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Muroran Institute of Technology

27-1 Mizumoto Muroran, 050-8585, Japan
(e-mail: hidenori@mmm.muroran-it.ac.jp)

Abstract In this paper, we give exact values of the standard zeta func-
tion for cuspidal Hecke eigenforms with respect to Sp2(Z).

1 Introduction

For a cuspidal Hecke eigenform f of weight k with respect to Spn(Z), let
L(f, s, St) be the standard zeta function of f. Then for some positive inte-

ger, the value
L(f,m, St)

< f, f > π−n(n+1)/2+nk+(n+1)m is an algebraic number if all

the Fourier coefficients of f are algebraic, where < f, f > is the (non-
normalized) Petersson product (cf. Böcherer [Böcherer 1985], Mizumoto
[Mizumoto 1991].) In [Katsurada 2008], we gave an explicit formula to com-
pute this value in terms of Fourier coefficients of f and some other elementary
quantities. In this paper, we compute this value exactly by using it in case
n = 2. The main tool we use is the pullback formula for the Siegel-Eisenstein
series due to Garrett [Garrett 1984] and Böcherer [Böcherer 1985]. This
method has been applied to the case of elliptic modular forms in [Katsurada
2005]. To carry out the computation in the case of Sigel modular forms of
degree 2, we need an explicit form of differential operators on the space of
Siegel modular forms of degree 4 due to Ibukiyama [Ibukiyama 1999], and
an explicit formula for global Siegel series for a half-integral matrix of degree
4. The generating function of the differential operators has been given in

1



[Ibukiyama 1999], and by a direct but rather elaborate computation we can
get an explicit form of them. An explicit formula for local Siegel series has
been given in [Katsurada 1999]. However it seems rather difficult to use the
formula directly for a practical computation. In this paper we show a trick
which enables us to reduce the computation of global Siegel series of degree
4 to that of degree 2.

The contents of this paper are as follows. In Section 2, first we review
a result concerning Fourier coefficients of Siegel Eisenstein series following
[Katsurada 2008], and explain the relation between the Siegel series and
local densities. Next, we review a result concerning the pullback formula of
Siegel Eisenstein series due to Böcherer to obtain an exact value the standard
zeta function following [Katsurada 2008]. In Section 3, we restrict ourselves
to the case of Siegel modular forms of degree 2. First we show a trick for the
computation of global Siegel series stated above. Next we give an explicit
formula of the differential operators acting on the space Siegel modular forms
of degree 4 due to Ibukiyama [Ibukiyama 1999], and give a main result of
this paper, which enables us to get exact standard zeta values (cf. Theorem
3.6.) In Section 4, we give numerical examples of such values and give some
comments on the conjecture proposed in [Katsurada 2008].

The author would like to thank the referee for many valuable comments.

Notation. For a commutative ring R, we denote by Mmn(R) the set
of (m,n)-matrices with entries in R. In particular put Mn(R) = Mnn(R).
For an (m,n)-matrix X and an (m, m)-matrix A, we write A[X] = tXAX,
where tX denotes the transpose of X. Let a be an element of R. Then for
an element X of Mmn(R) we often use the same symbol X to denote the
coset X mod aMmn(R). Put GLm(R) = {A ∈ Mm(R) | det A ∈ R∗}, where
det A denotes the determinant of a square matrix A, and R∗ denotes the
unit group of R. Let Sn(R) denote the set of symmetric matrices of degree
n with entries in R. Furthermore, for an integral domain R of characteristic
different from 2, let Hn(R) denote the set of half-integral matrices of degree
n over R, that is, Hn(R) is the set of symmetric matrices of degree n whose
(i, j)-component belongs to R or 1

2
R according as i = j or not. For a subset

S of Mn(R) we denote by S× the subset of S consisting of non-degenerate
matrices. In particular, if S is a subset of Sn(R) with R the field of real
numbers, we denote by S>0 (resp. S≥0) the subset of S consisting of positive
definite (resp. semi-positive definite) matrices. Let R′ be a subring of R. Two
symmetric matrices A and A′ with entries in R are called equivalent over R′
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with each other and write A
∼
R′ A′ if there is an element X of GLn(R′) such

that A′ = A[X]. We also write A ∼ A′ if there is no fear of confusion. For

square matrices X and Y we write X⊥Y =

(
X O
O Y

)
.

2 Pullback formula of Siegel-Eisenstein series

In this section, first we review the Fourier coefficients of Siegel-Eisenstein
series following [Katsurada 2008]. Furthermore, for later purpose, we consider
the relation between Siegel series and local densities.

Put Jn =

(
On −1n

1n On

)
, where 1n denotes the unit matrix of degree n.

For a subring K of R put

Γ(n) = Spn(Z) = {M ∈ GL2n(Z) | Jn[M ] = Jn}.

Let Hn be Siegel’s upper half-space. We denote by Mk(Γ
(n)) (resp. M∞

k (Γ(n))
the space of holomorphic (resp. C∞-) modular forms of weight k with respect
to Γ(n). We denote by Sk(Γ

(n)) the submodule of Mk(Γ
(n)) consisting of cusp

forms. For two C∞-modular forms f and g of weight k with respect to Γ(n)

we define the Petersson scalar product < f, g > as in [Katsurada 2008].
For a positive integer k ≥ (n + 1)/2 we define the Siegel Eisenstein series

En,k(Z, s) of degree n as
En,k(Z, s)

= ζ(1−k−2s)

[n/2]∏
i=1

ζ(1−2k−4s+2i)
∑

M∈Γ
(n)
∞ \Γ(n)

j(M,Z)−k(det(Im(M(Z))))s

( Z ∈ Hn, s ∈ C), where ζ(∗) is Riemann’s zeta function, and Γ
(n)
∞ =

{
(

∗ ∗
On ∗

)
∈ Γ(n)}. Then En,k(Z, s) is holomorphic at s = 0 as a function

of s, and En,k(Z, 0) is holomorphic as a function of Z unless k = (n+2)/2 ≡
2 mod 4, or k = (n + 3)/2 ≡ 2 mod 4 (cf. [Shimura 1983].) From now
on we assume that En,k(Z, 0) is holomorphic as a function of Z, and write
En,k(Z) = En,k(Z, 0). To see the Fourier expansion of En,k(Z, 0), for a prime
number p and a half-integral matrix B of degree n over Zp define the local
Siegel series bp(B, s) as in [Katsurada 2008]. Let m,n be non-negative inte-
gers such that m ≥ n ≥ 1. For A ∈ Hm(Zp) and B ∈ Sn(Qp) define the local
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density αp(A,B) and the primitive local density βp(A,B) by

