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Abstract—We apply a combined method of heuristic attribute In this paper, we introduce Kudo and Murai's heuristic

reduction and evaluation of relative reducts in rough set theory attribute reduction algorithms [9] and a criterion of relative
to gene expression data analysis. Our method extracts as many e qycts [8] to gene expression data analysis. We use these
relative reducts as possible from gene expression data and select . L . j
the best relative reduct from a viewpoint of constructing useful algorithms and criterion t_o two gene gxpressmn datasets: breast
decision rules. As an experimental result, our method extracted ¢ancer [21] and leukemia [1] and discuss about the extracted
decision rules about a gene that has been identified as a noveldecision rules from these datasets and its biological meanings.
biomarker of human breast cancer in recent studies. This result Experimental results indicate that the method used in this
|nd|cate_s a possibility c_Jf our method as a useful tool for gene paper can identify differentially expressed genes between
expression data analysis. . . .
different classes in gene expression datasets and useful for

gene expression data analysis.

The rest of this paper is organized as follows. In Section Il,

DNA microarray technology has enabled us to monitage review about gene expression datasets obtained by DNA
expression levels of thousands of genes simultaneously unggtroarray experiments. In Section Ill, we introduce a heuris-
certain condition and has been yielded various applicationstie method of attribute reduction [9] and an evaluation criterion
the field of disease diagnosis [23], drug discovery [4] ansf relative reducts [8] as methods we used in this paper for
toxicological research [20]. Among them, cancer informagenerating decision rules from gene expression datasets. We
ics based on gene expression data is an important domagply the methods to two gene expression datasets and discuss
which has promising prospects for both clinical treatment amile experimental results in Section IV, and concludes this
biomedical research. One of the key issues in this domain isggper in Section V. In Appendix, we review Pawlak’s rough
discover biomarker genes for cancer diagnosis from massgt theory as the background of this paper.
gene expression data using bioinformatics approaches called
a gene selection. [I. GENE EXPRESSION DATA

Typical gene selection approach is a statistical test such a
t-test and ANOVA [2]. This approach detgcts d|ﬁerent!all NA microarray experiments. A single DNA microarray can
expressed genes between samples from different cells/tiss

Most of the statistical tests assume that expression values asure expression levels of thousands of genes simulta-
P g usly in cells/tissue under a certain condition (called a

each gene over the samples follow a prior probability distrg— mple). Each point on a DNA microarray indicates one kind

bution; hence sufficient large number of samples is requirgt! o gene, and its intensity represents the expression level.

for obtaining statistically reliable results. These intensities are converted into numerical data. In multiple

Rough set theory [15], [16] provides a theoretical basis §f\a microarray experiments, a gene expression dataset is
set-theoretical approximation and rule generation from cagr—

ical d Attrib quction i t th . ovided by the form of a matrix as shown in Fig. 1, in which
gorical data. Attri utg rec uction Is one of the most |m'p0rta ch row and each column correspond to a sample and a gene,
and hot research topics in rough set theory as a basis of r

Epectively, and each element is an expression value of a gene.
generation by rough set theory and there have been manyp 4 P g

proposals of heuristic algorithms to compute some candidates 1. M ETHODS

of relative reducts (for example, see [3], [5], [7], [10], [11],

[22], [24]). Kudo and Murai proposed attribute reduction Methods that we use in this paper to extract decision rules
algorithms to compute as many relative reducts as possifigm gene expression data based on rough set theory consist
from a decision table with numerous condition attributes [99f the following three parts:

They also proposed an evaluation criterion of relative reductsl) Extraction of relative reducts from gene expression data.
that evaluates usefulness of relative reducts from a viewpoint2) Selection of relative reducts in accordance with an
of decision rule generation [8]. evaluation criterion of relative reducts.

