

3 種類の面内・面垂直振動モードを利用した構成の検 討 ーサンドウィッチ型円環球面超音波モータ(第1 報)ー

メタデータ	言語: jpn				
	出版者:日本音響学会				
	公開日: 2012-10-02				
	キーワード (Ja):				
	キーワード (En):				
	作成者: 盧, 波, 青柳, 学, 高野, 剛浩, 田村, 英樹				
	メールアドレス:				
	所属:				
URL	http://hdl.handle.net/10258/1685				

3 種類の面内・面垂直振動モードを利用した構成の 検討 サンドウィッチ型円環球面超音波モータ(第 1 報)

その他(別言語等)	Examination of composition combining of three				
のタイトル	kinds of in-plane and vertical vibration modes				
	- Sandwich-type annular spherical ultrasonic				
	motor (1st Report) –				
著者	盧 波,青柳 学,高野 剛浩,田村 英樹				
雑誌名	日本音響学会研究発表会講演論文集				
巻	2009年秋季				
ページ	1181-1182				
発行年	2009-09				
URL	http://hdl.handle.net/10258/1685				

3種類の面内・面垂直振動モードを利用した構成の検討 ーサンドウィッチ型円環球面超音波モータ(第1報)^{--*}

青柳学(室蘭工大) 高野剛浩(東北工大) ◎盧波 田村英樹(山形大)

はじめに 1

多自由度動作が可能なアクチュエータが望 まれている. 単一のアクチュエータで多自由 度動作が実現できればシステムの小型化、設 計の簡単化に非常に有効である. これまでも 多自由度超音波モータは幾つか研究報告がな されている[1-4].

筆者らは多重モード円環振動子を用いて, 球状ロータを任意軸に回転する超音波モータ を開発している^[5].本研究の目的は、円環状 多自由度球面超音波モータの更なる小型化及 び高トルク化である.3種類の異形振動モー ドが励振可能な2つの円環形振動子で球状ロ ータを挟み込み,3軸に回転できる球面超音 波モータを新たに考案した.

2 モータの動作原理及び基本構造 2.1 ステータ振動子と電極配置

Fig.1(a)に本研究で提案するサンドウィッ チ型円環状多自由度球面超音波モータのステ ータ振動子を示す.摩擦力増大のため、ロー タとの接触面に球面加工を施している^[6]. Fig.1(b)にステータ振動子(SUS304)に貼り付 けた圧電板(富士セラミックス, C213)の電極 パターン図を示す. 振動子外側の面に各振動 モード駆動用に電極を 5 つに分割した厚さ 0.5mmの圧電板が接着されている。円環振動 子はこの電極パターンにより屈曲振動モード (B₂₁-mode)、径方向伸縮振動モード(R₁-mode)、 非軸対称振動モード((((1,1))-mode)の3 種類 の振動モードが励振可能である.

Fig.1(a) Construction of the stator, and (b) arrange -ment of electrodes of piezoelectric ceramic ring.

2.2 動作原理

Fig.2 にモータの動作原理を示す. 三種類の 振動モードおよび直交する同形振動モードは 独立に励起させることができ、これらの振動 の組み合わせによって任意の回転方向を選択 可能である.以下に駆動方法を述べる.

Table1 Combination of vibration modes.

Drive		Frequency f ₁		Frequency f ₂			
frequency		X-axis	Y-axis	Z-axis			
Electrode A		(1)	2	<u>(4</u>)+(5)			
Electrode B							
Electrode C		3	3				
Vibration	$(1)B_{21}\text{-mode}; (2)B_{21}^{2}\text{-mode}; (3)R_{1}\text{-mode};$ $(4)((1,1))\text{-mode}; (5)((1,1))^{2}\text{-mode};$						
mode							

(4)((1,1))-mode; (5)((1,1))'-mode;

Fig.2 Operating principle of MDOF USM.

2.3 基本構成

モータの基本構成と固定装置の断面イラス トを Fig.3 に示す. 球状ロータを 2 つ円環振 動子で挟み込んだ単純な構成である.支持部 を単純化したことにより小型化が図られてい る.また,Z軸回転に面内振動を用いたため, 従来型に用いられていた変位拡大機構が不要 になり、小型化されている.