αp(A, B) = 2δmn lim
e→∞

p(−mn+n(n+1)/2)e#Ae(A,B),

and
βp(A,B) = 2δmn lim

e→∞
p(−mn+n(n+1)/2)e#Be(A,B),

where δmn is Kronecker’s delta,

Ae(A,B) = {X ∈ Mmn(Zp)/p
eMmn(Zp) | A[X] − B ∈ peHn(Zp)},

and
Be(A,B) = {X ∈ Ae(A,B) | rankZp/pZp(X) = n}.

We define χp(a) for a ∈ Qp\{0} as follows;

χp(a) =


+1 if Qp(

√
a) = Qp

−1 if Qp(
√

a)/Qp is quadratic unramified
0 if Qp(

√
a)/Qp is quadratic ramified.

For a half-integral matrix B of even degree n define ξp(B) by

ξp(B) = χp((−1)n/2 det B).

Let B ∈ Hn(Z)>0 with n even. Then we can write (−1)n/22n det B = dB f
2
B

with dB a fundamental discriminant and fB ∈ Z>0. Furthermore, let χB =
( dB

∗ ) be the Kronecker character corresponding to Q(
√

(−1)n/2 det B)/Q. We

note that we have χB(p) = ξp(B) for any prime p. Let Hk =

k︷ ︸︸ ︷
H⊥...⊥H with

H =

(
0 1/2

1/2 0

)
.

For a non-degenerate half-integral matrix B of degree n over Zp define a
polynomial γp(B,X) in X by

γp(B,X) =

{
(1 − X)

∏n/2
i=1(1 − p2iX2)(1 − pn/2ξp(B)X)−1 if n is even

(1 − X)
∏(n−1)/2

i=1 (1 − p2iX2) if n is odd.

Then the following lemma is well known (e.g. [Kitaoka 1984], Lemma 1)
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Lemma 2.1. For a non-degenerate half-integral matrix B of degree n
over Zp there exists a unique polynomial Fp(B,X) in X over Z with constant
term 1 such that

bp(B, s) = γp(B, p−s)Fp(B, p−s).

Furthermore for any positive integer k ≥ n/2 and a half integral matrix A of
degree 2k over Zp such that 2A is unimodular, we have

αp(A,B) = Fp(B, ξp(A)p−k)γp(B, ξp(A)p−k)

and, in particular,

αp(Hk, B) = Fp(B, p−k)γp(B, p−k).

Remark. For an element B ∈ Hn(Zp) of rank m ≥ 0, there exists an
element B̃ ∈ Hm(Zp) ∩ GLm(Qp) such that B ∼ B̃⊥On−m. We note that
bp(B̃, s) does not depend on the choice of B̃ (cf. [Kitaoka 1984].) Thus we

write this as b
(m)
p (B, s). Furthermore, Fp(B̃,X) does not depend on the choice

of B̃. Then we put F
(m)
p (B,X) = Fp(B̃,X). For an element B ∈ Hn(Z)≥0 of

rank m ≥ 0, there exist an element B̃ ∈ Hm(Z)>0 such that B ∼ B̃⊥On−m.
Then, det B̃ does not depend on the choice of B. Thus we put det(m) B =
det B̃. Similarly, we write χ

(m)
B = χB̃ if m is even.

Now for a semi-positive definite half-integral matrix B of degree 2n and
of rank m, we put

c2n,l(B) = 2[(m+1)/2]
∏

p

F (m)
p (B, pl−m−1)

×

{ ∏n
i=m/2+1 ζ(1 + 2i − 2l)L(1 + m/2 − l, χ

(m)
B ) if m is even∏n

i=(m+1)/2 ζ(1 + 2i − 2l) if m is odd
.

Here we make the convention F
(m)
p (B, pl−m−1) = 1 and L(1+m/2−l, χ

(m)
B ) =

ζ(1 − l) if m = 0. Then we have

Theorem 2.2. Let l be a positive even integer. Assume that l ≥ n + 3
or l ≥ n + 1 according as n ≡ 1 mod 4 or not. Then we have

E2n,l(Z) =
∑

B∈H2n(Z)≥0

c2n,l(B)e(tr(BZ)),
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where e(x) = exp(2π
√
−1x) for a complex number x, and tr denotes the trace

of a matrix.

Now we review the pullback formula of Siegel Eisenstein series follow-
ing Sections 3 and 4 of [Katsurada 2008]. Let L′

n = LQ(GSpn(Q)+ ∩
M2n(Z), Γ(n)) denote the Hecke ring over Z associated with the Hecke pair
(GSpn(Q)+ ∩ M2n(Z), Γ(n)). Furthermore for a prime number p put

GSpn(Qp) = {M ∈ GL2n(Qp); Jn[M ] = κ(M)Jn with some κ(M) ∈ Q×
p },

and let Lnp = L(GSpn(Qp), GSpn(Qp) ∩ GL2n(Zp)) be the Hecke algebra
associated with the pair (GSpn(Qp), GSpn(Qp) ∩ GL2n(Zp)). Now assume
that f is a Hecke eigenform, namely, a common eigenfunction of all Hecke
operators. For each prime number p, let α0(p), α1(p), ...., αn(p) be the Satake
parameters of Lnp determined by f. We then define the standard zeta function
L(f, s, St) by

L(f, s, St) =
∏

p

n∏
i=1

{(1 − p−s)(1 − αi(p)p−s)(1 − αi(p)−1p−s)}−1.