I. INTRODUCTION

%—igure 1 illustrates a gene expression dataset obtained by
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Microarray

Algorithm 1 dtr: decision table reduction algorithm

g = Input: decisiontable DT = (U, C, d),

2] Gt I el e discernibility matrix DM of DT,

© 42 82 | 638 § base sizé

. sl sl 8 Output: reduced decision tablg/, C’, d)

S 1: Select b attributes ay,--- ,a, from C' at random by
£l il I ol B sampling without replacement

E Gene expression dataset 2 O = {ab L. 7ab}

3: for all ¢;; € DM such thati > j do
Fig. 1. Gene expression dataset obtained by DNA microarray experiments. if 5ij £ ¢ and 5ij NC’ = ( then

5: Selectc € ¢;; at random
. . . B C'=C"U{c
3) Construction of decision rules from the selected relat|v97_ end if fe}
reducts. 8: end for

Below, as the methods we use in this paper, we introduce @ return (U, ¢, d)
heuristic attribute reduction algorithm for generating as many
relative reducts as possible [9] and a criterion for evaluating
usefulness of relative reducts [8]. Note that the details of rough

set theory as the background of these algorithms and criterioria‘_lg_Orithm 2 below generates re_lative reducts of _the given
are in Appendix. decision table based on generating reduced decision tables

by Algorithm 1 and switching exhaustive attribute reduction

A. Heuristic Algorithm for Attribute Reduction Using Reducednd heuristic attribute reduction according to the number of
Decision Tables condition attributes of each reduced decision table.

In this section, we review a heuristic algorithm to generate
as many relative reducts as possible from decision tabigorithm 2 Exhaustive / heuristic attribute reduction
with numerous condition attributes proposed by Kudo arddput: decisiontable DT = (U, C, d),
Murai [9]. base sizé, size limit L, number of iteration/

This heuristic algorithm is based on the idea of reducddutput: set of candidates of relative reduBtz D
decision tables that preserve the discernibility of objects that: RED = ()
belong to mutually different decision classes in the giverz: DM «— the discernibility matrix ofDT
decision table. Formally, a reduced decision table of a gives: if |C| < L then

decision table is defined as follows. 4. RED « result of exhaustive attribute reduction from
Definition 1: Let DT = (U,C,d) be a decision table. A DT
reduced decision table dP7 is the following triple: 5: else
RDT — , 6: fori=1toI do
= U, d), @ 7 RDT =dtr(DT, DM, b)
where U and d are identical toDT. The set of condition 8: if |C'] < L then
attributesC’ satisfies the following conditions: 9: S « result of exhaustive attribute reduction from

1) ¢’ CcC. RDT

2) For any objectsz; and z; that belong to different else o _ _
decision classes, if; and'a:j are discernible byR, 11: S « result of heuristic attribute reduction from
x; andz; are also discernible byc. RDT

Algorithm 1 below generates a reduced decision table end if
. L . - i RED = REDUS
the given decision table. In Algorithm 1, condition attribute
end for

are selected fromd' at random based on the parameter of bas .

. . . ., . : end if
sizeb that decides the minimum number of condition attributes return RED
of the reduced decision table, and supply some attributesin
elements of the discernibility matrix to preserve discernibility
of objects in the given decision table. In Algorithm 2, the size limitL is the threshold for

Note that, for any decision table and any reduced decisiewitching attribute reduction methods and if the number of
table, a set of condition attributed is a relative reduct of condition attributes of a decision table is smaller thAn
the reduced decision table if and only Af is also a relative Algorithm 2 tries to generate the set of all relative reducts
reduct of the given decision table [9]. Thus generating as maaofythe decision table. Thus, we need to set the thresliold
reduced decision tables and those relative reducts as possédppropriately. If the number of condition attributes of the given
from the given decision table, we can extract many relatidecision tableDT is grater than the thresholf, Algorithm 2
reducts from the given decision table. The following algorithmepeats! times of generating a reduced decision taRlBT

VO
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andattribute reduction fronRDT by selecting the exhaustiveB. Procedures and results of the experiments
method or the heuristic method, and generate thei#eb of | the experiments, firstly we used the heuristic attribute
relative reducts. Note th@ £ may contain some output with e qction algorithms [9] to each dataset with the following
redundancy if the result of the heuristic attribute reduction arameters; the base size- 10, the size limitationL = 25,
not guaranteed to generate relative reducts. and the number of iterations = 100 and generated relative
reducts of each dataset. Next, for each dataset, we selected the
best relative reduct of each dataset in the sense of the eval-

From the viewpoint of data analysis using rough set theomyation criterion of relative reducts [8]. Finally, we extracted
Kudo and Murai [8] proposed an evaluation criterion of reladecision rules from each dataset by the following three steps:
tive reducts for extracting useful decision rules. This criterioh) generating all decision rules by the best relative reduct
evaluates usefulness of each relative reduct by averageobfach dataset, 2) removing decision rules that contain null
coverage of decision rules generated from the relative redu@lues in the antecedents, and 3) combining the generated
Let DT = (U,C,d) be a decision table. For any non-emptyecision rules as long as possible by interpreting the meanings
set B C C of condition attributes, the average of coveragef decision rules.
ACov(B) of all decision rules generated frof is calculated  As the results, we got the following decision rules for each
as follows [8]: dataset.

