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Abstract—We apply a combined method of heuristic attribute
reduction and evaluation of relative reducts in rough set theory
to gene expression data analysis. Our method extracts as many
relative reducts as possible from gene expression data and select
the best relative reduct from a viewpoint of constructing useful
decision rules. As an experimental result, our method extracted
decision rules about a gene that has been identified as a novel
biomarker of human breast cancer in recent studies. This result
indicates a possibility of our method as a useful tool for gene
expression data analysis.

I. I NTRODUCTION

DNA microarray technology has enabled us to monitor
expression levels of thousands of genes simultaneously under
certain condition and has been yielded various applications in
the field of disease diagnosis [23], drug discovery [4] and
toxicological research [20]. Among them, cancer informat-
ics based on gene expression data is an important domain
which has promising prospects for both clinical treatment and
biomedical research. One of the key issues in this domain is to
discover biomarker genes for cancer diagnosis from massive
gene expression data using bioinformatics approaches called
a gene selection.

Typical gene selection approach is a statistical test such as
t-test and ANOVA [2]. This approach detects differentially
expressed genes between samples from different cells/tissues.
Most of the statistical tests assume that expression values of
each gene over the samples follow a prior probability distri-
bution; hence sufficient large number of samples is required
for obtaining statistically reliable results.

Rough set theory [15], [16] provides a theoretical basis of
set-theoretical approximation and rule generation from cate-
gorical data. Attribute reduction is one of the most important
and hot research topics in rough set theory as a basis of rule
generation by rough set theory and there have been many
proposals of heuristic algorithms to compute some candidates
of relative reducts (for example, see [3], [5], [7], [10], [11],
[22], [24]). Kudo and Murai proposed attribute reduction
algorithms to compute as many relative reducts as possible
from a decision table with numerous condition attributes [9].
They also proposed an evaluation criterion of relative reducts
that evaluates usefulness of relative reducts from a viewpoint
of decision rule generation [8].

In this paper, we introduce Kudo and Murai’s heuristic
attribute reduction algorithms [9] and a criterion of relative
reducts [8] to gene expression data analysis. We use these
algorithms and criterion to two gene expression datasets: breast
cancer [21] and leukemia [1] and discuss about the extracted
decision rules from these datasets and its biological meanings.
Experimental results indicate that the method used in this
paper can identify differentially expressed genes between
different classes in gene expression datasets and useful for
gene expression data analysis.

The rest of this paper is organized as follows. In Section II,
we review about gene expression datasets obtained by DNA
microarray experiments. In Section III, we introduce a heuris-
tic method of attribute reduction [9] and an evaluation criterion
of relative reducts [8] as methods we used in this paper for
generating decision rules from gene expression datasets. We
apply the methods to two gene expression datasets and discuss
the experimental results in Section IV, and concludes this
paper in Section V. In Appendix, we review Pawlak’s rough
set theory as the background of this paper.

II. GENE EXPRESSION DATA

Figure 1 illustrates a gene expression dataset obtained by
DNA microarray experiments. A single DNA microarray can
measure expression levels of thousands of genes simulta-
neously in cells/tissue under a certain condition (called a
sample). Each point on a DNA microarray indicates one kind
of a gene, and its intensity represents the expression level.
These intensities are converted into numerical data. In multiple
DNA microarray experiments, a gene expression dataset is
provided by the form of a matrix as shown in Fig. 1, in which
each row and each column correspond to a sample and a gene,
respectively, and each element is an expression value of a gene.

III. M ETHODS

Methods that we use in this paper to extract decision rules
from gene expression data based on rough set theory consist
of the following three parts:

1) Extraction of relative reducts from gene expression data.
2) Selection of relative reducts in accordance with an

evaluation criterion of relative reducts.
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Fig. 1. Gene expression dataset obtained by DNA microarray experiments

3) Construction of decision rules from the selected relative
reducts.

Below, as the methods we use in this paper, we introduce a
heuristic attribute reduction algorithm for generating as many
relative reducts as possible [9] and a criterion for evaluating
usefulness of relative reducts [8]. Note that the details of rough
set theory as the background of these algorithms and criterion
are in Appendix.

A. Heuristic Algorithm for Attribute Reduction Using Reduced
Decision Tables

In this section, we review a heuristic algorithm to generate
as many relative reducts as possible from decision tables
with numerous condition attributes proposed by Kudo and
Murai [9].

