斜対称圧電セラミック平板振動子の縦1次-屈曲2次結合振動を利用する超音波モータ

東北工業大学 ○高野剛浩, 田村英樹, 室蘭工業大学 青柳学, 山形大学 富川義朗

Study on ultrasonic motor using a piezoelectric plate vibrating in longitudinal 1st and flexural 2nd coupling modes Tohoku Institute of Tech. Takehiro TAKANO, Hideki TAMURA

Muroran Institute of Tech. Manabu AOYAGI, Yamagata Univ. Yoshiro TOMIKAWA

Ultrasonic motors using a piezoelectric ceramic vibrator with diagonally symmetric form were proposed in this paper. The 1st longitudinal and the 2nd flexural modes in a diagonally symmetric form plate are coupled in the vibrator its size ratio about W/L=0.26 and 0.65 (W:vibrator width, L:vibrator length).

In this paper, we performed a few experiments using the vibrator with the ratio in 0.65. That is, FEM simulation results of two vibration modes and resonant frequencies of the vibrator and a construction and revolution characterrustics of a trial motor are shown.

1. はじめに

平板振動子の縦1次モード(L1モード)と屈曲2次モ ード(F2モード)の共振周波数は、その辺比(W/L、/W: 振動子の幅、L:振動子の長さ)が0.25と0.65 近傍で縮 退(一致)することが知られており、これらの辺比を持つ 振動子を利用した超音波モータが種々実用に供されてい る。一方平板振動子を斜対称とすることにより、これらの 辺比ではL1モードとF2モードは結合し、両モードの共 振周波数は縮退することはなく、これらの辺比近傍で近づ き、そして離れることになる。これらの結合領域では、2 つのモードはそれぞれ縦振動成分と屈曲振動成分を含む ので、駆動力の取り出し方を工夫することにより単相駆動 型の超音波モータを構成できる。

筆者らは、辺比 W/L=0.25 の斜対称振動子を用いた超音 波モータについて構造や特性を報告してきた。すなわち斜 対称の度合いによる振動子の特性、結合モードの振動変位、 モータ構造・特性などを検討し、この種モータが単相駆動 でモードの切り替え(駆動周波数の切り替え)によって両 方向回転の超音波モータが実現できることを示した。

本報告では、W/L=0.6 の斜対称振動子を用いる超音波 モータについて検討を加えている。最初に斜対称角が5° の振動子について、各モードの振動子としての特性を調べ、 次に各辺の変位の測定から W/L=0.25 の振動子の場合と 同様にモードの切り替えによって正逆回転の特性が得ら れることを示した。最後にモータを試作し、その特性の一 例を示している。

2. 振動モードと動作原理

Fig.1 に、平板振動子の長さ L を 20 mm一定として、幅 を変えたときの縦振動 1 次モードと屈曲 2 次モードの共 振周波数を示している。すなわち W/L=0.25、W/L=0.65 近傍で両モードは縮退し、この辺比で種々の形式の超音波 モータが実用化されている。一方 Fig.2 に示すように平板 振動子を斜対称にすると、これら 2 つのモードは結合する ために縮退することなく、Fig.3に示すように接近し離れ る。Fig.3はFig.1のS点近傍の変化を示したもので、図 中に示すようにW/L<0.65では共振周波数の低いモード (Lower-mode)は縦成分が強く、高いモード(Uppermode)では屈曲成分が強いモードになる。W/L>0.65で はこの関係が逆になっていることが分かる。

Fig.1 Resonance frequency vs side ratio of vibrator.[1]

Fig.2 Diagonally symmetric vibrator with the side ratio W/L=0.6.

Fig.3 Resonance frequencies of diagonally symmetric vibrator near the side ratio W/L=0.6

Fig.2 に示す振動子が実験で使用した振動子である。長 さ L=20mm、幅 W=12mm,厚さ t=3mm のセラミック単 板で、実際には同図に示すようにロータとの接触部になる 斜辺部に、幅方向の変位拡大を兼ねて、突起のあるアルミ ナを接着している。Fig.4 に両モードの振動モードを示し ている。これら 2 つのモードがそれぞれ縦振動、屈曲振動 成分を含んでいる様子が分かる。またこの位相で Lower-mode と Upper-mode では、幅方向の振動速度が 逆になっており、この点にロータを押し付ければ、各モー ドに対応して正逆回転のモータが構成できることが分か る。Fig.5 には、振動子の長辺部の幅方向の振動速度の測 定値を示している。Fig.4 のシミュレーション結果と良く 対応している。

3. 動作原理と試作モータの特性

モータとしての駆動力はアルミナ先端(Fig.2のA点) にロータを押し付けて取り出している。この点ではFig.6 に示すように 2 つのモードとも縦成分と幅方向の変位を 含み、且つ Lower-mode と Upper-mode ではその組み合 わせが逆になっているので、モードの切り替え(周波数の 切り替え)によって正逆回転のモータが構成できる。

Fig.6 に試作モータの写真を示している。振動子は屈曲 振動のノード付近を支持し、この冶具全体をロータに加圧 する構造となっている。ロータは直径 6 mm φ の鋼製のシャ フトを用いた。Fig.7 は周波数を変えたときの回転特性を 示したもので、それぞれのモードに対応して正逆回転の特 性が得られている。 無負荷の場合の回転数には、 Lower-mode と Upper-mod にはそれほどの差は見られな い。また Fig.8 は Lower-mode の負荷特性の一例である。 これらの特性は、突起形状等が大きな影響を受けるので、 Upper-mode の特性と併せて今後検討したい

4. あとがき

振動子を斜対称とすることによって生ずる、縦振動と屈曲振動の結合モードを利用した超音波モータの試作例を示した。ここで示した辺比 W/L が 0.6 を持つ振動子は、W/L=0.25 の振動子に対して、電気的な入力や機械的な強度などで有利である。今後モータ構造を含めて検討を加え、この構成の特徴を生かしたモータを実現したい。なお上記のシミュレーションには COMSOL Multiphysics V4.0aを使用している。

参考文献

[1] 福永他; 2008年度精密工学会学術講論集, No.L34 (2008-10).

[2] 青柳他;信学会論文誌, Vol.J78-C-I, pp.560-566 (1995-11).

[3] T.Takano et al.; Proc. 19th ICA, No.ult-07-09 (2007-09).

- [4] 高野他; 第21回「電磁力関連のダイナミクス」講論集, (2009-5).
- [5] 高野他;電子情報通信学会,信学技報,US2009-41 (2009-9).
- [6] 大渕他; H22 年東北若手発表会講演資料, YS-8-B6 (2010-2).

(a) Lower-mode (b) Upper-mode Fig.4 Simulation results of the two vibration modes.

Fig.6 Photograph of trial motor.

Driving frequency [kHz] Fig.7 Revolution speed characteristic vs driving frequency.

Fig.8 Load characteristics of a trial motor.