The breast cancer dataset:

B. An evaluation criterion of relative reducts

ACov(B) = DI (2 1) (CRIP1> —2) — (class= Positive)
Z {D; € D|[z]z N D; # 0} Certainty = 0.76, Coverage = 0.64.
[z]5€U/RB o 2) (CRIP1= —3) — (class= Negative,
_ Num. of decision classes 3) Certainty = 0.95, Coverage = 0.79.
Num. of rules generated from’ The leukemia dataset:

where U/Rp is the quotient set of/ by the equivalence 3) (POU2AF1> —2) — (class= ALL ),
relation Rz and | X| is the cardinality of the sefX. This Certainty = 1.0, Coverage = 0.88.
equation indicates thatCov(B) depends only on the number 4) (POU2AFl= —3) — (class= AML ),
of decision rules because the number of decision classes is Certainty = 1.0, Coverage = 1.0.
fixed in the given decision table.

For each relative reductk C C of the given decision
table, the average of coveragéCov(FE) reflects roughness Below, these extracted rules are evaluated on the basis of
of partition U/ R by equivalent classes based &. It is known biological findings. To this end, we investigate the
guaranteed that, for any relative redudisF C C, if the functions of genes in the rules by reference to a genetic
partition U/Ry is rougher than the partitioi// Ry, then disease database (OMIM)[14] and a protein sequence database
ACou(E) > ACou(F) holds and this property provides a(Swiss-Prot) [18].
theoretical basis for using Eq. (2) as an evaluation criterionFor breast cancer dataset, the samples can be discriminated

C. Extracted rules and their biological meanings

of relative reducts [8]. into a true class with an accuracy of 95 percent according
to the expression level of Cystein-rich intestinal protein 1
IV. EXPERIMENTS AND DISCUSSION (CRIP1). CRIP1is a transcription factor gene that induces

apoptosis in cancer cells. Interestingly, this gene has been
identified as a novel biomarker of human breast cancer in
To evaluate the usefulness of our method, we use twecent studies [13], [12]. In the extracted rule, we can see that
gene expression datasets: breast cancer [21] and leukemia@RIPlexpression is more up-regulated in the positive samples.
Both of them are two-class dataset. The leukemia databedeed, this is consistent with the recent findings by Ma et
is composed of gene expression values for 12,582 gems[13] thatCRIP1lin human breast cancer was overexpressed
in 24 Acute Lymphocytic Leukemia (ALL) samples and 2&ompared to normal breast tissue by in situ experiments.
Acute Myeloid Leukemia (AML) samples. The breast cancer For leukemia dataset, all samples can be perfectly dis-
dataset includes gene expression values for 7,129 genesriminated by the expression level of POU class 2 associ-
25 positive and 24 negative samples. For each dataset, dtiag factor 1 POU2AF). POU2AFlis known as a gene
expression values from each gene are linearly normalizedrésponsible for leukocyte differentiation. In Swiss-Prot, we can
have mean 0 and variance 1. Subsequently, they are discretizeel the description that “a chromosomal aberration involving
to six bins (—3,—-2,—1,1,2,3) by uniformly dividing the POU2AF1may be a cause of a form of B-cell leukemia.”
difference between the maximum and the minimum in tidamely, it suggests that this gene can be inactivated/down-
normalized data and one bin that represents lack of gemgulated in lymphocytic leukemia such as ALL. In contrast,
expression values. Discretized positive values represent thathould be noted tha®OU2AF1in the extracted rule shows
the genes with positive values are up-regulated, while negativeaker expression in AML than ALL. At present, detailed role
values represent that genes are down-regulated. of POU2AF1in AML has not been revealed [6] whereas we

A. Datasets and preprocessing
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expect that biological relevance will be unveiled by experi- Classifying objects with respect to condition attributes

mental biologists in the near future. provides set-theoretical approximation of decision classes.
Formally, for any setB C C of condition attributes and any
V. CONCLUSION decision clasD; € D, we let:
In this paper, we introduced a combine method of heuristic B(D;) = {zxeU|lz]lsz C D}, (6)

attribute reduction and evaluation of relative reducts in rough ) .