This heuristic algorithm is based on the idea of reduced
decision tables that preserve the discernibility of objects that
belong to mutually different decision classes in the given
decision table. Formally, a reduced decision table of a given
decision table is defined as follows.

Definition 1: Let DT = (U,C, d) be a decision table. A
reduced decision table ofDT is the following triple:

RDT = (U,C ′, d), (1)

where U and d are identical toDT . The set of condition
attributesC ′ satisfies the following conditions:

1) C ′ ⊆ C.
2) For any objectsxi and xj that belong to different

decision classes, ifxi and xj are discernible byRC ,
xi andxj are also discernible byRC′ .

Algorithm 1 below generates a reduced decision table of
the given decision table. In Algorithm 1, condition attributes
are selected fromC at random based on the parameter of base
sizeb that decides the minimum number of condition attributes
of the reduced decision table, and supply some attributes in
elements of the discernibility matrix to preserve discernibility
of objects in the given decision table.

Note that, for any decision table and any reduced decision
table, a set of condition attributesA is a relative reduct of
the reduced decision table if and only ifA is also a relative
reduct of the given decision table [9]. Thus generating as many
reduced decision tables and those relative reducts as possible
from the given decision table, we can extract many relative
reducts from the given decision table. The following algorithm

Algorithm 1 dtr: decision table reduction algorithm

Input: decisiontableDT = (U,C, d),
discernibility matrixDM of DT ,
base sizeb

Output: reduced decision table(U,C ′, d)
1: Select b attributes a1, · · · , ab from C at random by

sampling without replacement
2: C ′ = {a1, · · · , ab}
3: for all δij ∈ DM such thati > j do
4: if δij ̸= ∅ and δij ∩ C ′ = ∅ then
5: Selectc ∈ δij at random
6: C ′ = C ′ ∪ {c}
7: end if
8: end for
9: return (U,C ′, d)

Algorithm 2 below generates relative reducts of the given
decision table based on generating reduced decision tables
by Algorithm 1 and switching exhaustive attribute reduction
and heuristic attribute reduction according to the number of
condition attributes of each reduced decision table.

Algorithm 2 Exhaustive / heuristic attribute reduction
Input: decisiontableDT = (U,C, d),

base sizeb, size limit L, number of iterationI
Output: set of candidates of relative reductRED

1: RED = ∅
2: DM ← the discernibility matrix ofDT
3: if |C| ≤ L then
4: RED ← result of exhaustive attribute reduction from

DT
5: else
6: for i = 1 to I do
7: RDT = dtr(DT,DM, b)
8: if |C ′| ≤ L then
9: S ← result of exhaustive attribute reduction from

RDT
10: else
11: S ← result of heuristic attribute reduction from

RDT
12: end if
13: RED = RED ∪ S
14: end for
15: end if
16: return RED

In Algorithm 2, the size limit L is the threshold for
switching attribute reduction methods and if the number of
condition attributes of a decision table is smaller thanL,
Algorithm 2 tries to generate the set of all relative reducts
of the decision table. Thus, we need to set the thresholdL
appropriately. If the number of condition attributes of the given
decision tableDT is grater than the thresholdL, Algorithm 2
repeatsI times of generating a reduced decision tableRDT
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andattribute reduction fromRDT by selecting the exhaustive
method or the heuristic method, and generate the setRED of
relative reducts. Note thatRED may contain some output with
redundancy if the result of the heuristic attribute reduction is
not guaranteed to generate relative reducts.

B. An evaluation criterion of relative reducts

From the viewpoint of data analysis using rough set theory,
Kudo and Murai [8] proposed an evaluation criterion of rela-
tive reducts for extracting useful decision rules. This criterion
evaluates usefulness of each relative reduct by average of
coverage of decision rules generated from the relative reduct.
Let DT = (U,C, d) be a decision table. For any non-empty
set B ⊆ C of condition attributes, the average of coverage
ACov(B) of all decision rules generated fromB is calculated
as follows [8]:

ACov(B) =
|D|∑

[x]B∈U/RB

|{Dj ∈ D | [x]B ∩ Dj ̸= ∅}|
(2)

=
Num. of decision classes

Num. of rules generated fromB
, (3)

where U/RB is the quotient set ofU by the equivalence
relation RB and |X| is the cardinality of the setX. This
equation indicates thatACov(B) depends only on the number
of decision rules because the number of decision classes is
fixed in the given decision table.

