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Abstract

We consider a certain Dirichlet series of Rankin-Selberg type associated with two
Siegel cusp forms of the same integral weight with respect to Spn(Z). In particu-
lar, we give an explicit formula for the Dirichlet series associated with the Ikeda
lifting of cuspidal Hecke eigenforms with respect to SL2(Z). We also comment on a
contribution to the Ikeda’s conjecture on the period of the lifting.
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1 Introduction

Let n > 1 and let F and G be Siegel modular forms of degree n and integral
weight k. For any positive integer N , we denote by ϕN and ψN the N -th
Fourier-Jacobi coefficients of F and G, respectively. If F and G are cusp forms,
not necessarily Hecke eigenforms, then we define a certain Dirichlet series
D1(s; F, G) associated with F and G, which can be viewed as a generalization
of the Rankin-Selberg convolution series for elliptic cusp forms. Namely, it is
defined by

D1(s; F, G) := ζ(2s − 2k + 2n)
∞∑

N=1

⟨ϕN , ψN⟩N−s,
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where ζ(s) is the Riemann zeta function and we denote by ⟨∗, ∗⟩ the Petersson
inner product defined on the space of Jacobi cusp forms of degree n−1, weight
k and index N . We easily see by an analogy of the standard Hecke’s method
that D1(s; F, G) converges absolutely for Re(s) > k + 1.

Furthermore, T. Yamazaki ([13]) proved by using the Rankin-Selberg method
with a certain non-holomorphic Eisenstein series of Klingen-Siegel type that
D1(s; F, G) has the following analytic properties:

Theorem 1 (cf. Theorems 3.4 and 3.5 in [13]). Let

Γn,k(s) := πk−n(2π)−2sΓ(s)Γ(s − k + n),

where Γ(s) is the gamma function. Then the function

D1(s; F, G) := Γn,k(s) D1(s; F, G)

is holomorphic on the entire complex plane except for simple poles of residue
⟨F,G⟩ at s = k and s = k − n, where we denote by ⟨∗, ∗⟩ the Petersson inner
product defined on the space of Siegel cusp forms of degree n and weight k.
Furthermore, it satisfies a functional equation

D1(s; F, G) = D1(2k − n − s; F, G).

Here we note that the type of the functional equation of D1(s; F, G) is same
as that of the Hecke L-function L(s, f) associated with a cuspidal Hecke
eigenform f of degree 1 and weight 2k − n.

On the other hand, let n and k be positive even integers such that k > n + 1.
For a normalized cuspidal Hecke eigenform f of degree 1 and weight 2k − n,
we consider the so-called Ikeda lifting of f into the space of Siegel cusp forms
of degree n and weight k. Namely, there exists a cuspidal Hecke eigenform
In,k(f) of degree n and weight k whose standard L-function is equal to

ζ(s)
n∏

i=1

L(s + k − i, f).

We note that the Ikeda lifting coincides with the Saito-Kurokawa lifting in
case n = 2.

The main result in this paper is the following:

Main Theorem. Let n and k be positive even integers such that k > n + 1.
If f is a normalized cuspidal Hecke eigenform of degree 1 and weight 2k − n,
then

D1(s; In, k(f), In, k(f)) = ⟨ϕ1, ϕ1⟩ ζ(s − k + 1)ζ(s − k + n)L(s, f), (1)
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where ϕ1 is the first Fourier-Jacobi coefficient of In, k(f).

We easily see that the gamma factor Γn,k(s) is a constant multiple of

n/2−1∏
i=0

(s − k + 2i + 1) ΓR(s − k + 1)ΓR(s − k + n)ΓC(s),

where we denote by ΓR(s) and ΓC(s) the gamma factors of ζ(s) and L(s, f),
respectively (cf. §6 below). Therefore the equation (1) agrees with Theorem 1.

By comparing residues at s = k on the both sides of (1), we also obtain the
following equation:

Corollary. Under the same assumption as above, we have

(−1)n/2+1 πk · 22k−n+1 n

(k − 1)! Bn

· ⟨In, k(f), In, k(f)⟩
⟨ϕ1, ϕ1⟩

= L(k, f), (2)

where Bn is the n-th Bernoulli number.

The equations (1) and (2) are generalizations of the well-known formulae for
the Saito-Kurokawa lifting, which were obtained by W. Kohnen and N.-P.
Skoruppa ([9]). We also obtain a new proof of them in case n = 2.

This paper consists of the 5 sections as follows: The first §2 and §3 are devoted
to the reviews of the Ikeda lifting (cf. [6]) and some basic facts on Jacobi forms
of integral index (cf. [11] and [12]), respectively. In §4, we study certain linear
operators acting on the graded ring of Jacobi forms and their adjoints with re-
spect to Petersson inner products. In particular, we prove some multiplicative
relations between them, which play important roles in the proof of the main
theorem in §5. Finally, in §6, we comment on a contribution to the Ikeda’s
conjecture on the period of the Ikeda lifting (cf. [7]).

Notation. We denote by N, Z, Q, R and C the set of natural numbers,
the ring of rational integers, the field of rational numbers, the field of real
numbers and the field of complex numbers, respectively. For any commutative
ring R, we denote by Mm,n(R) the set of m × n matrices with entries in R,
and especially write Mn(R) = Mn,n(R) and Rn = M1,n(R). We denote by 1n,
0n ∈ Mn(R) the unit matrix and the zero matrix of size n, respectively. Let
GLn(R) be the group of all invertible elements of Mn(R), and Sn(R) be the
set of symmetric matrices of size n with entries in R. For any integral domain
R, let Hn(R) be the set of half-integral symmetric matrices of size n over R,
that is,

Hn(R) := {T = (tij) ∈ Sn(Q(R)) | tii ∈ R (1 ≤ i ≤ n), 2 tij ∈ R (1 ≤ i ̸= j ≤ n)},
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where Q(R) is the quotient field of R. If R = Z, we denote by Hn(Z)≥0

and Hn(Z)>0 the subsets of Hn(Z) consisting of all positive semi-definite and
definite half-integral symmetric matrices, respectively. For any commutative
ring R, matrices X ∈ Mm,n(R) and A ∈ Mm(R), we write A[X] = tXAX ∈
Mn(R), where tX denotes the transpose of X. For any r1, · · · , rn ∈ R, we
denote by diag(r1, · · · , rn) the diagonal matrix with entries r1, · · · , rn, that is,

diag(r1, · · · , rn) :=


r1 0

. . .

0 rn

 .

For any A ∈ Mn(R), we denote by tr(A) and det(A) the trace and the deter-
minant of A, respectively.

Let Sn, Gn, Γn be the subgroup of the real general symplectic group consisting
of all elements with positive similitudes, the real symplectic group and the
Siegel modular group, respectively. Namely,

Sn := GSp+
n (R) = {M ∈ M2n(R) | tMJnM = νJn for some ν > 0},

Gn := Spn(R) = {M ∈ M2n(R) | tMJnM = Jn},
Γn := Spn(Z) = Gn ∩ M2n(Z),

where Jn =
(

0n 1n
−1n 0n

)
. For any M ∈ Sn, we denote by ν(M) the similitude

of M , that is, tMJnM = ν(M)Jn. For any N ∈ N, we denote by Γ
(n)
0 (N) a

congruence subgroup of Γn defined by

Γ
(n)
0 (N) := {( A B

C D ) ∈ Γn |C ≡ 0n (mod N)} .

We denote the Siegel upper-half space of degree n by Hn, that is,

Hn := {Z = X +
√
−1 Y ∈ Sn(C) | Y > 0 (positive definite)}.

For any M = ( A B
C D ) ∈ Sn and Z ∈ Hn, we put M⟨Z⟩ := (AZ+B)(CZ+D)−1.