Now let
◦
Dν

n,l be the differential operator from M∞
l (Γ(2n)) to M∞

l+ν(Γ
(n)) ⊗

M∞
l+ν(Γ

(n)) in [Böcherer and Schmidt 2000].
Let E2n,l(Z) = E2n,l(Z, 0) be the Eisenstein series as above. We then

define E2n,l,k(z1, z2) as

E2n,l,k(z1, z2) = (−1)l/2+12−n(2π
√
−1)(l−k)n(l − n)

◦
Dk−l

n,l (E2n,l)(z1, z2),

where z1, z2 ∈ Hn. Let f(z) =
∑

A∈Hn(Z)>0

a(A)e(tr(Az)) be a Hecke eigenform

in Sk(Γ
(n)). For a positive integer m ≤ k − n such that m ≡ n mod 2 put

Λ(f,m, St) = (−1)n(−m+1)/2+12−4kn+3n2+n+(n−1)m+2

×Γ(m + 1)
n∏

i=1

Γ(2k − n − i)
L(f,m, St)

< f, f > π−n(n+1)/2+nk+(n+1)m
.

For two semi-positive definite half-integral matrices A1, A2 of degree n,
put

εl,k(A1, A2) =
∑

A2− 1
4
A−1

1 [R]≥0

c̃2n,l(

(
A1 R/2

tR/2 A2

)
)Qk−l

n,l (

(
A1 R/2

tR/2 A2

)
),

6



where c̃2n,l(A) = (−1)l/2+12−n(l − n)c2n,l(A) for A ∈ H2n(Z)≥0, and Qk−l
n,l is

the polynomial defined in Section 3 of [Katsurada 2008]. Furthermore, for
each semi-positive definite half-integral matrix A1 put

Fl,k;A1(z2) =
∑

A2∈Hn(Z)≥0

εl,k(A1, A2)e(tr(A2z2)).

We note that we have

E2n,l,k(z1, z2) =
∑

A1∈Hn(Z)≥0

∑
A2∈Hn(Z)≥0

εl,k(A1, A2)e(tr(A1z1 + A2z2)).

Thus Fl,k;A1(z2) belongs to Mk(Γ
(n)), and

E2n,l,k(z1, z2) =
∑

A1∈Hn(Z)≥0

Fl,k;A1(z2)e(tr(A1z1))

(cf. Section 3 of [Katsurada 2008].) In particular, if l < k, Fl,k;A1(z2) belongs
to Sk(Γ

(n)), and

E2n,l,k(z1, z2) =
∑

A1∈Hn(Z)>0

Fl,k;A1(z2)e(tr(A1z1)).

Take an orthogonal basis {fi}d1
i=1 of Sk(Γ

(n)) consisting of Hecke eigenforms.
Write

fi(z) =
∑

A∈Hn(Z)>0

ai(A)e(tr(Az)).

Now we have the following:

Proposition 2.3. (cf. [Katsurada 2008, Theorem 4.4]) Let l, k and n be
a positive integers. Assume that k and l + n is even, and 3 ≤ l ≤ k − n − 2
or 1 ≤ l ≤ k−n− 2 according as n ≡ 1 mod 4 or not. Then for any positive
definite half-integral matrix A1 of degree n we have

Fl+n,k;A1(z) =

d1∑
i=1

Λ(fi, l, St)ai(A1)fi(−z̄).
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Remark. There are some misprints in [Katsurada 2008].
Page 105, line 9: For ”(2π

√
−1)l−k”, read ”(2π

√
−1)(l−k)n”.

Page 105, line 12: For ”(−1)n(m+1)/2+1”, read ”(−1)n(−m+1)/2+1”.
Page 105, line 13: For ”Γ(m)”, read ”Γ(m + 1)”.

Now, for a prime number p, let T (p) be the element of L′
n defined by

T (p) = Γ(n)(1n⊥p1n)Γ(n). For each non-negative integer i and A1 ∈ Hn(Z)>0,
write Fl+n,k;A1 |T (p)i(z) as

Fl+n,k;A1|T (p)i(z) =
∑

A∈Hn(Z)>0

εl+n,k(i, A1, A)e(tr(Az)).

Furthermore write
fj|T (p)(z) = λjfj(z).

Thus by Proposition 2.3 we have the following.

Lemma 2.4. Under the above notation and the assumption, we have

εl+n,k(i, A1, A) =
d∑

j=1

λi
jΛ(fj, l, St)aj(A1)aj(A)

for any non-zero integer i and A ∈ Hn(Z)>0.

From now on assume that the Sk(Γ
(n)) has the multiplicity one condition.

Namely assume that a Hecke eigenform in Sk(Γ
(n)) is uniquely determined,

up to constant multiple, by its eigenvalues of Hecke operators. First we nor-
malize the standard zeta value Λ(f, l, St) for a Hecke eigenform f in Sk(Γ

(n))
following [Katsurada 2008]. We define the following quantities: for a Hecke
eigenform f(z) =

∑
A af (A)e(tr(Az)) in Sk(Γ

(n)), let If be the OQ(f)-module
generated by all af (A)′s. Then, by multiplying a suitable constant c we may
assume all af (A)′s are elements of Q(f) with bounded denominator. Then
If is a fractional ideal in Q(f), and therefore, so is Λ(f, l, St)I2

f if l satisfies
the conditions in Proposition 2.3. We note that this fractional ideal does
not depend on the choice of c. In particular, these values are uniquely de-
termined by the system of eigenvalues of f . We also note that the value
NQ(f)(Λ(f, l, St))N(If )

2 does not depend on the choice of c, where N(If ) is
the norm of the ideal If .
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Theorem 2.5. In addition to the above assumption, let f = f1, λ =
λ1, a(A1) = a1(A1), a(A) = a1(A), K = Q(f) and ei = εl+n,k(i, A1, A). Fur-

thermore, let Φ(X) = ΦT (p)(X) =
∑d

i=0 bd−iX
i be the characteristic polyno-

mial of T (p) in Sk(Γ
(n)). Put Λ∗(f, l, St) = NQ(f)(Λ(f, l, St))N(If )

2 Assume
that Φ′(λ) 6= 0, and a(A1)a(A) 6= 0. Then for any positive integer l satisfying
the conditions in Proposition 2.3, we have

Λ∗(f, l, St) = NK/Q

(∑d−1
i=0

∑d−1
j=i ed−1−jbj−iλ

i

Φ′(λ)

)
N(If )

2

NK/Q(a(A1)a(A))
.

