力が重錘衝撃力に比 較して 20 % 程度大きな値となっている。過去の研究事 例 ¹⁰⁾においても、両者の大きさがほぼ同程度であると する報告や伝達衝撃力が大きくなるとする報告があり、 本解析結果もそれらの実験結果と同様の傾向を示す結果 となっている。

ラーメの定数 λ について言及すると、重錘質量を W = 5tに固定し落下高さを増加させた解析ケースでは、落下 高さ H = 15 m の場合を除き、ラーメの定数 λ は 1,000 ~ 1,200 kN/m² 程度の値を示しており、過去に実施さ れた敷砂緩衝材に関する実験結果と同程度の値となって いる。なお、落下高さ H = 15 m の場合において、ラー メの定数が大きく評価されたのは、 **図**-4 の重錘衝撃 力波形に示されるように高周波成分の影響によるものと 推察される。一方、重錘質量 W = 10 t および 20 t の解 析ケースでは、 λ が 500 kN/m² 程度と他の解析ケース に比較して 1/2 程度の値を示し、敷砂緩衝材は柔らかめ に評価されていることが分かる。これは重錘の敷砂への 貫入速度や貫入量の違いによるものと考えられる。

3.4 最大変位および残留変位と入力エネルギーの関係

図ー6(a) には、最大変位と入力エネルギーの関係を示している。最大変位は、入力エネルギーの増加に対応 してほぼ線形に増加する傾向を示している。また、入力 エネルギー *E* = 490 kJ において、重錘質量を変化させ た場合においても最大変位の大きさに大差はなく、ほぼ 同程度の値を示していることが分かる。

図-6 最大変位および残留変位と 入力エネルギーの関係

図ー6(b)には、残留変位と入力エネルギーの関係を示 している。最大変位に対する残留変位の割合は、入力エ ネルギーの増加に対応して大きくなっており、E = 245kJ で 33 %、E = 1,225 kJ で 67 % となっている。これ は、入力エネルギーの増加とともに RC 梁の塑性化が 進行するためと考えられる。また、入力エネルギーE =490 kJ において、重錘質量を変化させた場合には、重 錘質量が W = 2t において残留変位が他の解析ケースに 対して 50 % 程度と小さいものの、それ以外の解析ケー スでは残留変位の大きさに大差はなくほぼ同程度の値を 示していることが分かる。

4. 重錘質量の影響に関する検討

図-7には、前述の式(2)の誘導に使用した敷砂緩衝 材を設置しない場合における相対残留変位と質量比の関 係を示している⁶⁾。ここで、相対残留変位とは質量比が 1.25の場合の残留変位を 1.0 としたときの各解析ケー スにおける残留変位を示したものである。図より、敷砂 緩衝材を設置しない場合の大型 RC 梁において、残留変 位量に対する質量比の影響が非常に大きく、質量比によ

図-8 相対残留変位と質量比の関係

る残留変位の補正係数は非常に有用なものであることが 分かる。

一方, 図-8には,入力エネルギーをE = 490 kJに 固定し重錘質量を変化させた解析ケースにおいて,重錘 質量W=5 t,落下高さH = 10 mの解析ケース(質量比 0.08)における残留変位を 1.0 とした場合の相対残留変 位と質量比の関係を示している。図より,相対残留変位 は質量比との間に明確な相関関係が見られず,質量比が 0.03 と非常に小さい場合を除き,質量比に関わらずほ ぼ同程度の残留変位を示すことが分かる。これは,敷砂 緩衝材を設置することによって,衝撃力が強度的,時間 的に緩和されることや,系の固有振動数が低減すること の効果によるものと推察される。なお,質量比が 0.03 程度と非常に小さい場合には,質量比を大きく設定する ことにより安全側で設計が可能になる。

5. まとめ

敷砂緩衝材を設置した大型 RC 梁の重錘落下衝撃挙 動における重錘質量の影響について検討することを目的 に、90 cm 厚の敷砂緩衝材を設置した桁高 1 m, 梁幅 2 m, 純スパン長 8 m の大型 RC 梁に対して, 重錘形状 を同一として重錘質量や落下高さを変化させた場合の数 値解析を実施した。本研究により得られた結論を整理す ると,以下のとおりである。

- (1) 実験結果との比較検討により妥当性が検証されている解析手法および解析モデルを用いて、数値解析によるパラメータスタディを実施し、敷砂緩衝材を設置した大型 RC 梁の耐衝撃挙動や重錘質量の影響を把握することができた。
- (2) 敷砂緩衝材を設置する場合には、重錘質量 W と 梁質量 B および敷砂質量 S との比である質量比 W/(B+S) は、その値が 0.03 程度と非常に小さい場

合を除き,重錘衝撃を受ける大型 RC 梁の残留変 位に与える影響は小さく,入力エネルギーが同一 であれば質量比に関わらずほぼ同程度の残留変位 を示すことが明らかになった。

今後は、重錘形状や敷砂厚の影響に関する数値解析的 検討、入力エネルギーが過度に大きい場合における敷砂 材の構成則モデルの適用性に関する検討を行い、敷砂緩 衝材を設置した大型 RC 梁の性能照査型耐衝撃設計法に 資する設計式の確立に向けた検討を進めて行きたいと考 えている。

謝辞:本研究を遂行するにあたり,室蘭工業大学博士前 期課程の可知典久君には数値解析を実施して頂き,多大 なるご支援を頂きました。記して感謝の意を表します。

参考文献

- 1) 熊谷守晃:ルランベツ覆道における落石災害に関 する報告,第2回落石等による衝撃問題に関する シンポジウム講演論文集,pp.286-290,1993.6
- 2) 土木学会:構造工学シリーズ 15 衝撃実験・解析の基礎と応用,2004.1
- 3)岸 徳光,三上 浩,松岡健一,安藤智啓:静載 荷時に曲げ破壊が卓越する RC 梁の耐衝撃設計法 に関する一提案,土木学会論文集,No.647/I-51, pp.177-190,2000.4
- 4)岸 徳光,三上 浩:衝撃荷重載荷時に曲げ破壊が 卓越する RC 梁の性能照査型耐衝撃設計法に関する 一提案,構造工学論文集, Vol.53A, pp.1251-1260, 2007.3
- 5) 岸 徳光, 三上 浩, 松岡健一, 安藤智啓: 静載荷 時に曲げ破壊が卓越する RC 梁の弾塑性衝撃応答 解析, 土木学会論文集, No.619/I-47, pp.215-233, 1999.4
- 6) 今野 久志,三上 浩,岡田 慎哉,岸 徳光:大型 RC 梁の重錘落下挙動における重錘質量の影響に関する数値解析的検討,土木学会北海道支部論 文報告集,第 64 号,2008.1
- John O.Hallquist : LS-DYNA User's Manual, Livermore Software Technology Corporation, 2000.6
- 8) 岸 徳光,岡田慎哉,今野久志,池田憲二:敷砂材の緩衝特性評価のための数値解析モデルに関する 一考察,構造工学論文集,Vol.49A,pp.1323-1332, 2003.3
- 9) 日本道路協会:落石対策便覧, 2000.6
- 10) 構造工学シリーズ 8 ロックシェッドの耐衝撃設計, 1998.11