As is well-known, this defines an action of Sn on Hn. In particular, the group
Gn acts transitively on Hn. For any k ∈ Z, a holomorphic function F (Z) on
Hn is called a (holomorphic) Siegel modular form of degree n and weight k if
it satisfies the following two conditions:

(i) F (M⟨Z⟩) = det(CZ + D)kF (Z) for any M = ( A B
C D ) ∈ Γn,

(ii) F has a Fourier expansion of the form

F (Z) =
∑

T∈Hn(Z)≥0

A(T ) exp(2π
√
−1 tr(TZ)).

If F satisfies the stronger condition A(T ) = 0 unless T > 0 (positive
definite), it is called a Siegel cusp form.
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We denote by Mk(Γn) and Sk(Γn) the C-vector spaces of (holomorphic) Siegel
modular forms and Siegel cusp forms of degree n and weight k, respectively. We
note that if n > 1, then the condition on Fourier coefficients in (ii) follows from
the condition (i) (Koecher’s principle). If F, G ∈ Mk(Γn) and FG ∈ S2k(Γn),
then we can define the Petersson inner product of F and G by

⟨F, G⟩ :=
∫

Γn\Hn

F (Z)G(Z) det(Y )k−n−1dXdY,

where Z = X +
√
−1 Y ∈ Hn. As is well-known, the Petersson inner product

defines a hermitian inner product on Sk(Γn). For further details on the facts
of Siegel modular forms set out above, see [1] or [4].

For any prime number p, let Qp be the field of p-adic numbers, and let Zp and
Zp
× be the ring of p-adic integers and the group of p-adic units, respectively. Let

ordp(∗) denote the p-adic order. For any complex number x, we put e(x) :=
exp(2π

√
−1x) and em(x) := e(mx) (m ∈ N), and for any p-adic number x, we

put ep(x) = e(x′), where x′ denotes the fractional part of x.

2 Review of the Ikeda lifting

Let n be a positive even integer throughout this section.

For any B ∈ Hn(Z) ∩ GLn(Q), we denote by

DB := (−1)n/2 det(2B)

the discriminant of B. Then DB ≡ 0, 1 (mod 4) and we write

DB = dB · fB2

with the corresponding fundamental discriminant dB ∈ Z and fB ∈ N. Namely,

dB is the discriminant of the quadratic extention Q(
√

DB)/Q and fB =
√

DB

dB
.

2.1 The Siegel series

For any B ∈ Hn(Z), we define the Siegel series by

b(B; s) :=
∑

R∈Sn(Q)/Sn(Z)

e(tr(BR)) · µ(R)−s,

where µ(R) is the product of denominators of elementary divisors of R.
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Let k be a non-negative even integer. For any Z ∈ Hn and s ∈ C, we define
the so-called non-holomorphic Siegel Eisenstein series of degree n and weight
k by

E
(n)
k (Z, s) =

∑
{C, D}

det(CZ + D)−k| det(CZ + D) |−2s det(Im(Z))s,

where {C, D} runs over a complete set of representatives of the equivalence
classes of coprime symmetric pairs of size n. As is well-known, the non-
holomorphic Siegel Eisenstein series can be expressed by using the Siegel series
and the so-called confluent hypergeometric function.

Remark. If k is an even integer such that k > n + 1, then for any B ∈
Hn(Z)>0, the B-th Fourier coefficient An, k(B) of the (holomorphic) Siegel

Eisenstein series En, k(Z) := E
(n)
k (Z, 0) ∈ Mk(Γn) is given by

An, k(B) = (−1)nk/22nk−(n−1)n/2
2k∏

i=2k−n+1

πi/2

Γ(i/2)
(det B)(2k−n−1)/2 b(B; k).

To investigate the Siegel series, for a prime number p and any B ∈ Hn(Zp),
we define the local Siegel series by

bp(B; s) :=
∑

R∈Sn(Qp)/Sn(Zp)

ep(tr(BR)) · µp(R)−s,

where µp(R) = pordp(µ(R)). Then we easily see that

b(B; s) =
∏

p : prime

bp(B; s)

for any B ∈ Hn(Z).

For any B ∈ Hn(Zp) ∩ GLn(Qp), we define a polynomial γp(B; X) ∈ Z[X] by

γp(B; X) := (1 − X)
n/2∏
i=1

(1 − p2iX2) · (1 − pn/2χB(p)X)−1,

where χB is the Kronecker character corresponding to Q(
√

DB)/Q. Then there
exists a polynomial Fp(B; X) ∈ Z[X] whose constant term is equal to 1 such
that

bp(B; s) = γp(B; p−s) · Fp(B; p−s).

Thus for any B ∈ Hn(Z) ∩ GLn(Q), we have

b(B; s) =
L(s − n/2, χB)

ζ(s)
n/2∏
i=1

ζ(2s − 2i)

∏
p : prime

Fp(B; p−s),
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where L(s, χB) is the Dirichlet L-function associated with χB.

One of the authors ([8]) proved that Fp(B; X) satisfies a certain induction
formula via the theory of local densities. By using this, we can explicitly
compute Fp(B; X) for any B ∈ Hn(Z)∩GLn(Q) and any prime number p. He
also proved in [8] that for any B ∈ Hn(Z), the polynomial Fp(B; X) satisfies
the functional equation

Fp(B; p−(n+1)X−1) = (p(n+1)/2X)−2ordp(fB)Fp(B; X).

Thus the Laurent polynomial

F̃p(B; X) := X−ordp(fB)Fp(B; p−(n+1)/2X)

is reciprocal, that is, F̃p(B; X) ∈ C[X + X−1]. In particular,

F̃p(B; X−1) = F̃p(B; X).

It follows that deg Fp(B; X) = 2 ordp(fB). Moreover, if p̸ | fB then

Fp(B; X) = F̃p(B; X) = 1.

2.2 The Ikeda lifting

Let k be an even integer such that k > n + 1. Let

f(z) =
∞∑

N=1

a(N) e(Nz) ∈ S2k−n(Γ1) (z ∈ H1),

be a normalized Hecke eigenform. Then the Hecke L-function associated with
f is defined by

L(s, f) :=
∞∑

N=1

a(N)N−s =
∏

p : prime

(1 − a(p) p−s + p2k−(n+1)−2s)−1.

For a prime number p, let αp ∈ C be the p-th Satake parameter of f . Namely,
αp is an algebraic number such that

αp + αp
−1 = a(p) p−k+(n+1)/2.

Then we have

L(s, f) =
∏

p : prime

{(1 − αp pk−(n+1)/2−s)(1 − α−1
p pk−(n+1)/2−s)}−1.
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We note that αp is uniquely determined up to inversion.

Let

h(τ) =
∑

N≥1,

(−1)k−n/2N≡0, 1 (mod 4)

c(N) e(Nτ) ∈ S+
k−(n−1)/2(Γ

(1)
0 (4)) (τ ∈ H1)

be a Hecke eigenform which corresponds to f under the Shimura correspon-
dence, where we denote by S+

k−(n−1)/2(Γ
(1)
0 (4)) the Kohnen’s plus subspace of

cusp forms of half-integral weight k − (n − 1)/2 with respect to Γ
(1)
0 (4). We

note that h(τ) is uniquely determined by f up to constant multiple. As for
the details on elliptic modular forms of half-integral weight and the Shimura
correspondence, see [10].

For any B ∈ Hn(Z)>0, we put

Af (B) := c(|dB|) fB
k−(n+1)/2

∏
p | fB

F̃p(B; αp).

As mentioned above, the p-th Satake parameter αp of f is determined up to
inversion. But we have that Af (B) is independent of the choice of αp since
F̃p(B; X) is invariant under X 7→ X−1.

Then we shall introduce the Ikeda lifting:

Theorem 2 (cf. Theorems 3.2 and 3.3 in [6]). Assume that n and k are even
integers such that k > n+1. If f ∈ S2k−n(Γ1) is a normalized Hecke eigenform,
then

In, k(f)(Z) :=
∑

B∈Hn(Z)>0

Af (B) e(tr(BZ)) (Z ∈ Hn),

is a Hecke eigenform in Sk(Γn) whose standard L-function is equal to

ζ(s)
n∏

i=1

L(s + k − i, f).