set theory to gene expression data analysis. Our methodVRere the setiz]p is the equivalence class of by the
based on a heuristic attribute reduction algorithm for generddiscemibility relation ;. The setB(D;) is called the lower
ing as many relative reducts as possible [9] and a criterion f@PProximation of the decision clag$; with respect toB.

evaluating usefulness of relative reducts [8]. We applied oBr Relative reducts and discernibility matrices
method to two gene expression datasets: breast cancer [21] angl, checking values of all condition attributes, we can

leukemia [1]. Experimental results showed that our methaghqqin, 411 discernible objects of the given decision table to
can identify differentially expressed genes between differepe corresponding decision classes. However, not all condition
classes in gene expression datasets. For the breast cagfffhytes may need to be checked in the sense that some
dataset, our method extracted decision rules about a 9@BRgition attributes are essential to classify and the other
that has been identified as a novel biomarker of humagintes are redundant. A minimal set of condition attributes

breast cancer in recent studies [13], [12]. For the leukemi@ ¢|assify all discernible objects to correct decision classes is
dataset, decision rules about a gene responsible for leukogyfieq a relative reduct of the decision table.
differentiation were extracted. Thus, these results indicate 3 ormally, a setA C C is called a relative reduct of

possibility of our method as a useful tool for gene expressi@he gecision tableDT if the set A satisfies the following
data analysis. conditions:
For future issues, we aim to apply our method to various 1) POS\(D) = POS:(D).

gene expression datasets and compare our method with othezr) POS;(D) # POS-(D) for any proper subseB ¢ A

[ lysi thods.
gene expression analysis methods where POSx (D) dof Up,ep X(D;) is a set of objects that

APPENDIX are correctly classified to those decision classes by checking

As the theoretical backaround of this paper. we re .eall attributes inX C C and called the positive region @
: grou IS paper, w VIERY X, Note that, in general, there are plural relative reducts

the rough set.theory, N paruc;ular, decision tables, r(alat'\llr%/a decision table. The common part of all relative reducts is

reducts, and discernibility matrices. Note that the contents é)g\lled the core of the decision table

this section are based on [9], [17]. The discernibility matrix [19] is one of the most popular

methods to compute all relative reducts in the decision table.
) , Let DT be a decision table with/| objects, whereU| is the

Generally, data analysis subjects by rough sets are descripggyinality of 7. The discernibility matrixDM of DT is a

by decision tables. Formally, a decision table is characteriz%metricw‘ » |U| matrix whose element ath row andj-th
by the following triple: column is the following set of condition attributes to discern

A. Decision table and lower and upper approximations

DT = (U,C, d) 4) between two objects; andz;:
0ii =
whereU is a finite and nonempty set of objects,is a finite ; C _ 4 it d(z:) = d(z.) and
and nonempty set of condition attributes, ahis a decision la€ Clal(z:) # alz;)}, {x_(?)}ﬁ P((gjjjs)g(D) )
attribute such thatl ¢ C. Each attributes € C U {d} is a 0 otherwise ’
functiona : U — V, whereV is a set of values of attributes. ’ @

vide classifications of objects in decision tables. For any 38} checking the value of.

of attributesA C C U {d}, the indiscernibility relationR 4 is

the following binary relation ori/: C. Certainty and coverage of decision rules

Certainty and coverage are well-known criteria of decision
Ra={(z,9) | a(z) = a(y),Va € A}. (5) rules for evaluating accuracy and relevance of decision rules,
: L . respectively. Formally, the certainty and the coverage of a
If a pair is in , then two objectsz and y are - =
pair (z,y) Ra J Y decision rule constructed from a s& C C of condition

indiscernible with respect to all attributes ia. It is well- ! L . :
known that any indiscernibility relation is an equivalenc%tmbmes’ the decision attributé and an object: € U are

relation and equivalence classes by an equivalence relat o'ﬁmed by

consist of a partition on the domain of the equivalence relation. Certainty — |[z]5 N Di @)
In particular, the indiscernibility relation?; based on the ]|

decision attributel provides a partitiorD = {D;,--- , Dy}, [[z]s N D]

and each elemenD; € D is called a decision class. Coverage = |D;| ©)
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where D; € D is the decision class such thate D;. [24] J. Zhang, J. Wang, D. Li, H. He, and J. Sun, A New Heuristic Reduct
Algorithm Based on Rough Sets Theoifyroc. of WAIM2003, LNCS
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