Proof. By Lemma 2.4, we have

ei =
d∑

j=1

λi
jΛ(fj, l, St)aj(A1)aj(A)

for each i = 0, ..., d − 1. Then by Lemma 2.2 of Goto [Goto 1998], we have

Λ(f, l, St)a(A1)a(A) =

∑d−1
i=0

∑d−1
j=i ed−1−jbj−iλ

i

Φ′(λ)
.

Thus the assertion immediately follows.

By using the above theorem, we can get standard zeta values of a Hecke
eigenform in Sk(Γ

(n)) in principle. However to make the computation ex-
plicit, we need to compute the Fourier coefficients of the Siegel Eisenstein
series of degree 2n and the differential operators explicitly. We will do this
in case n = 2 in the next sections.

3 Exact standard zeta values in case n = 2

In this section we obtain a useful formula for computing exact standard zeta
values in the case of degree 2. The following lemma can easily be proved
(e.g. [Katsurada 1999, Proposition 2.2].)

Lemma 3.1. Let n = n1 + n2 with n1 even. Let A11 ∈ Hn1(Zp) ∩
1
2
GLn1(Zp) and A22 ∈ Hn2(Zp) ∩ GLn2(Qp). Then for any l ≥ n we have

αp(Hl, A11⊥A22) = βp(Hl, A11)αp(Hl−n1⊥(−A11), A22).
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Proposition 3.2. Let n1 be an even integer. Let A11 ∈ Hn1(Zp) ∩
1
2
GLn1(Zp) and A22 ∈ Hn2(Zp). Let m be the rank of A22. Then we have

F (n1+m)
p (A11⊥A22, X) = F (m)

p (A22, ξp(A11)p
n1/2X).

Proof. We may assume that A22 is non-degenerate. By Lemma 2.1 for
any l ≥ n1 + n2 we have

αp(Hl, A11⊥A22) = γp(A11⊥A22, p
−l)Fp(A11⊥A22, p

−l).

By Lemma 3.1, we have

αp(Hl, A11⊥A22) = βp(Hl, A11)αp(Hl−n1⊥(−A11), A22).

Again by Lemma 2.1, we have

αp(Hl−n1⊥(−A11), A22) = γp(A22, ξp(A11)p
n1/2−l)Fp(A22, ξp(A11)p

n1/2−l).

Furthermore we have

βp(Hl, A11) = (1 − p−l)

n1/2∏
i=1

(1 − p2i−2l)(1 − pn1/2−lξp(A11))
−1

(eg. [Kitaoka 1993]), and by definition we have

γp(A11⊥A22, p
−l) = βp(Hl, A11)γp(A22, ξp(A11)p

n1/2−l).

Thus the assertion holds. 2

Corollary 1. Let A =

(
A11 A12/2

tA12/2 A22

)
∈ Hn1+n2(Zp)∩GLn1+n2(Qp)

with A11 ∈ Hn1(Zp), A22 ∈ Hn2(Zp), and A12 ∈ Mn1,n2(Zp). Let m be the
rank of A. Assume 2A11 ∈ GLn1(Zp). Then we have

F (m)
p (A,X) = F (m−n1)

p (A22 −
1

4
A−1

11 [A12], ξp(A11)p
n1/2X).
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Corollary 2. Let n1 and n2 be positive even integers. Let A =

(
A11 A12/2

tA12/2 A22

)
∈

Hn1+n2(Z)>0 with A11 ∈ Hn1(Z)>0, A22 ∈ Hn2(Z)>0, and A12 ∈ Mn1,n2(Z).
Let p0 be a prime number. Let m be the rank of A. Assume 2A11 ∈ GLn1(Zp)
for any prime number p 6= p0, and 2A22 ∈ GLn2(Zp0). Then we have∏

p

F (m)
p (A,X) = F (m−n2)

p0
(A11 −

1

4
A−1

22 [tA12], χA22(p0)p
n2/2
0 X)

×
∏
p6=p0

F (m−n1)
p (A22 −

1

4
A−1

11 [A12], χA11(p)pn1/2X).

Now to make the computation in Section 4 smooth, we give an explicit
form of F

(1)
p (A,X) and F

(2)
p (A,X) in case deg A = 2 (e.g. [Katsurada 2005].)

Proposition 3.3. Let A =

(
a11 a12/2

a12/2 a22

)
∈ H2(Z)≥0. Put e = eA =

GCD(a11, a12, a22)
(1) Assume rank A = 1. Then we have

F (1)
p (A,X) =

ordp(eA)∑
i=0

(pX)i.

(2) Assume A > 0. Then we have

F (2)
p (A,X) =

ordp(eA)∑
i=0

(p2X)i

ordp(fA)−i∑
j=0

(p3X2)j

−χA(p)pX

ordp(eA)∑
i=0

(p2X)i

ordp(fA)−i−1∑
j=0

(p3X2)j.

Now we give an explicit form of differential operator in the case of degree
2 due to Ibukiyama. Let y1, y2, y3 be variables, and for a positive even integer
l put

Gl(y1, y2, y3; t)

=
1

R(y1, y2, y3; t)(2l−5)/2(∆0(y1, y2; t)2 − 4y3t2)1/2
,
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where
∆0(y1, y2; t) = 1 − y1t + y2t

2

and

R(y1, y2, y3; t) = (∆0(y1, y2; t) + (∆0(y1, y2; t)
2 − 4y3t

2)1/2)/2.

Write

Gl(y1, y2, y3; t) =
∞∑

m=0

Gl,m(y1, y2, y3)t
m,

and define a polynomial map Ql,m(

(
W1 W2
tW2 W4

)
) from S4(C) to C by

Ql,m(

(
W1 W2
tW2 W4

)
) = Gl,m(det W2, det W1 det W4, det

(
W1 W2
tW2 W4

)
),

where W1,W4 ∈ S2(C), and W2 ∈ M2(C). Furthermore define a polynomial
map Pl,m(X1, X2) from M2(C) × M2(C) to C by

Pl,m(X1, X2) = Ql,m(

(
X1

tX1 X1
tX2

X2
tX1 X2

tX2

)
).

Then by [Ibukiyama 1999]

Proposition 3.4. Pl,m(X1, X2) satisfies the conditions D-1 ∼ D-3 in
[Katsurada 2008, Section 3].