We call it the Ikeda lifting of f .

Remark. (i) We note that the proof of Theorem 2 shows that the Ikeda lift-
ing is injective. Indeed, if f1, f2 ∈ S2k−n(Γ1) are distinct normalized Hecke
eigenforms, then their eigenvalues of Hecke operators T (1)(p) are distinct for
at least one prime number p. Hence In, k(f1) and In, k(f2) belong to different
eigenspaces for the local Hecke algebra at p of degree n, and therefore they
are orthogonal with respect to the Petersson inner product.
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(ii) The above construction has an analogy to the following relation be-
tween the elliptic Eisenstein series and the Siegel Eisenstein series: for the
elliptic Eisenstein series E1, 2k−n ∈ M2k−n(Γ1), the Cohen Eisenstein series

Hk−(n−1)/2 ∈ M+
k−(n−1)/2(Γ

(1)
0 (4)) is a Hecke eigenform corresponding to E1, 2k−n

under the Shimura correspondence. We denote the Fourier expansion of Hk−(n−1)/2

by
Hk−(n−1)/2(τ) =

∑
N≥0,

(−1)k−n/2N≡0, 1 (mod 4)

c(N) e(Nτ) (τ ∈ H1).

Then for any B ∈ Hn(Z)>0, the B-th Fourier coefficient An, k(B) of the Siegel
Eisenstein series En, k ∈ Mk(Γn) is described as

An, k(B) = ξ(n, k) c(|dB|) fB
k−(n+1)/2

∏
p | fB

F̃p(B; pk−(n+1)/2), (3)

where

ξ(n, k) = 2n/2 ζ(1 − k)−1
n/2∏
i=1

ζ(1 + 2i − 2k)−1.

3 Jacobi forms of integral index

3.1 Jacobi groups

Let H1,n(R) be the real Heisenberg group of characteristic (1, n), that is, the
set

H1,n(R) := R2n × R = {[X, κ] |X ∈ R2n, κ ∈ R}
with the following group-structure: for [Xi, κi] ∈ H1,n(R) (i = 1, 2),

[X1, κ1] ∗ [X2, κ2] := [X1 + X2, κ1 + κ2 + X1Jn
tX2].

Since the group Sn acts on H1,n(R) by

[X, κ] · M := [ν(M)−1XM, ν(M)−1κ] ([X, κ] ∈ H1,n(R), M ∈ Sn),

we can define the semi-direct product SJ
n := Sn n H1,n(R), that is, the set

Sn n H1,n(R) := Sn × H1,n(R)

with the following group-structure: for gi = (Mi, [Xi, κi]) ∈ Sn nH1,n(R) (i =
1, 2),

g1g2 := (M1M2, ([X1, κ1] · M2) ∗ [X2, κ2])

= (M1M2, [ν(M2)
−1X1M2 + X2, ν(M2)

−1κ1 + κ2 + ν(M2)
−1X1M2Jn

tX2]).

9



For simplicity, we denote any element of SJ
n by [M, X, κ] = (M, [X, κ]) with

M ∈ Sn, X ∈ R2n and κ ∈ R.

Remark. For any g = [M, X, κ] ∈ SJ
n , we write M = ( A B

C D ) and X = (λ, µ),
in which A, B, C, D are n×n matrices and λ, µ are n-vectors. Then we define
g′ by

g′ :=



ν 0 0 0

0 A 0 B

0 0 1 0

0 C 0 D





1 λ κ µ

0 1n
tµ 0n

0 0 1 0

0 0n −tλ 1n


,

where ν = ν(M). Then we easily see that g′ ∈ Sn+1 and the correspondence
g 7→ g′ defines an injective group-homomorphism.

We also define two subgroups of SJ
n by GJ

n := Gn n H1,n(R) and Γ J
n :=

Γn n H1,n(Z), where H1,n(Z) := H1,n(R) ⊗ Z. we call GJ
n the Jacobi group

of characteristic (1, n).

Let k and m be non-negative integers. For any [M, X, κ] ∈ SJ
n , we decompose

M and X into n × n blocks ( A B
C D ) and n-vectors (λ, µ), respectively. For any

function ϕ(τ, z) on Hn × Cn, we define

(ϕ|k, m[M, X, κ])(τ, z)

:= emν(κ + τ [tλ] + 2λ tz + λ tµ − (Cτ + D)−1C [t(z + λτ + µ)])

× det(Cτ + D)−kϕ(M⟨τ⟩, ν(z + λτ + µ)(Cτ + D)−1),

where we write ν = ν(M). Then for any gi = [Mi, Xi, κi] ∈ SJ
n (i = 1, 2), we

have
(ϕ|k, m g1)|k, mν g2 = ϕ|k, m (g1g2),

where we write ν = ν(M1). Moreover, we denote the actions of M ∈ Sn and
X ∈ Z2n by

ϕ|k, m M := ϕ|k, m [M, 0, 0],

and
ϕ|m X := ϕ|k, m [12n, X, 0],

respectively. Then for any M, M ′ ∈ Sn and X, X ′ ∈ Z2n, we have

(ϕ|k, m M)|k, mν M ′ = ϕ|k, m (MM ′),

(ϕ|m X)|m X ′ = ϕ|m (X + X ′),

(ϕ|k, m M)|mν (ν−1XM) = (ϕ|m X)|k, m M,
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where we write ν = ν(M).

3.2 Jacobi forms

Let k and m be positive integers.

Definition. A holomorphic function ϕ on Hn ×Cn is called a (holomorphic)
Jacobi form of degree n, weight k and index m if it satisfies the following two
conditions:

(i) ϕ|k, mγ = ϕ for any γ ∈ Γ J
n ,

(ii) ϕ has a Fourier expansion of the form

ϕ(τ, z) =
∑

T∈Hn(Z), r∈Zn

cϕ(T, r)e(tr(Tτ) + r tz)

with cϕ(T, r) = 0 unless 4mT − trr ≥ 0. If ϕ satisfies the stronger
condition cϕ(T, r) = 0 unless 4mT − trr > 0, it is called a Jacobi
cusp form.

We denote by Jk, m(Γ J
n ) and J cusp

k, m (Γ J
n ) the C-vector spaces of the (holomor-

phic) Jacobi forms and Jacobi cusp forms of degree n, weight k and index m,
respectively.

Remark (Koecher’s principle). If n > 1, then the condition on Fourier coef-
ficients in (ii) follows from the condition (i).

As an important example of Jacobi form, we consider Fourier-Jacobi coeffi-
cients of Siegel modular forms of degree n + 1. Let F ∈ Mk(Γn+1) have a
Fourier expansion

F (Z) =
∑

B∈Hn+1(Z)≥0

A(B)e(tr(BZ)) (Z ∈ Hn+1),

and we put Z =

 τ ′ z

tz τ

 with τ ∈ Hn, z ∈ Cn and τ ′ ∈ H1. Then we have the

so-called Fourier-Jacobi expansion (of type (1, n))

F


 τ ′ z

tz τ


 =

∞∑
N=0

ϕN(τ, z)e(Nτ ′),

where

ϕN(τ, z) =
∑

T∈Hn(Z), r∈Zn,
4NT−trr≥0

A


 N r/2

tr/2 T


 e(tr(Tτ) + r tz). (4)
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We easily see that the N -th coefficient ϕN ∈ Jk, N(Γ J
n ) for each N ∈ N. In

particular, if F ∈ Sk(Γn+1), then ϕN ∈ J cusp
k, N (Γ J

n ).

As another example, if k is an even integer such that k > n + 2, then for any
N ∈ N, we define the Jacobi Eisenstein series of degree n, weight k and index
N by

E
(n)
k, N(τ, z) :=

∑
γ∈Γ J

n, 0\Γ J
n

(1|k, N γ)(τ, z) (τ ∈ Hn, z ∈ Cn),

where we denote by 1 the constant one function and we put

Γ J
n, 0 :=

{
[( A B

C D ), (λ, µ), κ] ∈ Γ J
n |C = 0n, λ = 0

}
.