For each relative reductE ⊆ C of the given decision
table, the average of coverageACov(E) reflects roughness
of partition U/RE by equivalent classes based onRE . It is
guaranteed that, for any relative reductsE, F ⊆ C, if the
partition U/RE is rougher than the partitionU/RF , then
ACov(E) ≥ ACov(F ) holds and this property provides a
theoretical basis for using Eq. (2) as an evaluation criterion
of relative reducts [8].

IV. EXPERIMENTS AND DISCUSSION

A. Datasets and preprocessing

To evaluate the usefulness of our method, we use two
gene expression datasets: breast cancer [21] and leukemia [1].
Both of them are two-class dataset. The leukemia dataset
is composed of gene expression values for 12,582 genes
in 24 Acute Lymphocytic Leukemia (ALL) samples and 28
Acute Myeloid Leukemia (AML) samples. The breast cancer
dataset includes gene expression values for 7,129 genes in
25 positive and 24 negative samples. For each dataset, the
expression values from each gene are linearly normalized to
have mean 0 and variance 1. Subsequently, they are discretized
to six bins (−3,−2,−1, 1, 2, 3) by uniformly dividing the
difference between the maximum and the minimum in the
normalized data and one bin that represents lack of gene
expression values. Discretized positive values represent that
the genes with positive values are up-regulated, while negative
values represent that genes are down-regulated.

B. Procedures and results of the experiments

In the experiments, firstly we used the heuristic attribute
reduction algorithms [9] to each dataset with the following
parameters; the base sizeb = 10, the size limitationL = 25,
and the number of iterationsI = 100 and generated relative
reducts of each dataset. Next, for each dataset, we selected the
best relative reduct of each dataset in the sense of the eval-
uation criterion of relative reducts [8]. Finally, we extracted
decision rules from each dataset by the following three steps:
1) generating all decision rules by the best relative reduct
of each dataset, 2) removing decision rules that contain null
values in the antecedents, and 3) combining the generated
decision rules as long as possible by interpreting the meanings
of decision rules.

As the results, we got the following decision rules for each
dataset.

The breast cancer dataset:

1) (CRIP1≥ −2) → (class= Positive),
Certainty = 0.76, Coverage = 0.64.

2) (CRIP1= −3) → (class= Negative),
Certainty = 0.95, Coverage = 0.79.

The leukemia dataset:

3) (POU2AF1≥ −2) → (class= ALL ),
Certainty = 1.0, Coverage = 0.88.

4) (POU2AF1= −3) → (class= AML ),
Certainty = 1.0, Coverage = 1.0.

C. Extracted rules and their biological meanings

Below, these extracted rules are evaluated on the basis of
known biological findings. To this end, we investigate the
functions of genes in the rules by reference to a genetic
disease database (OMIM) [14] and a protein sequence database
(Swiss-Prot) [18].

For breast cancer dataset, the samples can be discriminated
into a true class with an accuracy of 95 percent according
to the expression level of Cystein-rich intestinal protein 1
(CRIP1). CRIP1 is a transcription factor gene that induces
apoptosis in cancer cells. Interestingly, this gene has been
identified as a novel biomarker of human breast cancer in
recent studies [13], [12]. In the extracted rule, we can see that
CRIP1expression is more up-regulated in the positive samples.
Indeed, this is consistent with the recent findings by Ma et
al. [13] thatCRIP1 in human breast cancer was overexpressed
compared to normal breast tissue by in situ experiments.

For leukemia dataset, all samples can be perfectly dis-
criminated by the expression level of POU class 2 associ-
ating factor 1 (POU2AF1). POU2AF1 is known as a gene
responsible for leukocyte differentiation. In Swiss-Prot, we can
see the description that “a chromosomal aberration involving
POU2AF1 may be a cause of a form of B-cell leukemia.”
Namely, it suggests that this gene can be inactivated/down-
regulated in lymphocytic leukemia such as ALL. In contrast,
it should be noted thatPOU2AF1in the extracted rule shows
weaker expression in AML than ALL. At present, detailed role
of POU2AF1 in AML has not been revealed [6] whereas we
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expect that biological relevance will be unveiled by experi-
mental biologists in the near future.

