論文 フライアッシュを用いたコンクリートの耐凍害性と自己修復効果の 検討

藤原 佑美*1·濱 幸雄*2·山城 洋一*3·齋藤 敏樹*4

要旨:本研究では、フライアッシュを外割り混合したコンクリートの耐凍害性の検討を行うとともに、凍害 劣化後の修復養生による自己修復効果を相対動弾性係数、中性化速度係数、ひび割れ本数および細孔構造の 変化によって評価した。その結果、フライアッシュを外割り混合した non-AE コンクリートの耐凍害性は大き く劣る傾向にあるが、空気の連行により普通コンクリートと同等の耐凍害性が確保できることを確認した。 また、劣化後の修復養生による自己修復効果が確認されたが、実環境下では劣化抵抗性と修復効果のバラン スが重要であることを示した。

キーワード:フライアッシュ,耐凍害性,自己修復効果,中性化速度係数,細孔構造

1. はじめに

環境保護,財政面での制約等から建築ストックの有効 かつ長期的な活用が求められ,今後新たに造られる建築 物には総合的なコスト縮減や高い耐久性の確保が求め られている。そこで著者らは,鉱物組成を調整したセメ ントとフライアッシュを適切に配合することで,長期に わたって計画的に水和反応およびポゾラン反応を起こ し,供用期間中に生じた微細ひび割れを反応生成物で埋 める自己修復コンクリートの開発研究を行っている。既 往の研究において,フライアッシュを混入したモルタル を用いた実験で,凍結融解作用によって相対動弾性係数 が低下した後に適切な修復養生を行うことにより,相対 動弾性係数の回復,中性化速度係数の低下,ひび割れ本 数の減少などの高い自己修復効果を確認している¹⁾。

一方,フライアッシュは外割りで適切な量を配合する ことで無混合の場合より初期強度が増加する²⁾ことや, 中性化に対する抵抗性が向上する³⁾ことが知られている が,耐凍害性に対する影響は明らかにされていない。

そこで本研究では、シリーズIでフライアッシュを外 割り混合したコンクリートの耐凍害性の検討を行うと ともに、シリーズⅡでは凍害劣化後の修復養生による自 己修復効果を相対動弾性係数、中性化速度係数、ひび割 れ本数および細孔構造の変化によって評価した。

2. 実験概要

2.1 使用材料および実験水準

本実験に使用したフライアッシュの品質を表-1に 示す。シリーズIでは普通ポルトランドセメント(密度 3.16 g/cm³, ブレーン比表面積 3,270cm²/g)を使用した。

*1 室蘭工業大学大学院 建設システム工学専攻 (正会員) *2 室蘭工業大学 建設システム工学科 准教授 博士(工学) (正会員) *3 北海道電力株式会社 総合研究所 (正会員) *4 北電総合設計株式会社 技術研究所 (正会員)

フライアッシュは JIS A 6201 による II 種灰を用い, 細骨 材の一部を容積比で 15 vol.%置換した。細骨材は錦多峰 産陸砂(表乾密度 2.69g/cm³, 粗粒率 2.74), 粗骨材は峩 朗産砕石(表乾密度 2.71g/cm³, 粗粒率 6.61)を使用した。 混和剤は, AE 剤 I 種(主成分:天然樹脂酸塩), フライア ッシュ用 AE 剤(主成分:特殊界面活性剤)および高性能 減水剤 I 種(主成分:ナフタリンスルホン酸・ホルマ リン高縮合物塩)を使用した。シリーズ II で使用 したセメントの品質を表-2に示す。比較用試験体 (記号 N)は普通ポルトランドセメントを使用し, 自己修

表-1 フライアッシュの品質

	項目		JIS規格 Ⅱ種	シリーズ I	シリーズⅡ	
二酸化けい素(%)			45.0以上	68.6	73.2	
湿分(%)			1.0以下	0.15	0.16	
強熱減量	量(%)		5.0以下	1.7	1.5	
密度(g/cm ³)			1.95以上	2.20	2.15	
松士庄	45µふる (網ふるレ	い残分(%) い方法)	40以下	16	17	
杤不良	比表面積 (ブレーン	(cm²/g) ⁄方法)	2,500以上	3, 890	4,090	
フロー値比(%)			95以上	106	105	
活性度指数(%) 材齢28日 材齢91日		80以上	86	87		
		材齢91日	90以上	104	97	