We easily see that the right-hand side of the above definition is absolutely
convergent and E

(n)
k, N ∈ Jk, N(Γ J

n ).

Remark. For any N ∈ N, we denote by e
(n)
k, N ∈ Jk, N(Γ J

n ) the N -th coefficient
of the above Fourier-Jacobi expansion of the Siegel Eisenstein series En+1, k ∈
Mk(Γn+1). In the next section, we shall review the fact that there exists a

certain relation between E
(n)
k, N and e

(n)
k, N , which was proved by S. Böcherer

([2]).

If ϕ, ψ ∈ Jk, m(Γ J
n ) and ϕψ ∈ J cusp

2k, 2m(Γ J
n ), then we can define the Petersson

inner product of ϕ and ψ by

⟨ϕ, ψ⟩ :=
∫

Γ J
n \(Hn×Cn)

ϕ(τ, z)ψ(τ, z) det(v)k−n−2 exp(−4πmv−1[ty]) dudvdxdy,

where τ = u +
√
−1v ∈ Hn, z = x +

√
−1y ∈ Cn. As is well-known, the

Petersson inner product defines a hermitian inner product on J cusp
k, m (Γ J

n ).

4 Certain linear operators acting on Jacobi forms

In this section, we assume throughout that k is even. Here we shall review
certain linear operators acting on Jacobi forms, which shift indices by some
integers.

4.1 Hecke operators

As discussed in [11] and [12], the Hecke ring of the pair (Γn, Sn) acts on the
graded ring

⊕
m∈N

Jk, m(Γ J
n ), where Sn = Sn ∩ M2n(Z). Let M ∈ Sn. Decompose

12



the double coset ΓnMΓn into the left cosets:

ΓnMΓn =
d⊔

i=1

ΓnMi (disjoint union).

For any ϕ ∈ Jk, m(Γ J
n ), we define the action

ϕ|k, m(ΓnMΓn) := ν(M)(n+1)k/2−n(n+1)/2
d∑

i=1

ϕ|k, m Mi.

It is obvious that the right-hand side of the above is independent of the choice
of representatives {Mi}.

Remark. The above action is equal to the one given in [11] and [12] up to
normalizing factors.

Lemma 1. If M ∈ Sn and ϕ ∈ Jk, m(Γ J
n ), then ϕ|k, m(ΓnMΓn) ∈ Jk, mν(M)(Γ

J
n ).

Proof. We write ψ = ϕ|k, m(ΓnMΓn) and ν = ν(M). For any [M ′, X, κ] ∈ Γ J
n ,

we can decompose it into the following form:

[M ′, X, κ] = [M ′, 0, 0][12n, X, 0][12n, 0, κ].

Since the action of [12n, 0, κ] is trivial, it suffices to prove the following two
transformation formulae:

(i) ψ|k, mν M ′ = ψ for any M ′ ∈ Γn,

(ii) ψ|mν X = ψ for any X ∈ Z2n.

If {Mi} is a complete set of representatives for Γn\ΓnMΓn, then so is the set
{MiM

′}. Since
(ϕ|k, mMi)|k, mνM

′ = ϕ|k, mMiM
′,

we have

ψ|k, mνM
′ = ν(n+1)k/2−n(n+1)/2

d∑
i=1

(ϕ|k, mMi)|k, mνM
′

= ν(n+1)k/2−n(n+1)/2
d∑

i=1

ϕ|k, mMiM
′

= ψ.

On the other hand, since νXMi
−1 ∈ Z2n for any X ∈ Z2n, we have

(ϕ|k, mMi)|mνX = (ϕ|m νXMi
−1)|k, mMi = ϕ|k, mMi.

13



Therefore we have ψ|mνX = ψ. When n = 1, the condition on Fourier coeffi-
cients follows by the explicit formulae for their actions on Fourier coefficients,
which was given in [3]. 2

4.2 The operators Vn(N), Un(N) and their adjoints with respect to Petersson
inner products

N ∈ N, we define two linear operators on ϕ ∈ Jk, m(Γ J
n ) by

Vn(N) ϕ :=
∑

M∈Γn\Sn(N)/Γn

ϕ|k, m(ΓnMΓn) = N (n+1)k/2−n(n+1)/2
∑

M∈Γn\Sn(N)

ϕ|k, mM,

Un(N) ϕ := ϕ|k, m(Γn(N · 12n)Γn) = N (n+1)k−n(n+1) ϕ|k, m(N · 12n),

where Sn(N) := {M ∈ Sn | ν(M) = N}. From Lemma 1, it is obvious that
the above operators are linear mappings such that

Vn(N) : Jk, m(Γ J
n ) → Jk, mN(Γ J

n )

and

Un(N) : Jk, m(Γ J
n ) → Jk, mN2(Γ J

n ).

Furthermore, we easily see that

Vn(N) : J cusp
k, m (Γ J

n ) → J cusp
k, mN(Γ J

n )

and

Un(N) : J cusp
k, m (Γ J

n ) → J cusp
k, mN2(Γ

J
n )

by the explicit formulae for their actions on Fourier coefficients.

Remark. When n = 1, the operators V1(N) and U1(N) are equal to the
operators VN and UN given in [3] up to normalizing factors.

Proposition 1. For any N, m ∈ N, let V ∗
n (N) : J cusp

k, mN(Γ J
n ) → J cusp

k, m (Γ J
n ) be

the adjoint of Vn(N) with respect to Petersson inner products, that is,

⟨Vn(N) ϕ, ψ⟩ = ⟨ϕ, V ∗
n (N) ψ⟩

for any ϕ ∈ J cusp
k, m (Γ J

n ) and ψ ∈ J cusp
k, mN(Γ J

n ). If ψ ∈ J cusp
k, mN(Γ J

n ), then

V ∗
n (N) ψ = N−(n−1)k/2−n(n+5)/2

∑
X∈Z2n/NZ2n

∑
M∈Γn\Sn(N)

ψ|k, mN

(
1

N
M

)
|mX.
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Proof. By easy calculations, we have for ϕ ∈ J cusp
k, m (Γ J

n ),

Vn(N) ϕ = Nk/2−n(n+1)/2
∑

M∈Γn\Sn(N)

ϕ√
N |k, mN

(
1√
N

M
)
,

where ϕc(τ, z) := ϕ(τ, cz) (c ∈ C). We denote by S
∗

n (N) the set of all primitive
elements in Sn(N), that is,

S
∗

n (N) := {M ∈ Sn(N) | gcd(M) = 1},

then we can rewrite the above formula as

Vn(N) ϕ = Nk/2−n(n+1)/2
∑

N ′ |N,
N/N ′=2

∑
M∈Γn\S

∗
n (N ′)

ϕ√
N |k, mN

(
1√
N ′

M
)
,

where the notation “
N

N ′ = 2” means that
N

N ′ is a perfect square. For any

di ∈ N (1 ≤ i ≤ n) satisfying the conditions

di | di+1 (1 ≤ i < n), dn |N,

we denote

[d1, · · · , dn]N := diag(d1, · · · , dn, N/d1, · · · , N/dn)

and

Sn(N ; d1, · · · , dn) := {M ∈ Sn(N) | sd(M) = [d1, · · · , dn]N},
where sd(M) is the symplectic divisor matrix of M . Then we can decompose
S

∗
n (N ′) into the form

S
∗

n (N ′) =
⊔

d2|···|dn|N ′
Sn(N ′; 1, d2, · · · , dn).

We consider the map Γn → Sn(N ′; 1, d2, · · · , dn) defined by

M 7→ [1, d2, · · · , dn]N ′ · M.