Furthermore, by a direct but rather elaborate calculation we have

Proposition 3.5.

Gl,m(y1, y2, y3) =

[m/2]∑
n=0

(
2n + l − 5/2

n

)
yn

3

×
[(m−2n)/2]∑

ν=0

(−y2)
ν

(
l + m − ν − 5/2

m − 2n − ν

) (
m − 2n − ν

ν

)
(2y1)

m−2n−2ν ,

where

(
s
m

)
=

m∏
i=1

(s − i + 1)

m!
.

12



We note that Gl,m(y1, y2, y3) ∈ 2−mZ[y1, y2, y3]. Let

Gl,m = Gl,m(
1

4
det(

∂

∂zij

)1≤i≤2,3≤j≤4, det(
∂̃

∂zij

)1≤i,j≤2 det(
∂̃

∂zij

)3≤i,j≤4, det(
∂̃

∂zij

)1≤i,j≤4),

and for f ∈ C∞(H4) we define G̃l,m(f) by

G̃l,m(f) = Gl,m(f)Z12=0,

where we write Z =

(
Z1 Z12

tZ12 Z2

)
with Z1, Z2 ∈ H2 and Z12 ∈ M2(C). By

[Ibukiyama 1999], G̃l,m is a constant multiple of
◦
Dm

2,l . Namely we have

G̃l,m = dl,m

◦
Dm

2,l

with some dl,m. To obtain an exact value of dl,m, put w = z13z24 − z14z23.
Then for any integer s we have

(
1

4
det(

∂

∂zij

)1≤i≤2,3≤j≤4)(w
s) = C2(s/2)ws−1,

det(
∂̃

∂zij

)1≤i,j≤4)(w
s) = C2(s/2)C2((s − 1)/2)ws−2,

and

det(
∂̃

∂zij

)1≤i,j≤2 det(
∂̃

∂zij

)3≤i,j≤4(w
s) = 0,

where C2(s) = s(s + 1/2). Thus for a positive even integer m we have

G̃l,m(wm) =
m∏

µ=1

C2(µ/2)

m/2∑
n=0

(
2n + l − 5/2

n

)(
l + m − 5/2

m − 2n

)
2m−2n

=
m∏

µ=1

C2(µ/2)

(
2l + 2m − 5

m

)
.

Here we have used the formula

m/2∑
n=0

(
s − m + 2n

n

)(
s

m − 2n

)
2m−2n =

(
2s
m

)
13



for s ∈ C. On the other hand we have

◦
Dm

2,l (wm) =
m∏

µ=1

C2(µ/2)C2(l − 2 + m − µ/2)

(cf. Section 3 of [Katsurada 2008],) and therefore we have

dl,m =

(
2l + 2m − 5

m

)
∏m

µ=1 C2(l − 2 + m − µ/2)
.

Now, for a positive even integer l ≤ k − 2 put

Λ̃(f, l, St) =

(
2k − 5

k − l − 2

)
24k−2l−9

Γ(l+1)Γ(k+l−2)Γ(k+l−1)
L(f, l, St)

< f, f > (2π)2k+3l−3
.

Now let l be an even integer such that 4 ≤ l ≤ k − 2, and put

Ẽ4,l,k(z1, z2) = (−1)l/2+12−2(2π
√
−1)2(l−k)(l − 2)G̃l,k−l(E4,l)(z1, z2),

where z1, z2 ∈ H2. Then we note that E4,l(Z, 0) belongs to Ml(Γ
(4)), and

Ẽ4,l,k(z1, z2) belongs to Sk(Γ
(2)) ⊗Sk(Γ

(2)). We note that

Λ̃(f, l − 2, St) = dl,k−lΛ(f, l − 2, St),

and
Ẽ4,l,k(z1, z2) = dl,k−lE4,l,k(z1, z2).

Now for a positive definite half-integral matrices A1 and A2 of degree 2, let
εl,k(A1, A2) be the one in Section 2, and put ε̃l,k(A1, A2) = dl,kεl,k−l(A1, A2).
Furthermore, for each positive definite half-integral matrix A1 put

F̃l,k;A1(z2) =
∑

A2∈H2(Z)>0

ε̃l,k(A1, A2)e(tr(A2z2)).

Then we have F̃l,k;A1(z2) = dl,k−lFl,k;A1(z2), and therefore we have

Ẽ4,l,k(z1, z2) =
∑

A1∈H2(Z)>0

F̃l,k;A1(z2)e(tr(A1z1)).

14



Let p0 be a prime number. Assume that 2A1 ∈ GL2(Zp) for any prime
number p 6= p0 and 2A2 ∈ GL2(Zp0). Then we have

ε̃l,k(A1, A2) =
∑

R∈M2(Z)

c̃4,l(

(
A1 R/2

tR/2 A2

)
)

×Gl,k−l(
1

4
det R, det A1 det A2, det

(
A1 R/2

tR/2 A2

)
),

where
c̃4,l(A) = (−1)l/2+1(l − 2)

×F (m−2)
p0

(A1−
1

4
A−1

2 [tR], χA2(p0)p
l−m
0 )

∏
p6=p0

F (m−2)
p (A2−

1

4
A−1

1 [R], χA1(p)pl−m)

×
{

L(3 − l, χA) if m = 4
ζ(5 − 2l) if m = 3,

for A =

(
A1 R/2

tR/2 A2

)
with rank(A) = m. We note that ε̃l,k(A1, A2) is

rational number and any prime divisor of its denominator is not greater than
(2l − 1)!.