表-2 セメントの品質

			鉱物維	1成(%)	物理性状			
記号	セメント の種類	C_3S	C_2S	C3A	C3AF	密度	ブレーン 比表面積	
						(g/cm^3)	(cm^2/g)	
OPC	普通	73.8	11.3	5.9	9.0	3.16	3, 250	
Н	早強	79.7	7.0	5.7	7.9	3.13	4,650	
L	低熱	28.8	60.4	2.1	8.6	3.24	3, 330	
※ 鉱物組成は, XRD(リートベルト法)により定量								

シリーズ <mark>試</mark> 馴 記		≰ ₩/C %	SL cm	Air %	細骨 · 材率 %	単位量(kg/m ³)									
	試験体						セメントC						混和剤		
	記号					W	OPC	Н	L	FA	S	G	高性能 減水剤	AE剤	FA用
	Ν			1.0	47	151	296	—	—	—	955	1084	3.85		—
I FA	NA	51 1 19	4.0	46	151	296	—	—	—	880	1038	3.26	0.067	—	
	F	51.1	51. 1 18	1.0	48	151	296	—	—	44.4	930	1065	3.85		—
	FA			4.0	46	151	296	—	—	44.4	836	1038	3.26	_	0.289
II FAN FAH	Ν	N AN 55 18 HL		47	191	348	—	—	—	879	998	—		—	
	FAN		18	18 1.0	46	191	348	—	—	34	829	998	—	_	—
	FAHL				46	191	—	241	107	34	829	998	-	—	_

表-3 コンクリート調合表

復コンクリートとして、普通ポルトランドセメントを使 用しフライアッシュを混入した試験体(記号 FAN)および 早強ポルトランドセメントと低熱ポルトランドセメン トを質量比7対3の割合で混合しフライアッシュを混入 した試験体(記号 FAHL)の計3種類のコンクリートを作 製した。フライアッシュはJISA 6201によるII種灰を用 い、細骨材の一部を容積比で10 vol.%置換した。細骨材 は、登別産陸砂(表乾密度 2.69 g/cm³、粗粒率 2.70), 粗骨材は白老産砕石(表乾密度 2.67 g/cm³、粗粒率 6.64) を使用した。コンクリート調合表を**表-3**に示す。

2.2 実験方法

凍結融解試験および自己修復性能の検討は 7.5×7.5× 40cm のコンクリート角柱試験体を使用した。

耐凍害性の検討は, JISA 1148 A 法に準拠した水中凍 結融解試験を行い, 30 サイクル毎に質量変化,長さ変化 および一次共鳴振動数の測定を行った。

自己修復性能の検討は、打設から20℃・4週水中養生 後に基準値を測定し、凍結融解試験を30サイクル行っ た後、劣化後性状を測定した。なお、40℃・2週水中養 生は、各材料の自己修復潜在能力を検討するための条件 としている。凍結融解による劣化と修復養生による修復 の繰返しは、冬期に受ける凍結融解回数を促進試験で30 サイクルと想定し、等価積算温度で210°D・D程度が夏 期に北海道において受ける修復環境に相当する⁴⁾ことか ら、修復養生を40℃・3日水中養生とした。これを1年 間に受ける劣化と修復と想定し、3サイクル繰返すこと によって、実環境下で3年間に相当する条件とする。

測定項目は一次共鳴振動数,中性化深さ,ひび割れ本 数および細孔構造とした。

促進中性化試験は、20℃・RH60%で4週間乾燥させた後、JISA 1153 に準拠した。

ひび割れ観察は,試験体切断後,切断面を研磨し,2 分間の超音波洗浄を行った後,松村ら5の方法に準じて, 顕微鏡(倍率200倍)を用いて測線上を横切るひび割れ本 数を計測し,単位長さあたりのひび割れ本数を求めた。