We easily see that this map induces a bijection

Kn(N ′; 1, d2, · · · , dn)\Γn
≃−→ Γn\Sn(N ′; 1, d2, · · · , dn),

where

Kn(N ′; 1, d2, · · · , dn) := Γn ∩ [1, d2, · · · , dn]−1
N ′Γn[1, d2, · · · , dn]N ′

is a congruence subgroup of Γn. Hence we have
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Vn(N) ϕ = Nk/2−n(n+1)/2
∑

N ′ |N,
N/N ′=2

∑
d2|···|dn|N ′

∑
M∈Kn(N ′; 1,d2,··· ,dn)\Γn

ϕ√
N |k, mN

(
1√
N ′

[1, d2, · · · , dn]N ′ · M
)
.

Here we note that

ϕ√
N |k, mN

(
1√
N ′

[1, d2, · · · , dn]N ′

)
∈ J cusp

k, mN(Kn(N ′; 1, d2, · · · , dn)J),

where

Kn(N ′; 1, d2, · · · , dn)J := Kn(N ′; 1, d2, · · · , dn) n H1,n(Z).

The above argument shows for any ϕ ∈ J cusp
k, m (Γ J

n ), ψ ∈ J cusp
k, mN(Γ J

n ),

⟨Vn(N) ϕ, ψ⟩= Nk/2−n(n+1)/2
∑

N ′ |N,
N/N ′=2

∑
d2|···|dn|N ′

∑
M∈Kn(N ′; 1,d2,··· ,dn)\Γn

⟨ϕ√
N |k, mN

(
1√
N ′

[1, d2, · · · , dn]N ′

)
|k, mNM, ψ⟩

= Nk/2−n(n+1)/2
∑

N ′ |N,
N/N ′=2

∑
d2|···|dn|N ′

[Γn : Kn(N ′; 1, d2, · · · , dn)]

×⟨ϕ√
N |k, mN

(
1√
N ′

[1, d2, · · · , dn]N ′

)
, ψ⟩,

where in the last line, we have made use of the fact that

⟨ϕ|k, m′M, ψ⟩ = ⟨ϕ, ψ|k, m′M−1⟩

for any m′ ∈ N and any M ∈ Spn(Q) n H1,n(Q). It is easy to check the above
formula by using the standard techniques as in the case of ordinary modular
forms. Since

ψ√
N

−1 |k, m

(
1√
N ′

[1, d2, · · · , dn]N ′

)−1

∈ J cusp
k, m (K ′

n(N ′; 1, d2, · · · , dn)J),

where

K ′
n(N ′; 1, d2, · · · , dn) := Γn ∩ [1, d2, · · · , dn]N ′Γn[1, d2, · · · , dn]−1

N ′ ,

and
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⟨ϕ√
N |k, mN

(
1√
N ′

[1, d2, · · · , dn]N ′

)
, ψ⟩

= ⟨ϕ, ψ√
N

−1 |k, m

(
1√
N ′

[1, d2, · · · , dn]N ′

)−1

⟩,

we have

⟨ϕ√
N |k, mN

(
1√
N ′

[1, d2, · · · , dn]N ′

)
, ψ⟩

= N ′−2n
[Γn : K ′

n(N ′; 1, d2, · · · , dn)]−1
∑

X∈Z2n/N ′Z2n∑
M∈K′

n(N ′; 1,d2,··· ,dn)\Γn

⟨ϕ, ψ√
N

−1 |k, m

(
1√
N ′

[1, d2, · · · , dn]N ′

)−1

M |mX⟩.

Hence, by a similar argument as above, we have

⟨Vn(N) ϕ, ψ⟩ = ⟨ϕ, Nk/2−n(n+5)/2
∑

X∈Z2n/NZ2n

∑
M∈Γn\Sn(N)

ψ√
N

−1 |k, m

(
1√
N

M
)
|mX⟩.

Here the function standing on the right-hand side in the Petersson inner prod-
uct in the above formula is, in fact, in J cusp

k, m (Γ J
n ). Therefore we have proved

that

V ∗
n (N) ψ = Nk/2−n(n+5)/2

∑
X∈Z2n/NZ2n

∑
M∈Γn\Sn(N)

ψ√
N

−1 |k, m

(
1√
N

M
)
|mX.

Finally, we note that

ψ√
N

−1 = N−nk/2 ψ|k, mN

(
1√
N

· 12n

)
,

we complete the proof of Proposition 1. 2

Proposition 2. For any N, m ∈ N, let U∗
n(N) : J cusp

k, mN2(Γ J
n ) → J cusp

k, m (Γ J
n )

be the adjoint of Un(N) with respect to Petersson inner products. If ψ ∈
J cusp

k, mN2(Γ J
n ), then

U∗
n(N) ψ = N−(n−1)k−n(n+3)

∑
X∈Z2n/NZ2n

ψ|k, mN2

(
1

N
· 12n

)
|mX.

Proof. By an argument similar to that in the proof of Proposition 1, we can
give U∗

n(N) by the following: for any ψ ∈ J cusp
k, mN2(Γ J

n ),

U∗
n(N) ψ = Nk−n(n+3)

∑
X∈Z2n/NZ2n

ψN−1 |mX,
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where ψN−1(τ, z) = ψ(τ,N−1z). Finally, we note that

ψN−1 = N−nk ψ|k, mN2

(
1

N
· 12n

)
,

we complete the proof of Proposition 2. 2

Remark. Renewing the definitions of V ∗
n (N) and U∗

n(N) as the operators
given by the formulae in Proposition 1 and 2, we also obtain

V ∗
n (N) : Jk, mN2(Γ J

n ) → Jk, m(Γ J
n )

and
U∗

n(N) : Jk, mN2(Γ J
n ) → Jk, m(Γ J

n ).

For the subsequent use, we shall give the action of U∗
n(N) on Fourier coeffi-

cients, explicitly.

Corollary. For

ψ(τ, z) =
∑

T∈Hn(Z), r∈Zn,
4mN2T−trr≥0

cψ(T, r)e(tr(Tτ) + r tz) ∈ Jk, mN2(Γ J
n ),

we have

N−k+n(n+1) U∗
n(N) ψ(τ, z)

=
∑

T∈Hn(Z), r∈Zn,
4mT−trr≥0

N−n
∑

λ∈Zn/2mNZn,
λ≡r (mod 2mZn)

cψ(T − 1

4m
(trr − tλλ), Nλ)

 e(tr(Tτ) + r tz).

Here we note that trr − tλλ ∈ 4mHn(Z) if λ ≡ r (mod 2mZn).

Indeed, we have

U∗
n−1(N) ψ(τ, z) = Nk−n(n+3)

∑
λ, µ∈Zn/NZn

em(λτ tλ + 2λ tz) ψ

(
τ,

z + λτ + µ

N

)

= Nk−n(n+3)
∑

λ∈Zn/NZn

∑
4mN2T−trr≥0

∑
µ∈Zn/NZn

e(N−1r tµ)

×cψ(T, r) e(tr
(
{T + tλ(N−1r + mλ)}τ

)
+ (N−1r + 2mλ) tz).