Fix an A1 ∈ H2(Z)>0 and a prime number p. We define εl,k(i, A1, A) as
follows:

εl,k(0, A1, A) = ε̃l,k(A1, A),

εl,k(i, A1, A) = εl,k(i − 1, A1, pA) + p2k−3εl,k(i − 1, A1, A/p)

+pk−2
∑

D∈GL2(Z)UpGL2(Z)/GL2(Z)

εl,k(i − 1, A1, A[D]/p),

where Up =

(
1 0
0 p

)
. Let {fj}d

j=1 be an orthogonal basis of Sk(Γ
(2)) con-

sisting of Hecke eigenforms, and λj be the eigenvalue of T (p) for fj. Then by
the Hecke theory of Siegel modular forms (e.g. Andrianov [Andrianov 1987])
we have

Fl,k;A1 |T (p)i(z2) =
∑

A2∈H2(Z)>0

εl,k(i, A1, A2)e(tr(A2z2))

for any non-negative integer i and A1 ∈ H2(Z)>0. Thus by Theorem 2.5 we
have the following.
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Theorem 3.6. In addition to the above assumption, let f = f1, λ =
λ1, a(A1) = a1(A1), a(A) = a1(A), K = Q(f), and for a positive even inte-
ger l ≤ k − 4 put ei = εl+2,k(i, A1, A). Furthermore, let Φ(X) = ΦT (p)(X) =∑d

i=0 bd−iX
i be the characteristic polynomial of T (p) in Sk(Γ

(2)). Put Λ̃∗(f, l, St) =
NK/Q(Λ̃(f, l, St))N(If )

2. Assume that Φ′(λ) 6= 0, and a(A1)a(A) 6= 0. Then
we have

Λ̃∗(f, l, St) = NK/Q

(∑d−1
i=0

∑d−1
j=i ed−1−jbj−iλ

i

Φ′(λ)

)
N(If )

2

NK/Q(a(A1)a(A))
.

4 Numerical examples and comments

We compute the special values of the standard zeta functions by using Math-
ematica. Let φ10,1(τ, z) and φ12,1(τ, z) be the Jacobi cusp forms in Jcusp

10,1 and
Jcusp

12,1 in Page 40 of [Eichler and Zagier 1985], respectively. Here τ ∈ H1 and
z ∈ C. Furthermore let E1,k(τ) be the Eisenstein series of weight k with re-
spect to Γ(1) defined in Section 2, and put Ek(τ) = ζ(1−k)−1E1,k(τ). Then it
is well known that Ea

4 (τ)E6(τ)bφj,1(τ, z) (a, b ≥ 0, j = 10, 12, 4a+6b+j = k)

form a basis of Jcusp
k,1 . Let A0 =

(
1 1/2

1/2 1

)
, A1 =

(
1 0
0 1

)
, and A2 =(

2 1/2
1/2 2

)
. Furthermore, we denote by Sk(Γ

(2))∗ the Maass subspace of

Sk(Γ
(2)).

(1) We have dim S20(Γ
(2)) = 3, and dim S38(Γ

(1)) = 2. Let f1, f2

be the basis of S38(Γ
(1)) consisting of primitive forms. For i = 1, 2 let

λi = 48(−2025 +
√

D) and 48(−2025 −
√

D) with D = 63737521. Then
λi is the eigenvalues of the T (2) with respect to fi. Then they satisfy the
equation X2 + 194400X2 − 137403408384 = 0, and Q(fi) = Q(λi) = K
with K = Q(

√
D) (cf. [Hida and Maeda 1997].) Put θi = λi/96. Then θi

satisfies the following equation g(X) := X2 + 2025X − 14909224 = 0. The
discriminant of g(X) is D. Thus the discriminant of Q(

√
D) is D, and the

ring of integers in Q(
√

D) is Z(θ1). Let h1(τ, z) = E4(τ)E6(τ)φ10,1(τ, z), and
h2(τ, z) = E4(τ)2φ12,1(τ, z). These form a basis of Jcusp

20,1 . Put gi = Vhi for

i = 1, 2 (cf. [Katsurada 08, p.108]). Then these form a basis of S20(Γ
(2))∗

whose A0-th Fourier coefficient is 1. Furthermore for i = 1, 2 put f̂i =
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−230g1 + (−4862 − θi)g2. Then f̂i is the Saito-Kurokawa lift of fi whose
A0-th Fourier coefficient is af̂i

(A0) = −5092 − θi. We note that we have

f̂i = χ
(i)
20/2 for i = 1, 2, where χ

(1)
20 and χ

(2)
20 are the eigenforms in Kurokawa

[Kurokawa 1978]. Then we have af̂i
(A1) = −10(4816 + θi). Furthermore we

have λf̂i
(T (2)) = λi + 3 · 218. Then NK/Q(af̂i

(A0)) = 22 · 34 · 5 · 19 · 23, and

NK/Q(af̂i
(A1)) = −25 · 3 · 52 · 23 · 2659. By a simple computation we have

N(If̂i
) = 25 · 32 · 5 · 23. Let Υ20 be the cuspidal Hecke eigenform in Sko-

ruppa [Skoruppa 1992]. It is a unique (up to constant) Hecke eigenform in

S20(Γ
(2)) which is not a Saito-Kurokawa lift. We note that Υ20 = χ

(3)
20 /2,

where χ
(3)
20 is the Hecke eigenform in [Kurokawa 1978]. Then f̂1, f̂2 and Υ20

form an orthogonal basis of S20(Γ
(2)). We have IΥ20 = 1 and aΥ20(A0) = 1

and aΥ20(A1) = 22. Furthermore we have λΥ20(T (2)) = −28 · 32 · 5 · 73. Thus
by Theorem 3.6, we have the following tables:

Table 1.1.
l NK/Q(Λ̃(f̂i, l, St)N(If̂i

)2

2 35 · 55 · 7 · 11 · 132 · 172 · 232 · 29 · 31/246 · D
4 37 · 53 · 72 · 11 · 13 · 172 · 23 · 29 · 31 · 173 · 443/239 · D
6 36 · 53 · 112 · 133 · 172 · 29 · 31 · 227 · 1381069/231 · D
8 39 · 55 · 7 · 11 · 132 · 172 · 23 · 29 · 31 · 21347 · 58169/222 · D
10 38 · 56 · 72 · 133 · 172 · 19 · 23 · 31 · 863 · 3673 · 3426433/217 · D
12 36 · 53 · 72 · 11 · 172 · 23 · 29 · 37 · 293 · 6912 · 33721 · 96875477/24 · D
14 27 · 38 · 54 · 73 · 11 · 132 · 17 · 232 · 292 · 31 · 467196139 · 541368271/D
16 225 · 314 · 54 · 7 · 11 · 13 · 17 · 23 · 292 · 312 · 67 · 1699 · 36172 · 296551/D