表-4 コンクリートの練上がり性状

試験体 記号	温度 ℃	SL cm	Air %	塩化物量 kg/m ³
Ν	23.0	16.5	4.0	0.029
NA	23.0	17.5	5.5	0.028
F	20.0	18.0	2.6	0.036
FA	20.5	19.0	5.1	0.034

細孔構造の測定は,試験体の端部から約5 cmの部分を 切断し,試験体をハンマーで砕き,JIS 5.0mm のふるい を通り2.5mm にとどまるものを試料とし,アセトンに浸 漬し,D乾燥を行った後,水銀圧入ポロシメータを用い て,細孔直径6nm~5000nmの範囲で行った。

強度増進性状の確認は、 φ10×20 cmの円柱試験体を用 いて材齢 7 日,28 日,および 91 日目に圧縮強度を測定 した。なお,養生方法は 20℃水中養生とした。

3. 実験結果および考察

3.1 凍結融解試験結果(シリーズ I)

コンクリートの練上がり性状を表-4に、凍結融解試 験結果を図-1に示す。質量減少率については、non-AE コンクリートでの変化が大きく、特にFでは30サイク ル以降からのスケーリング劣化が著しく、試験終了にか けて質量減少率が大きくなっている。NA およびFA では 90サイクル以降からスケーリング量が徐々に増加して いる。長さ増加比および相対動弾性係数についても、N では90サイクル、Fでは30サイクル付近から長さ変化 が大きく、それに伴い相対動弾性係数の低下も大きくな っている。特にFでは著しい膨張がみられ、相対動弾性 係数についても急激な低下が確認された。

一方, NA および FA では長さ,相対動弾性係数ともに 変化が小さく,空気の連行が耐凍害性の確保に寄与して いる。

調合上,NおよびFはnon-AEコンクリートとしたが,

練上がり性状時の空気量は N では 4.0%と多く, それに 対し F では 2.6%であった。フライアッシュを外割り混合 した F では,単位セメント量および水セメント比は N と 同じであるが,この空気量の差が耐凍害性に影響を及ぼ していると考えられる。一方で,AE コンクリートとす ることで普通ポルトランドセメントコンクリートと同 等の耐凍害性を確保できることが確認された。

3.2 自己修復性能の評価(シリーズⅡ)

(1) 強度増進性状

コンクリートの強度増進性状を図-2に示す。比較用 試験体Nとフライアッシュを混入したFANおよびFAHL を比較すると,材齢7日目ではFANの圧縮強度がNよ り幾分低いが,FAHLでは同程度である。材齢28日目で はFANおよびFAHLの強度増進が大きく,Nより高い圧 縮強度を示した。その後,材齢91日での長期材齢では ポゾラン反応によりFANおよびFAHLでN以上の強度 増進がみられた。

本研究で評価した自己修復コンクリートでは水和反 応の遅い低熱ポルトランドセメントやフライアッシュ を用いているため強度発現の遅れによる施工上の問題 が懸念されたが,普通コンクリートと同等以上の強度発 現を示すことから,実用上の問題はないといえる。

(2) 相対動弾性係数の変化

相対動弾性係数の変化を図-3に示す。いずれの試験 体においても凍結融解によって劣化し,相対動弾性係数 の低下がみられる。劣化後の相対動弾性係数が試験体種 類で異なるため,その後の40℃・2週の修復養生での回 復程度の違いは明確に評価できないが,すべての試験体 で相対動弾性係数の回復がみられる。N と FAN および FAHL を比較すると,N では相対動弾性係数で10%程度 の回復であるのに対し,FAN および FAHL ではおよそ 20%の回復がみられ,フライアッシュを混入した試験体 の回復率が高い傾向を示した。

また,劣化と修復の繰返した場合では,NおよびFAN については大きな回復はみられないものの劣化の進行 が抑制されている。これは,劣化度と修復効果が同程度 で繰返されているためと推察される。一方,FAHL は劣 化度に対する修復効果が小さく,劣化が著しく進行し相 対動弾性係数の低下が顕著である。