Here the sum
∑

µ mod NZn

e(N−1r tµ) has the value Nn or 0 according as r ∈ NZn

or not. Replacing N−1r by r, we have
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U∗
n(N) ψ(τ, z) = Nk−n(n+2)

∑
λ∈Zn/NZn

∑
4mT−trr≥0

cψ(T, Nr)

×e(tr
(
{T + tλ(r + mλ)}τ

)
+ (r + 2mλ) tz)

= Nk−n(n+2)
∑

λ∈Zn/NZn

∑
4mT−trr≥0

cψ(T, Nr)

×e(tr
(
{T +

1

4m

(
t(r + 2mλ)(r + 2mλ) − trr

)
}τ

)
+ (r + 2mλ) tz)

= Nk−n(n+2)
∑

λ∈Zn/NZn

∑
4mT−t(r+2mλ)(r+2mλ)≥0

cψ(T − 1

4m

(
t(r + 2mλ)(r + 2mλ) − trr

)
, Nr)

×e(tr(Tτ) + (r + 2mλ) tz)

= Nk−n(n+2)
∑

4mT−trr≥0

∑
λ∈Zn/NZn

cψ(T − 1

4m

(
trr − t(r − 2mλ)(r − 2mλ)

)
, N(r − 2mλ))

×e(tr(Tτ) + r tz),

where in the last line, we have replaced r by r − 2mλ. Replacing r − 2mλ by
λ, we complete the proof of Corollary. 2

The operators Vn(N), Un(N), V ∗
n (N) and U∗

n(N) satisfy the following multi-
plicative relations:

Proposition 3. For any N, N ′ ∈ N,

(i) Un(N) · Un(N ′) ϕ = Un(NN ′) ϕ,

(ii) Vn(N) · Vn(N ′) ϕ = Vn(N ′) · Vn(N) ϕ if gcd(N, N ′) = 1,

(iii) Un(N) · Vn(N ′) ϕ = Vn(N ′) · Un(N) ϕ,

(iv) U∗
n(N) · Un(N) ϕ = N2k−2n(n+1) ϕ,

(v) U∗
n(N) · Vn(N2) ϕ = V ∗

n (N2) · Un(N) ϕ,

(vi) U∗
n(N) · Vn(N) ψ = Nk−n(n+1) V ∗

n (N) ψ,

where ϕ ∈ Jk, m(Γ J
n ) and ψ ∈ Jk, mN(Γ J

n ).

Proof. The equations (i), (ii) and (iii) are trivial by the definitions. Fur-
thermore, the equation (v) follows by the equations (iv) and (vi). Hence it
suffices to prove that the equations (iv) and (vi) hold. By Proposition 2, for
ϕ ∈ Jk, m(Γ J

n ), we have
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U∗
n(N) · Un(N) ϕ = N2k−2n(n+2)

∑
X∈Z2n/NZ2n

ϕ|k, m(N · 12n)|k, mN2

(
1

N
· 12n

)
|mX

= N2k−2n(n+2)
∑

X∈Z2n/NZ2n

ϕ|mX

= N2k−2n(n+1) ϕ.

By Proposition 2, for ψ ∈ Jk, mN(Γ J
n ), we have

U∗
n(N) · Vn(N) ψ = N−(n−3)k/2−n(3n+7)/2 ×∑

X∈Z2n/NZ2n

∑
M∈Γn\Sn(N)

ψ|k, mNM |k, mN2

(
1

N
· 12n

)
|mX

= N−(n−3)k/2−n(3n+7)/2
∑

X∈Z2n/NZ2n

∑
M∈Γn\Sn(N)

ψ|k, m

(
1

N
M

)
|mX.

By Proposition 1, we have

U∗
n(N) · Vn(N) ψ = Nk−n(n+1) V ∗

n (N) ψ.

Therefore we complete the proof of Proposition 3. 2

4.3 Fourier-Jacobi coefficients of the Siegel Eisenstein series and the operator
Un(N)

In this subsection, we shall give some observations for Fourier-Jacobi coeffi-
cients of the Siegel Eisenstein series and the Ikeda lifting.

Let k be an even integer such that k > n + 2. For any N ∈ N, we denote by
e
(n)
k, N ∈ Jk, N(Γ J

n ) the N -th Fourier-Jacobi coefficient of the Siegel Eisenstein
series En+1, k ∈ Mk(Γn+1), that is,

En+1, k


 τ ′ z

tz τ


 =

∞∑
N=0

e
(n)
k, N(τ, z)e(Nτ ′),

where τ ∈ Hn, z ∈ Cn and τ ′ ∈ H1. As mentioned in §3.2, S. Böcherer
([2]) proved that there exists a certain relation between e

(n)
k, N and the Jacobi

Eisenstein series E
(n)
k, N . Here we review such a relation and express it in terms

of the operator Un(N):

Theorem 3 (cf. Satz 7 in [2] and Theorem 5.5 in [11]). For any N ∈ N, we
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have

e
(n)
k, N =

∑
d2 |N

σk−1(N/d2)
∑
a | d

µ(a)(d/a)−k+n(n+1)Un(d/a) E
(n)
k, N/(d/a)2 ,

where µ(∗) is the Möbius function and σk−1(m) :=
∑
d |m

dk−1 for any m ∈ N.

By using Theorem 3, we obtain the following fact on the Fourier-Jacobi coef-
ficients of the Siegel Eisenstein series and the Ikeda lifting:

Lemma 2. Let n and k be even integers such that k > n + 1. We denote
by ϕm ∈ J cusp

k, m (Γ J
n−1) the m-th Fourier-Jacobi coefficient of the Ikeda lifting

In, k(f) ∈ Sk(Γn) of f ∈ S2k−n(Γ1). If m and N are relatively prime, then we
have

N−k+(n−1)n U∗
n−1(N) e

(n−1)
k, mN2 = Nk−(n+1)/2

∏
p |N

Ψp(N ; pk−(n+1)/2) e
(n−1)
k, m ,

and

N−k+(n−1)n U∗
n−1(N) ϕmN2 = Nk−(n+1)/2

∏
p |N

Ψp(N ; αp) ϕm,

where Ψp(N ; X) = Ψ(n−1)
p (N ; X) is a Laurent polynomial in X defined by

Ψ(n−1)
p (N ; X) :=

Xδ+1 − X−(δ+1)

X − X−1
+ p−(n−1)/2 · Xδ − X−δ

X − X−1

if ordp(N) = δ, and αp is the p-th Satake parameter of f .

Proof. By (i) of Proposition 3, it suffices to consider the case of N = pδ

(δ > 0) for any prime number p. By Theorem 3, we have

e
(n−1)
k, m = σk−1(m)E

(n−1)
k, m +

∑
d2 |m,
d>1

σk−1(m/d2)
∑
a | d

µ(a)

×(d/a)−k+(n−1)nUn−1(d/a) E
(n−1)
k, m/(d/a)2 .

On the other hand, by Theorem 3 and (iv) of Proposition 3, we also have
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pδ{−k+(n−1)n} U∗
n−1(p

δ) e
(n−1)

k, mp2δ

= σk−1(m)

{
δ∑

i=0

σk−1(p
2i)pi{−k+(n−1)n} U∗

n−1(p
i) E

(n−1)
k, mp2i

−
δ∑

i=1

σk−1(p
2i−2)pi{−k+(n−1)n} U∗

n−1(p
i) E

(n−1)
k, mp2i

}
+

∑
d2 |m,
d>1

σk−1(m/d2)
∑
a | d

µ(a)(d/a)−k+(n−1)nUn−1(d/a)

×σk−1(p
2δ)pδ{−k+(n−1)n} U∗

n−1(p
δ) E

(n−1)

k, {m/(d/a)2}p2δ .

Here, by the definition, we easily see

pi{−k+(n−1)n} U∗
n−1(p

i) E
(n−1)
k, mp2i = p−i(n−1) E

(n−1)
k, m

and therefore we obtain

pδ{−k+(n−1)n} U∗
n−1(p

δ) e
(n−1)

k, mp2δ = pδ{k−(n+1)/2}Ψp(p
δ; pk−(n+1)/2) e

(n−1)
k, m .