V. CONCLUSION

In this paper, we introduced a combine method of heuristic
attribute reduction and evaluation of relative reducts in rough
set theory to gene expression data analysis. Our method is
based on a heuristic attribute reduction algorithm for generat-
ing as many relative reducts as possible [9] and a criterion for
evaluating usefulness of relative reducts [8]. We applied our
method to two gene expression datasets: breast cancer [21] and
leukemia [1]. Experimental results showed that our method
can identify differentially expressed genes between different
classes in gene expression datasets. For the breast cancer
dataset, our method extracted decision rules about a gene
that has been identified as a novel biomarker of human
breast cancer in recent studies [13], [12]. For the leukemia
dataset, decision rules about a gene responsible for leukocyte
differentiation were extracted. Thus, these results indicate a
possibility of our method as a useful tool for gene expression
data analysis.

For future issues, we aim to apply our method to various
gene expression datasets and compare our method with other
gene expression analysis methods.

APPENDIX

As the theoretical background of this paper, we review
the rough set theory, in particular, decision tables, relative
reducts, and discernibility matrices. Note that the contents of
this section are based on [9], [17].

A. Decision table and lower and upper approximations

Generally, data analysis subjects by rough sets are described
by decision tables. Formally, a decision table is characterized
by the following triple:

DT = (U,C, d), (4)

whereU is a finite and nonempty set of objects,C is a finite
and nonempty set of condition attributes, andd is a decision
attribute such thatd ̸∈ C. Each attributea ∈ C ∪ {d} is a
function a : U → V , whereV is a set of values of attributes.

Indiscernibility relations based on subsets of attributes pro-
vide classifications of objects in decision tables. For any set
of attributesA ⊆ C ∪ {d}, the indiscernibility relationRA is
the following binary relation onU :

RA = {(x, y) | a(x) = a(y),∀a ∈ A}. (5)

If a pair (x, y) is in RA, then two objectsx and y are
indiscernible with respect to all attributes inA. It is well-
known that any indiscernibility relation is an equivalence
relation and equivalence classes by an equivalence relation
consist of a partition on the domain of the equivalence relation.
In particular, the indiscernibility relationRd based on the
decision attributed provides a partitionD = {D1, · · · , Dk},
and each elementDi ∈ D is called a decision class.

Classifying objects with respect to condition attributes
provides set-theoretical approximation of decision classes.
Formally, for any setB ⊆ C of condition attributes and any
decision classDi ∈ D, we let:

B(Di) = {x ∈ U | [x]B ⊆ Di}, (6)

where the set[x]B is the equivalence class ofx by the
indiscernibility relationRB . The setB(Di) is called the lower
approximation of the decision classDi with respect toB.

B. Relative reducts and discernibility matrices

By checking values of all condition attributes, we can
classify all discernible objects of the given decision table to
the corresponding decision classes. However, not all condition
attributes may need to be checked in the sense that some
condition attributes are essential to classify and the other
attributes are redundant. A minimal set of condition attributes
to classify all discernible objects to correct decision classes is
called a relative reduct of the decision table.

Formally, a setA ⊆ C is called a relative reduct of
the decision tableDT if the set A satisfies the following
conditions:

1) POSA(D) = POSC(D).
2) POSB(D) ̸= POSC(D) for any proper subsetB ⊂ A,

wherePOSX(D) def=
⋃

Di∈D X(Di) is a set of objects that
are correctly classified to those decision classes by checking
all attributes inX ⊆ C and called the positive region ofD
by X. Note that, in general, there are plural relative reducts
in a decision table. The common part of all relative reducts is
called the core of the decision table.

The discernibility matrix [19] is one of the most popular
methods to compute all relative reducts in the decision table.
Let DT be a decision table with|U | objects, where|U | is the
cardinality of U . The discernibility matrixDM of DT is a
symmetric|U |×|U | matrix whose element ati-th row andj-th
column is the following set of condition attributes to discern
between two objectsxi andxj :

δij =



{a ∈ C | a(xi) ̸= a(xj)}, if d(xi) ̸= d(xj) and
{xi, xj} ∩ POSC(D) ̸= ∅,

∅, otherwise.
(7)

Each elementa ∈ δij represents thatxi andxj are discernible
by checking the value ofa.

C. Certainty and coverage of decision rules

Certainty and coverage are well-known criteria of decision
rules for evaluating accuracy and relevance of decision rules,
respectively. Formally, the certainty and the coverage of a
decision rule constructed from a setB ⊆ C of condition
attributes, the decision attributed, and an objectx ∈ U are
defined by

Certainty =
|[x]B ∩ Di|

|[x]B |
, (8)

Coverage =
|[x]B ∩ Di|

|Di|
, (9)
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whereDi ∈ D is the decision class such thatx ∈ Di.
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