(3) 中性化速度係数の変化

中性化速度係数の結果を図-4に示す。Nでは凍結融 解後に中性化速度係数はわずかに増大しているが, 40℃・2 週の修復養生後では大きな変化はなくほぼ一定 のまま推移している。また,劣化と修復の繰返しにおい ては基準値とほぼ同程度であり,劣化程度および修復程 度はいずれについても小さく,中性化速度係数の大きな 変化はみられない。一方,フライアッシュを混入した試

験体では、凍結融解後、特に FAHL の中性化速度係数の 増大が著しい。その後 40℃・2 週の修復養生後では、FAN および FAHL ともに劣化後と比較し、中性化速度係数の 回復がみられる。セメントの種類による修復効果の違い は、FAN と FAHL の劣化程度が異なるため同列に比較す ることはできないが、セメントの種類よりもフライアッ シュのポゾラン反応による自己修復効果が中性化抵抗 性が向上しているものと考えられる。

一方,劣化と修復養生を繰返した場合では,FANおよびFAHLの耐凍害性が低く劣化の進行が著しいのに対し, 修復養生による回復程度が小さく,最終的には中性化速 度係数が増大する結果となった。

(4) ひび割れ本数の変化

ひび割れ本数の変化を図-5に示す。全ての試験体に おいて基準値のひび割れ本数は少なく,劣化後に増加が みられ,特にFAHLのひび割れが顕著に確認された。そ の後,40℃・2週の修復養生を行った場合では,3種類 の試験体ともにひび割れ本数は減少した。一方,劣化と 修復を繰返した試験体についてはNおよびFANは劣化 後に比べ,ひび割れは減少したが,FAHLにおいては著 しい劣化がみられた。最初の凍結融解30サイクルと 40℃・3日の修復養生後に劣化が進行しており,コンク リートのスケーリングおよび相対動弾性係数の低下が 著しく,微細ひび割れが多く入ったために,表面からの 浸水が加速され,その後の凍結融解時に凍害劣化を促進 させたことが要因と考えられる。

(5) 細孔構造の変化

細孔径分布の測定結果より細孔径を 6nm~50nm, 50 nm~1000nm, 1000nm~5000nm の 3 区分の範囲に分け, 基準値を 100%とした細孔範囲ごとの相対細孔容積の変 化の一例を図-6に示す。一般には 6nm~50nm は, セ メントペーストマトリックスに生成する微細な毛細管 空隙に, 50nm~1000nm は, 骨材とセメントペースト界 面,またはセメントが十分水和していない間隙に認めら れる粗大な毛細管空隙に相当し,1000nm 以上の細孔は, 気泡, ひび割れに相当すると考えられる⁶。

既往のモルタル実験では、凍結融解の劣化により生じ るマイクロクラックの大部分は 1000nm 以上であり、修 復養生により未水和のセメントおよびフライアッシュ が反応して生成される水和物の大部分は 50nm 以上であ ることが確認されている¹⁾。コンクリートでも同様に N および FAN では劣化後に 50nm 以上の細孔の増大がみら れるが、FAHL では劣化後に細孔量の増加がみられない。 この理由は明らかではないが、本研究では細孔量の測定 用サンプルを採取する際に、試験体の劣化状態の影響か らカッターでの切断が困難でハンマーで粉砕しており、 劣化後の骨材界面のひび割れが最も多く発生していた

FAHL ではペースト部分と骨材とが分離し,骨材界面に 多く発生したひび割れや粗大な細孔の影響が細孔測定 結果に反映されていないことも考えられる。一方,修復 効果については,50nm~1000nm の細孔量の減少がみら れ,修復養生によって未水和鉱物が反応して細孔を充填 したこと示唆される。また,劣化と修復を繰返した場合 については,FAN および FAHL の劣化が著しく進行して おり,1000nm 以上の粗大な細孔の増加が顕著である。