By (3), (4) and Corollary to Proposition 2, the above equation implies the fact
that the Laurent polynomial F̃p(B; X) introduced in §2 satisfies the equation

p−δ(n−1)
∑

λ∈Zn−1/2mpδZn−1,
λ≡r (mod 2mZn−1)

F̃p


 mp2δ pδλ/2

∗ T − 1
4m

(trr − tλλ)

 ; pk−(n+1)/2



= pδ{k−(n+1)/2}Ψp(p
δ; pk−(n+1)/2) F̃p


 m r/2

∗ T

 ; pk−(n+1)/2


for T ∈ Hn−1(Z) and r ∈ Zn−1 such that 4mT − trr > 0. Since the above
equation holds for infinitely many k (> n + 1), it is also valid as Laurent
polynomials in X. Therefore, by substituting in X = αp, we obtain

pδ{−k+(n−1)n} U∗
n−1(p

δ) ϕmp2δ = pδ{k−(n+1)/2}Ψp(p
δ; αp) ϕm

and we complete the proof of Lemma 2. 2

5 Proof of Main Theorem

As a preperation for the proof of Main Theorem, we shall introduce a certain
linear operator acting on Jacobi forms of “odd”degree, which was defined by
S. Hayashida.
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Let n be a positive even integer. For any N ∈ N, we define a linear operator
Dn−1(N) = Dn−1(N, {cp}) through the following Dirichlet series with the
Euler product:

∞∑
N=1

Dn−1(N)N−s

=
∏

p : prime

{
1 − Gp(cp) Vn−1(p) p(n/2−1)(n/2+2)/2−s + Un−1(p) p(n−1)n−1−2s

}−1
,

where Gp(X) = G(n−1)
p (X) is a Laurent polynomial in X defined by

G(n−1)
p (X) :=


n/2−1∏

i=1

{
(1 + X p−(2i−1)/2)(1 + X−1 p−(2i−1)/2)

}−1
if n > 2,

1 if n = 2,

and cp ∈ C is an arbitrary constant for each p. It follows by (i) and (ii) of
Proposition 3 that the above operator is well-defined. For simplicity, we omit
the set of constants {cp} as above except for a few special cases.

Remark. When n = 2, the operator D1(N) is obviously independent of the
set of constants {cp} by the definition. More precisely, we have that D1(N) =
V1(N) for any N ∈ N.

By the properties of operators Vn−1(p) and Un−1(p), we have

Dn−1(N) : Jk, m(Γ J
n−1) → Jk, mN(Γ J

n−1)

and
Dn−1(N) : J cusp

k, m (Γ J
n−1) → J cusp

k, mN(Γ J
n−1).

By Proposition 3, we also have the following multiplicative relations for Dn−1(N)
and its adjoint D∗

n−1(N) with respect to Petersson inner products:

Proposition 4. For any N, N ′ ∈ N,

(i) Dn−1(N) · Un−1(N
′) ϕ = Un−1(N

′) · Dn−1(N) ϕ,

(ii) Dn−1(N) · Dn−1(N
′) ϕ =

∑
d | gcd(N, N ′)

d(n−1)n−1 Un−1(d) · Dn−1(NN ′/d2) ϕ,

(iii) U∗
n−1(N) · Dn−1(N

2) ψ = D∗
n−1(N

2) · Un−1(N) ψ,

(iv) U∗
n−1(N) · Dn−1(N) ψ′ = Nk−(n−1)n D∗

n−1(N) ψ′,

where ϕ ∈ Jk, m(Γ J
n−1), ψ ∈ J cusp

k, m (Γ J
n−1) and ψ′ ∈ J cusp

k, mN(Γ J
n−1). In particular,

the equations (i) and (ii) imply that Dn−1(N) and Un−1(N) all commute.
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Remark. The above equations (i) and (ii) are generalizations of the well-
known multiplicative relations for V1(N) and U1(N), which were obtained in
[3].

Proof. By the definition, it suffices to consider the case of N = pδ (δ ≥ 0)
for any prime number p. Here we note that it satisfies the following induction
formula:

Dn−1(1) = 1,

Dn−1(p) = Gp(cp) p(n/2−1)(n/2+2)/2 Vn−1(p),

Dn−1(p
δ) = Dn−1(p) · Dn−1(p

δ−1) − p(n−1)n−1Un−1(p) · Dn−1(p
δ−2) (δ ≥ 2).

Hence, by using Proposition 3, we easily see by induction that the equations
(i), (iii) and (iv) hold. Therefore it suffices to prove that the equation (ii)
holds. At first, by the above induction formula, we have

Dn−1(p) · Dn−1(p
δ) =

min(δ, 1)∑
i=0

pi{(n−1)n−1} Un−1(p
i) · Dn−1(p

δ+1−2i).

On the other hand, since

Dn−1(p
δ) =

[δ/2]∑
i=0

(−1)i pi{(n−1)n−1}

δ − i

i

 Un−1(p
i) · Dn−1(p)δ−2i,

we have

Dn−1(p) · Dn−1(p
δ) = Dn−1(p

δ) · Dn−1(p).

By using these two relations, we have

Dn−1(p
δ) · Dn−1(p

ε) =
min(δ, ε)∑

i=0

pi{(n−1)n−1} Un−1(p
i) · Dn−1(p

δ+ε−2i)

for any ε ≥ 0. Indeed, if ε ≥ 2, then

Dn−1(p
δ) · Dn−1(p

ε) = Dn−1(p
δ) · {Dn−1(p) · Dn−1(p

ε−1)

−p(n−1)n−1Un−1(p) · Dn−1(p
ε−2)}

= Dn−1(p) · {Dn−1(p
δ) · Dn−1(p

ε−1)}
−p(n−1)n−1Un−1(p) · {Dn−1(p

δ) · Dn−1(p
ε−2)}.

Therefore, by induction on ε, we prove that the desired relation holds. 2

24



S. Hayashida proved in his unpublished paper that all Fourier-Jacobi coeffi-
cients of the Ikeda lifting are related by a linear operator which contains some
information of an original Hecke eigenform of degree 1. With his permission,
we shall introduce it together with his proof:

Theorem 4 (S. Hayashida, 2004). Let n and k be even integers such that k >
n+1, and let f ∈ S2k−n(Γ1) be a normalized Hecke eigenform. For each N ∈ N,
we denote by ϕN ∈ J cusp

k, N (Γ J
n−1) the N-th Fourier-Jacobi coefficient of the Ikeda

lifting In, k(f) ∈ Sk(Γn) of f , and we put Dn−1, f (N) := Dn−1(N, {αp}), where
{αp} is the set of all Satake parameters of f . Then

ϕN = Dn−1, f (N) ϕ1.

Proof. T. Yamazaki ([11]) proved that the equation

e
(n−1)
k,N = Dn−1(N, {pk−(n+1)/2}) e

(n−1)
k,1

holds for infinitely many k (> n + 1). By an argument similar to the last
argument in the proof of Lemma 2, we can show that the values of Laurent
polynomials F̃p(B; cp) satisfy certain equations for Dn−1(N) with any set of
constants {cp}. Therefore, by choosing {αp} as {cp}, we see that the figure of
the above equation is also valid for ϕN , that is,

ϕN = Dn−1(N, {αp}) ϕ1 = Dn−1, f (N) ϕ1.

Thus we complete the proof of Theorem 4. 2

Finally, we shall prove Main Theorem.

Proof of Main Theorem. Under the same notations as above, by Theorem
4, we have the Fourier-Jacobi expansion

In, k(f)


 τ ′ z

tz τ


 =

∞∑
N=1

Dn−1, f (N) ϕ1(τ, z) e(Nτ ′),

where τ ∈ Hn−1, z ∈ Cn−1 and τ ′ ∈ H1. Hence, for Re(s) ≫ 0, the Dirichlet
series of Rankin-Selberg type associated with In, k(f) is given by

D1(s; In, k(f), In, k(f))

= ζ(2s − 2k + 2n)
∞∑

N=1

⟨Dn−1, f (N) ϕ1, Dn−1, f (N) ϕ1⟩N−s

= ζ(2s − 2k + 2n)
∞∑

N=1

⟨D∗
n−1, f (N) · Dn−1, f (N) ϕ1, ϕ1⟩N−s.
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By (ii) and (iv) of Proposition 4 and by (iv) of Proposition 3,

D∗
n−1, f (N) · Dn−1, f (N) ϕ1

= N−k+(n−1)n U∗
n−1(N) · Dn−1, f (N)2 ϕ1

= N−k+(n−1)n
∑
d |N

d(n−1)n−1 U∗
n−1(N) · Un−1(d) · Dn−1, f ((N/d)2) ϕ1

= N−k+(n−1)n
∑
d |N

d2k−(n−1)n−1 U∗
n−1(N/d) · Dn−1, f ((N/d)2) ϕ1

=
∑
d |N

dk−1 (N/d)−k+(n−1)n U∗
n−1(N/d) · Dn−1, f ((N/d)2) ϕ1.