2つのステータ振動子は4本のボルトで組 み合わされ、固定されている. また、これら のボルトと4つのバネによって、ロータの予 圧力が均一になるように調整できる.

* Examination of composition combining of three kinds of in-plane and vertical vibration modes – Sandwich-type annular spherical ultrasonic motor (1st Report)-by LU, Bo, AOYAGI, Manabu (Muroran Institute of Technology), TAKANO, Takehiro (Tohoku Institute of Technology), TAMURA, Hideki (Yamagata University).

Fig.3 Component parts of sandwich structure.

3 測定結果

3.1 最大トルクの測定結果

試作したモータは駆動周波数 57.3kHz にお いて, X,Y 軸回転では B_{21} , (B_{21}') -mode の入力 電圧が V_{B21} = 80[Vp-p] 以上, R_1 -mode が V_{R1} =70[Vp-p] において, 最大トルクは約 60[mNm]であった. 駆動周波数 68.2kHz にお いて, Z 軸回転では, 最大トルクは印加電圧 の増加に伴って増加した.印加電圧 130[Vp-p] の時, 最大トルクは約 90[mNm]であった.

3.2 予圧方法の検討結果

3種類の予圧方法を実験的に検討した. 予圧方法①:支持部のもつ弾性だけを利用; 予圧方法②:Upper ステータ振動を押すよう にバネを配置;

予圧方法③:ステータ振動子間にバネを配置. これら3つの予圧方法を用いて、印加電圧に対する X(Y)軸および Z 軸回転の最大トルクを測定した. Fig.4 には B₂₁,(B₂₁')-mode とR₁-mode の両方に同じ電圧を印加した時のX(Y) 軸のトルク変化を示す. Fig.5 に((1,1))-mode と((1,1))'-modeの印加電圧に対する Z 軸のトルク変化の測定結果を示す.予圧方法③がもっとも安定であり、不要振動の影響が少なく良好な回転が得られた.

3.3 従来型との比較

Table2 に以前と今回の最大トルクの比較結 果を示す.本提案のモータは小型でありなが ら、高トルクが発生できることが分かる.

rablez comparison of the torque and voltage.					
MDOF-USM type	Present	Former			
Diameter of stator [mm]	39.0	67.2			
Diameter of rotor [mm]	20.0	25.4			
Max torque: X(Y)-axis [mNm]	58.04	93.30			
(applied voltage[Vp-p])	(80)	(120)			
Max torque: Z-axis[mNm]	84.5	67.8			
(applied voltage[Vp-p])	(140)	(220)			

Table2 Comparison of the torque and voltage

4 おわりに

サンドウィッチ型円環状多自由度球面超音 波モータによるトルク合成によって高トルク 化を試みた.3軸方向のトルクの増加を確認 した.また,モータの形状設計の自由度が向 上した.今後,球面接触による高トルクかの 効果を確認する.また更なる性能向上と位置 決めへの応用を検討する.

Fig.5 Max.torque & applied voltage on Z-axis.

参考文献

- [1] T.Amano, T.Ishii, K.Nakamura and S.Ueha: IEEE Ultrasonics Symp. PP.667-670, 1998.
- [2] C.-H.Yun, S.Niwano, J.R.Friend,K.Nakamura and S. Ueha: Jpn.J. Appl. Phys. 42, PP.3000-3001, 2003.
- [3] 高橋, 西村, 秋葉, 田村: 精密工学会講論 (秋), PP.751-752, 2007.
- [4] M.Aoyagi, S.P.Beeby and N.M.White: IEEE Trans. Ultrason. Ferroelectr. Freq.Control 49, PP.151-158, 2002.
- [5] M.Aoyagi, T.Nakajima, Y.Tomikawa and T.Takano: Jpn, Jour. of Applied Physics, Vol.43, Part.1, No.513, PP.2884-2890, 2004.
- [6] 遠山, 深谷, 和田: 精密工学会誌, 66, PP.769-774, 2000.