

細径パイプ伝送路の両端に矩形振動子とロータを配 置した超音波モータの試作

メタデータ	言語: jpn
	出版者:日本音響学会
	公開日: 2012-10-02
	キーワード (Ja):
	キーワード (En):
	作成者: 平野, 達也, 田村, 英樹, 高野, 剛浩, 青柳, 学
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/1697

細径パイプ伝送路の両端に矩形振動子とロータを配 置した超音波モータの試作

その他(別言語等)	Prototype and estimation for an ultrasonic
のタイトル	motor using a transmission thin pipe with a
	stator and a rotor at the both ends.
著者	平野 達也,田村 英樹,高野 剛浩,青柳 学
雑誌名	日本音響学会研究発表会講演論文集
巻	2010年秋季
ページ	1235-1236
発行年	2010-09
URL	http://hdl.handle.net/10258/1697

細径パイプ伝送路の両端に矩形振動子と ロータを配置した超音波モータの試作*

☆平野 達也,田村 英樹,高野 剛浩,青柳 学[†]
(東北工業大学,[†]室蘭工業大学)

1. まえがき

細線やパイプを屈曲振動の伝送路とし、その 端部や内壁の振動を用いて超音波モータや粉 体輸送デバイスとする提案が成されている^[1-2]。 筆者らも直径1.2mmから5mm程度の金属パイプ 伝送路の一端で屈曲波を励振し、他端でロータ を回転させるモータについて報告してきた^[3-4]。こ れに対し本報告は直径0.5mm、長さ360mmとさら に細く長い伝送路とすることで、ある程度曲げた 状態でも、すなわち狭い場所への動力導入をよ り容易にするための超音波モータの構成につい て試作評価を行った。構造と周波数特性、回転 特性について示す。

2. 試作モータの構成

2.1. 伝送パイプおよび振動子

試作モータの構成概要をFig.1に示す。伝送路 は直径φ0.5mm、内径φ0.3mm、長さL=360mmの ステンレス製細径パイプであり、R=50mm程度の 曲げであれば問題なく復元する。この細径パイ プに直交する屈曲振動を与えて端点での回転 変位が生じるならば、ロータの孔にパイプ先端を 差し込み摩擦力を介してロータの回転が得られ る。目的とする回転変位を与えるためにここでは 角柱振動子の一次屈曲B₁モードとその同形縮 退B₁'モードを用いた。

Fig.2に角柱振動子の構造と接着セラミックスの 分極方向を示している。断面が5.0×5.0mm、長 さL=20mmのアルミブロックに、L=20mm、幅 W=5mm、厚さT=0.5mmの圧電セラミックスを4面 に接着している。対向する圧電板をバイモルフ 動作させて屈曲振動を得る。直交方向への駆動 を与える電気端子AとBを共振周波数で駆動す ることでそれぞれB₁とB₁'モードを励振できる。従 って端子A, Bを位相差90°で駆動して目的の回 転運動を得る。振動子のアルミブロックに細孔を あけ、そこにパイプを差し込み接着している。

この振動子はFig.3に示すアクリル製ホルダに よって固定される。振動子はホルダの穴に挿入 され、振動のノード点をネジにより4箇所固定され ている。ケース底部にはスポンジを差し込み振動 子を支えている。

2.2. ロータ構造

ロータは2種類のタイプを用意し実験を行った。 Fig.1に示すタイプAロータは予備実験に用いた。

Fig.1 Component of trial motor and vibration modes of square rod.

Silver electrode

Fig.2 Construction and wiring of vibrator.

*Prototype and estimation for an ultrasonic motor using a transmission thin pipe with a stator and a rotor at the both ends., By HIRANO Tatsuya, TAMURA Hideki, TAKANO Takehiro, AOYANAGI Manabu[†] (Tohoku Institute of Technology, [†]Muroran Institute of Technology)

Fig.4 Structure of type-B rotor and experimental setup for preload by restoring force of the line.

Fig.5 Input admittance characteristics.

このロータは直径φ10mm、厚さ2.4mmの円板と、 直径φ2.65mm、厚さ2.1mm、内径φ0.6mmの接 続部からなる。真鍮製でありロータの自重1.43g のみを予圧として用いた。このロータでは、位相 切り替えによる左右両方向回転を確認できた。し かし加圧が自重だけなので回転数を上げていく とロータの挙動が不安定になり正確なデータを 取るのが困難となった。

そこで回転特性を正確に測定するため、回転 軸をベアリングにより固定し、また回転数の測定 のためにコードホイール(外径 φ25 mm, 360pulse/rot)を使用したタイプBのロータを用意 した。Fig.4に示すようにロータのシャフト部は真 鍮製で直径φ3mm、長さL=13.7mmであり、伝送 パイプ差し込み部は内径φ0.6mm、深さは約 2.7mmである。パイプ伝送路は自然状態でたわ んでいて、これをロータシャフトに差し込む際に 変形する復元力を与圧としている。この復元力 はパイプ伝送路の先端で約2mNである。

タイプBのロータを使用し、パイプ伝送路とロー タの位置関係x-y-z-0-Φを精密ステージで調整す ると安定した回転特性が得られた。しかし現在ま で回転方向は一方向のみで、位相切り替えによ って左右方向の回転切り替えが得られるロータ 設置条件は見つけることができなかった。

3. 計測方法と測定結果

試作振動子の共振特性をFig.5に示す。これは 伝送路が取り付けられアクリルケースに挿入し、 ネジで4箇所を支持した状態、ただしロータは無 い条件である。A相、B相それぞれで駆動したモ

ードの共振周波数やQ値はおおよそ一致した。 Fig.6に示す測定装置を用いて、無負荷回転時の回転速度特性を計測した。駆動周波数 f=50.8kHzで入力電圧3Vから10Vまで変えて測定した結果をFig.7に示す。このときA,B相それぞれの入力電圧 $V_A \geq V_B$ は最大でも0.31Vの差で一致させた。しかし電力 $P_A \geq P_B$ には差が生じ、実験範囲で P_B が大きい傾向が見られた。入力電圧 $V_A=10V$ 、入力電流 $I_A=24.2$ mA、電力 $P_{A+B}=0.32$ Wのとき回転数は4600rpmで最大となった。

4. まとめ

自重タイプロータにより左右回転動作も確認で きたが、軸固定タイプロータでは一方向への回 転しか得られなかった。これはパイプ端とロータ が傾いて接触しているなどして突っつき駆動に なっていると予想される。また伝送パイプと一体 となった予圧構造も実用上重要となる。従って特 にロータとの接続部に関して構造検討を進める と共に、実負荷特性についても明らかにしていき たい。

参考文献

- [1] R. Carotenuto *et al.*, APPLIED PHYSICS LET-TERS, Vol.77, No.12, 2000-09.
- [2] T. Takano *et al.*, Jpn. J. Appl. Phys., Vol.30, Suppl. 30-1, pp. 200-202, 1991.
- [3]高野他:音講論2008年秋, pp.1301-1302.
- [4]高野他:音講論2008年秋, pp.1441-1442.