Therefore, by Theorem 4 and Lemma 2, we obtain

D∗
n−1, f (N) · Dn−1, f (N) ϕ1 =

∑
d |N

dk−1
{
(N/d)−k+(n−1)n U∗

n−1(N/d) ϕ(N/d)2

}
=

∑
d |N

dk−1 (N/d)k−(n+1)/2
∏

p | (N/d)

Ψp(N/d; αp) ϕ1.

Hence we have

D1(s; In, k(f), In, k(f))

= ⟨ϕ1, ϕ1⟩ ζ(2s − 2k + 2n) ζ(s − k + 1)
∞∑

N=1

Nk−(n+1)/2
∏
p |N

Ψp(N ; αp) N−s

= ⟨ϕ1, ϕ1⟩ ζ(2s − 2k + 2n) ζ(s − k + 1)
∏

p : prime

∞∑
δ=0

pδ{k−(n+1)/2} Ψp(p
δ; αp) p−δs.

Furthermore, for any prime number p, we have

∞∑
δ=0

pδ{k−(n+1)/2} Ψp(p
δ; αp) p−δs

=
1 + p−s+k−n

(1 − αp pk−(n+1)/2 p−s)(1 − αp
−1 pk−(n+1)/2 p−s)

=
1 − p−2s+2k−2n

(1 − p−s+k−n)(1 − αp pk−(n+1)/2 p−s)(1 − αp
−1 pk−(n+1)/2 p−s)

.

Therefore

∏
p : prime

∞∑
δ=0

pδ{k−(n+1)/2} Ψp(p
δ; αp) p−δs =

ζ(s − k + n)L(s, f)

ζ(2s − 2k + 2n)

and we complete the proof of Main Theorem. 2
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6 A contribution to the Ikeda’s conjecture

At first, we shall introduce some notations of L-functions.

Let l be a positive even integer. For a normalized Hecke eigenform f ∈ Sl(Γ1),
we put

ξ(s) := ΓR(s)ζ(s),

Λ(s, f) := ΓC(s)L(s, f),

where ΓR(s) := π−s/2Γ(s/2) and ΓC(s) := 2(2π)−sΓ(s). Let L(s, f, Ad) be the
adjoint L-function associated with f , which is defined by

L(s, f, Ad) :=
∏

p : prime

{(1 − p−s)(1 − α2
p p−s)(1 − α−2

p p−s)}−1,

where αp is the p-th Satake parameter of f . Then we put

Λ(s, f, Ad) := ΓR(s + 1)ΓC(s + l − 1)L(s, f, Ad).

Here we note that the following functional equations hold:

ξ(1 − s) = ξ(s),

Λ(l − s, f) = (−1)l/2Λ(s, f),

Λ(1 − s, f, Ad) = Λ(s, f, Ad).

We also consider certain modifications of ξ(s) and Λ(s, f, Ad) as

ξ̃(s) := ΓR(s + 1)ξ(s) = ΓC(s)ζ(s),

Λ̃(s, f, Ad) := ΓR(s)Λ(s, f, Ad) = ΓC(s)ΓC(s + l − 1)L(s, f, Ad).

Now T. Ikeda ([7]) gave the following conjecture on the period of the Ikeda
lifting:

Conjecture 1 (cf. Conjecture 5.1 in [7]). Let n and k be even integers such
that k > n + 1. Under the same situation as in §2.2, then there exists an
integer α(n, k) depending only on n and k such that

Λ(k, f)
n/2∏
i=1

Λ̃(2i − 1, f, Ad) ξ̃(2i) = 2α(n, k) ⟨f, f⟩⟨In, k(f), In, k(f)⟩
⟨h, h⟩

. (5)
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Remark. By some computer calculations, he also gave the following conjec-
tural value of α(n, k):

α(n, k) = (n − 1)(k − n/2 + 1)

for general n.

By combining the equations (2), (5) and the facts that Λ̃(1, f, Ad) = 22k−n⟨f, f⟩
and ξ̃(n) = (−1)n/2+1Bn/n, we obtain

23k−2n+2
n/2−1∏

i=1

ξ̃(2i) Λ̃(2i + 1, f, Ad) = 2α(n, k) ⟨ϕ1, ϕ1⟩
⟨h, h⟩

,

where we denote by ϕ1 ∈ J cusp
k, 1 (Γ J

n−1) the first Fourier-Jacobi coefficient of
In, k(f).

Now we note that there exists a certain linear isomorphism between Jacobi
forms of even integral weight k and index 1, and Siegel modular forms of half-
integral weight k − 1/2, which was discovered by W. Kohnen, M. Eichler and
D. Zagier ([3]) in the case of degree 1 and by T. Ibukiyama ([5]) in the case
of higher degree:

Theorem 5 (cf. Theorem 1 in [5]). For any n, k ∈ N, we denote by M+
k−1/2(Γ

(n)
0 (4))

and S+
k−1/2(Γ

(n)
0 (4)) the generalized Kohnen’s plus subspaces of Siegel modu-

lar forms and Siegel cusp forms of weight k − 1/2 with respect to Γ
(n)
0 (4),

respectively. If k is even, then there exists a C-linear isomorphism

Jk, 1(Γ
J
n ) ∼= M+

k−1/2(Γ
(n)
0 (4))

and its restriction to the space of Jacobi cusp forms also induces a C-linear
isomorphism

J cusp
k, 1 (Γ J

n ) ∼= S+
k−1/2(Γ

(n)
0 (4)).

Moreover, the above isomorphisms are compatible with the actions of Hecke
operators.

Let H ∈ S+
k−1/2(Γ

(n−1)
0 (4)) be a Hecke eigenform corresponding to ϕ1 under

the isomorphism in Theorem 5. Then by using an analogous method to the
proof of Theorem 5.4 in [3], we have

⟨ϕ1, ϕ1⟩ = 2(2k−2)(n−1) ⟨H, H⟩, (6)

where we denote by ⟨H, H⟩ the Petersson inner product of H ∈ S+
k−1/2(Γ

(n−1)
0 (4))

which is normalized by [Γn−1 : Γ
(n−1)
0 (4)]−1.
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Remark. When n = 2, since H = h ∈ S+
k−1/2(Γ

(1)
0 (4)) and ⟨ϕ1, ϕ1⟩ =

22k−2⟨h, h⟩, we have already proved that Conjecture 1 is true with α(2, k) = k.

Therefore we can reduce Conjecture 1 to the following conjecture on the quo-
tient of Petersson inner products of two cusp forms of half-integral weights:

Conjecture 2. Assume the same situation as above, that is, consider the
diagram of liftings

S+
k−(n−1)/2(Γ

(1)
0 (4)) ∼= S2k−n(Γ1) → Sk(Γn) → J cusp

k, 1 (Γ J
n−1)

∼= S+
k−1/2(Γ

(n−1)
0 (4))

h ↔ f 7→ In, k(f) 7→ ϕ1 ↔ H.

Then there exists an integer β(n, k) depending only on n and k such that

n/2−1∏
i=1

ξ̃(2i) Λ̃(2i + 1, f, Ad) = 2β(n, k) ⟨H, H⟩
⟨h, h⟩

. (7)

Furthermore, by using the Rankin-Selberg method for H ∈ S+
k−1/2(Γ

(n−1)
0 (4))

obtained by In, k(f), we can prove that Conjecture 2 is true in case n = 4,
and therefore so is Conjecture 1. We would like to explain it in the subsequent
paper.
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