Table 1.2.
l Λ̃(Υ20, l, St)
2 33 · 5 · 7 · 11 · 23 · 29 · 31/228

4 32 · 52 · 13 · 23 · 29 · 31 · 113/225

6 34 · 5 · 7 · 29 · 31 · 7549/217

8 33 · 5 · 72 · 11 · 29 · 31 · 37 · 4861/216

10 3 · 5 · 7 · 31 · 283 · 617 · 4098371/213

12 34 · 52 · 72 · 11 · 29 · 31 · 337 · 91909/26

14 24 · 34 · 72 · 13 · 29 · 12893 · 2166127
16 211 · 36 · 53 · 13 · 23 · 29 · 347162819

(2) We have dim S22(Γ
(2)) = 4, and dim S42(Γ

(1)) = 3. Let f1, f2, f3 be
the basis of S42(Γ

(1)) consisting of primitive forms. For i = 1, 2, 3 let λi be
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the eigenvalues of the T (2) with respect to fi. Then they satisfy the equation

X3 + 344688X2 − 6374982426624X − 520435526440845312 = 0,

and Q(fi) = Q(λi) (cf. [Hida and Maeda 1997].) Put θi = λi/48 for i =
1, 2, 3. Then θi is also an algebraic integer and satisfy the following equation:

g(X) := X3 + 7181X2 − 2766919456X − 4705905729536 = 0.

The discriminant of g(X) is −210 · 34 · 52 · 72 · 1465869841 · 578879197969.
Let h1(τ, z) = E4(τ)3φ10,1(τ, z), h2(τ, z) = E6(τ)2φ10,1(τ, z), and h3(τ, z) =
E4(τ)E6(τ)φ12,1(τ, z). Then these form a basis of Jcusp

22,1 . Put gi = Vhi for i =

1, 2, 3. Then these form a basis of S22(Γ
(2))∗ whose A0-th Fourier coefficient

is 1. Furthermore for i = 1, 2, 3 put

f̂i = 1155(435776+31θi)g1−220(4760624+79θi)g2+(286270336−60563θi+θ2
i )g3.

Then f̂i is the Saito-Kurokawa lift of fi whose A0-th Fourier coefficient af̂i
(A0)

is −257745664 − 42138θi + θ2
i . Then we have af̂i

(A1) = 10(395073536 −
64248θi + θ2

i ), and af̂i
(A2) = −352(−3767171584 − 182733θi + θ2

i ). Let θ =

θ1, f̂ = f̂1, λ = λ1, and K = Q(f1). Put R1 = 1155(435776 + 31θ), R2 =
−220(4760624 + 79θ), and R3 = 286270336 − 60563θ + θ2. For a while, for
elements u1, u2, ..., ur of K we denote by < u1, u2, ..., ur > the Z-module
generated by u1, u2, ..., ur. Then

[< 1, θ, θ2 >:< R1, R2, R3 >] = 26 · 33 · 53 · 72 · 113 · 13 · 157,

and
[< R1, R2, R3 >:< af̂ (A0), af̂ (A1), af̂ (A2) >] = 2834.

By observing the Fourier coefficients of h1(τ, z), h2(τ, z), and h3(τ, z), we see

that det

 ag1(A) ag1(B) ag1(C)
ag2(A) ag2(B) ag2(C)
ag3(A) ag3(B) ag3(C)

 is divided by 2834 for any A,B,C ∈

H2(Z)>0. Thus [< R1, R2, R3 >: If̂ ] is divided by 2834. Thus we have <
af̂ (A0), af̂ (A1), af̂ (A2) >= If̂ , and

[< R1, R2, R3 >: If̂ ] = 28 · 34.
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Now by using, ”round 2 method”, we can find an element η = (5984+5805θ+
θ2)/10080 in OK so that 1, θ, η form an integral basis of a p-maximal order
of OK for p = 2, 3, 5, 7 (cf. H. Cohen [Cohen 1993].) We have

[< 1, θ, η >:< 1, θ, θ2 >] = 25 · 32 · 5 · 7,

and therefore the discriminant DK of K is not divisible by 2 ·3 ·5 ·7. Thus, we
have DK = −D with D = 1465869841 · 578879197969 and OK =< 1, θ, η > .
This has been also examined with Magma [Bosma, Cannon, and Playoust
1997] by M. Kida. The author thanks him for his kind help. Thus we have

N(If̂ ) = 219 · 39 · 54 · 73 · 113 · 13 · 157.

Furthermore we have
λf̂ (T (2)) = λ + 3 · 220,

NK/Q(af̂ (A0)) = −214 · 313 · 54 · 74 · 113 · 13 · 157 · 1213

and

NK/Q(af̂ (A1)) = −224 · 38 · 55 · 73 · 113 · 13 · 157 · 1447 · 2437.

Let Υ22 be the cuspidal Hecke eigenform in Skoruppa [Skoruppa 1992]. It
is a unique (up to constant) Hecke eigenform in S22(Γ

(2)) which is not a
Saito-Kurokawa lift. Then f̂1, f̂2, f̂3, and Υ22 form an orthogonal basis of
S22(Γ

(2)) and Q(f̂i) = Q(fi). We note that NKi/Q(Λ̃(f̂i, l, St))N(If̂i
)2 =

NK/Q(Λ̃(f̂ , l, St))N(If̂ )
2 for any i. We have IΥ22 = 1 and aΥ22(A0) = 1 and

aΥ22(A1) = −22 · 3. Furthermore we have λΥ22(T (2)) = −28 · 3 · 5 · 577. Thus
by Theorem 3.6, we have the following tables:
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Table 2.1.
l NKi/Q(Λ̃(f̂i, l, St))N(If̂i

)2

2 39 · 54 · 7 · 113 · 135 · 172 · 193 · 232 · 292 · 312 · 37/278 · D
4 312 · 52 · 74 · 112 · 133 · 172 · 192 · 292 · 312 · 37 · 151 · 1601 · 6551