(6) 実環境を想定した条件下での自己修復性能

北海道の1年間の環境変化を考慮すると、冬季に劣化 を受け、夏季に修復すると想定できる。経年することに より劣化と修復が繰返され、修復効果が大きい場合コン クリートの劣化の促進を抑制できると考えられる。

劣化と修復を繰返し行った場合の相対動弾性係数の 変化を図-7に示す。Nでは最初の凍結融解30サイクル で相対動弾性係数が80%程度まで低下している。その後 の大きな修復効果はみられず,3日間の修復養生後にさ らに凍結融解30サイクルを行ったが相対動弾性係数の 低下はみられなかった。劣化と修復を繰返しても、大き な変化はみられず,相対動弾性係数はほぼ一定の状態を 保ったまま推移した。

FAN および FAHL では最初の凍結融解で相対動弾性係 数が 65%程度まで低下し,Nに比べ著しい劣化がみられ た。その後,修復効果はみられず,FAN では凍結融解後 の相対動弾性係数の低下も確認されなかった。 一方, FAHL では劣化と修復の繰返し3 サイクル目の 凍結融解で相対動弾性係数の著しい低下がみられ,その 後の修復効果もみられず,最終的には劣化が進行した。 フライアッシュを用いた試験体では,劣化が著しく進行 するが,劣化に対する修復効果が小さく,期待した大き な修復効果は確認できなかった。また,凍結融解 30 サ イクルという1年の劣化に相当する条件に対し,40℃・ 3 日の修復養生期間は短く,実環境下で可能な修復条件 は厳しいものと考えられる。

劣化と修復が繰返される実環境の条件での自己修復 効果を評価するにあたっては,劣化抵抗性と修復効果の バランスが重要である。つまり,1年間に受ける劣化程 度より修復効果の方が大きくなければならず,フライア ッシュのもつ高い潜在的な自己修復効果を有効に活用 するためには,通常のコンクリートと同様にAEコンク リートとして耐凍害性を確保することが前提となる。

4. まとめ

フライアッシュを外割り混合したコンクリートの耐 凍害性および凍害劣化後の修復養生による自己修復性 能の検討を行った結果,以下のことが明らかとなった。 1)空気量の少ないフライアッシュを外割り混合したコ ンクリートの耐凍害性は大きく劣る傾向にあるが,空気 の連行により普通コンクリートと同等の耐凍害性が確 保できることを確認した。

2) コンクリートにおいてもモルタルの場合と同様に,劣 化と修復によって影響を受ける細孔径の範囲は,50nm 以上の比較的粗大な細孔である。

3) 劣化と修復を繰返す実環境下では、劣化抵抗性と修復 効果のバランスが重要である。

謝辞

本研究は北海道重点領域研究課題「自己修復コンクリ ートの開発」として,北海道立北方建築総合研究所,北 海道大学,室蘭工業大学,北海道電力総合研究所,日鐵 セメントの共同により行われた研究の一部である。

参考文献

1)藤原佑美ほか:フライアッシュを用いたモルタルの 自己修復効果,コンクリート工学年次論文集, Vol.29 No.1, pp.303-308, 2007

 2) 黄光律ほか:フライアッシュを細骨材の一部として 使用したコンクリートに関する研究(その1,2),日本建 築学会大会学術講演梗概集(関東),pp.77~80,1997.9
3) 黄光律ほか:フライアッシュを外割混合使用したコ ンクリートの中性化特性,コンクリート年次論文報告集, Vol.20 No.2, pp.127-132,1998

4) 佐々木智和ほか:コンクリートの劣化・自己修復に 影響する自然環境の評価に関する研究,北海道支部研究 報告論文集, pp.29-34, 2006

5) 松村宇ほか: 凍害を受けたコンクリートの劣化度評 価法に関する研究, 日本建築学会構造系論文集, 第 563 号, pp.9-13, 2003.1

6)小早川真ほか:フライアッシュを内割・外割でセメン トに混合したモルタル硬化体の空隙・組織構造,コンク リート工学年次論文集, Vol.20 No.2, pp.739-744, 1998