×7951/269 · 1423 · D
6 312 · 59 · 113 · 133 · 172 · 192 · 23 · 292 · 312 · 37 · 137 · 809

×38029874887/257 · 7 · 1423 · D
8 39 · 5 · 75 · 11 · 134 · 172 · 192 · 232 · 29 · 312 · 37 · 84521 · 8947751

×699588169271/241 · 1423 · D
10 310 · 59 · 73 · 114 · 134 · 172 · 193 · 23 · 29 · 31 · 372

×1423469629 · 27864526583393/228 · 1423 · D
12 312 · 5 · 112 · 13 · 17 · 192 · 232 · 292 · 31 · 37 · 6913 · 953

×243911 · 4251563 · 6617174324030971171/210 · 7 · 1423 · D
14 26 · 312 · 55 · 78 · 113 · 134 · 172 · 192 · 23 · 292 · 312 · 37

×150197 · 318467 · 1465187 · 13894099 · 63630191/1423 · D
16 226 · 319 · 55 · 72 · 113 · 133 · 19 · 23 · 292 · 312 · 37 · 36173

×1465869841 · 2775014078857939 · 22683897890722493/1423 · D
18 259 · 325 · 515 · 11 · 132 · 172 · 192 · 23 · 292 · 312 · 372

×107 · 438673 · 365257 · 13553776667/1423 · D

Table 2.2.
l Λ̃(Υ22; l, St)
2 33 · 5 · 11 · 23 · 29 · 31 · 37/232

4 34 · 5 · 11 · 13 · 29 · 31 · 37 · 103 · 157/227 · 1423
6 36 · 11 · 29 · 31 · 372 · 485363/224 · 1423
8 32 · 29 · 31 · 37 · 149 · 3361493719/218 · 1423
10 33 · 5 · 11 · 37 · 89 · 1039 · 2741 · 3616027/215 · 1423
12 34 · 112 · 31 · 37 · 421 · 254725279909/28 · 1423
14 33 · 72 · 11 · 13 · 31 · 37 · 733 · 2131 · 82625047/2 · 1423
16 25 · 37 · 5 · 11 · 13 · 19 · 31 · 37 · 30293340159041/1423
18 216 · 38 · 52 · 7 · 13 · 17 · 31 · 37 · 101 · 439 · 1049 · 49991/1423

20



Finally we give some comments. First, observing Tables 1.1 and 2.1, we
note that prime factors of the l-th Bernoulli number and the norm of the
algebraic part of L(fi, l + k − 2)L(fi, l + k − 1) appear in the numerator of
NK/Q(Λ̃(f̂i, l, St)N(If̂i

)2. For examples, the prime factor 43867 of

NK/Q(Λ̃(f̂i, 18, St)N(If̂i
)2 in Table 2.1 is a prime factor of the numerator

of 18-th Bernoulli number, and the prime factors 13553776667 and 365257
of it appear in the norm of the algebraic parts of L(fi, 38) and L(fi, 39),
respectively (cf. [Stein 2004].) This is not so surprising because we have

L(f̂i, l, St) = ζ(l)L(fi, l + k − 2)L(fi, l + k − 1)

for fi ∈ S2k−2(Γ
(1)). Next we give a comment on our conjecture in [Katsurada

2008]. Let f be a Hecke eigenform in Sk(Γ
(n)), and M be a subspace of

Sk(Γ
(n)) stable under Hecke operators T ∈ L′

n. Assume that M is contained
in (Cf)⊥, where (Cf)⊥ is the orthogonal complement of Cf in Sk(Γ

(n))
with respect to the Petersson product. A prime ideal P of OQ(f) is called a
congruence prime of f with respect to M if there exists a Hecke eigenform
g ∈ M such that

λf (T ) ≡ λg(T ) mod P̃

for any T ∈ L′
n, where P̃ is some prime ideal of OQ(f)Q(g) lying above P. If

M = (Cf)⊥, we simply call P a congruence prime of f.
Now to explain our conjecture, for a normalized Hecke eigenform f in

S2k−2(Γ
(1)) and a Dirichlet character χ, let L(f, s, χ) be the Hecke L-function

of f twisted by χ define by as follows:

L(f, s, χ) =
∞∑

m=1

af (m)χ(m)m−s.

In particular, if χ is the principal character we write L(f, s, χ) as L(f, s). Put

Ω
(+)
f = (2π

√
−1)−1L(f, 1), and Ω

(−)
f = (2π

√
−1)−2L(f, 2). For j = ±, 1 ≤

l ≤ 2k − 3, and a Dirichlet character χ such that χ(−1) = j(−1)l−1, put

L(f, l, χ) =
(2π

√
−1)−lΓ(l)L(f, l, χ)

Ω(j)
.

In particular, put L(f, l) = L(f, l, χ) if χ is the principal character. Then, in
[Katsurada 2008], we proposed the following conjecture:
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Conjecture. Let P be a prime ideal of Q(f) not dividing (2k−1)!. Then
P is a congruence prime of f̂ with respect to (Sk(Γ

(2))∗)⊥ if and only if P
divides the numerator of L(f, k).

We note that that the ”if part” of the above conjecture is a special case
of Harder’s conjecture (cf. [Harder 2003].)

Now look at Table 2.1. in this case, the prime number 1423 appear in the
denominator of NKi/Q(Λ̃(f̂i, l, St))N(If̂i

)2 for l = 4, · · · , 18. We have

1423 = PiP
′
i

in OQ(fi), where Pi =< λi +967, 1423 > and P′
i =< λ2

i +778λi +660, 1423 > .
We have deg Pi = 1 and deg P′

i = 2. Thus by Theorem 5.2 of [Katsurada
2008], Pi is a congruence prime of f̂i, and by a more careful analysis, we see
that it is a congruence prime of f̂i with respect to CΥ22. In fact, we have

λf̂i
(T (2)) ≡ λΥ22(T (2)) mod Pi.

Conversely, by a direct calculation, we see that there is no other congruence
primes > 43 of f̂i with respect to CΥ22. On the other hand, according to
the numerical table in Stein [Stein 2004], we have

|NQ(f)/Q(L(f, 22))| =
113 · 17 · 1423

223 · 318 · 510 · 13 · 29 · 31 · 372 · 137 · 7481
.

This implies that the conjecture in Section 6 of [Katsurada 2008] is true in
this case.

We note that the ”if” part has been proved by Brown [Brown 2007] and
Katsurada [Katsurada 2008] independently under certain conditions.
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