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Abstract 
A simulation of the rolling contact fatigue strength of a traction drive element was 
proposed. The simulation can account for both the distribution of sizes of 
inclusions in the element material and the influence of traction forces at the element 
surface. The shear strength of the matrix structure surrounding an inclusion was 
estimated with an equation. The hardness distribution and the Weibull distribution 
of inclusion dimensions, which were necessary parameters to calculate the rolling 
contact fatigue strength, were determined by observation of an actual test specimen. 
And the rolling contact fatigue strength was compared with the distribution of shear 
stresses in a roller affected by traction forces. A simulation assuming the same 
traction coefficient as that in the experiment predicted a rolling contact fatigue 
strength of 810 MPa with a standard deviation of 39.2 MPa, which differed from 
the experimental value by only 2.5%. Simulations of the rolling contact fatigue 
strength were then carried out while varying the traction coefficient. The contact 
force resulting in failure was observed to fall as the traction coefficient increased 
and the torque capacity increased. Thus, the torque capacity increases with the 
traction coefficient, regardless of changes in the rolling contact fatigue strength. 

Key words: Machine Element, Traction Drive, Rolling Contact Fatigue, Inclusion, 
Tribology, Shear Stress 

 

1. Introduction 

A traction drive transmits power through shear forces in the elastohydrodynamic 
lubrication film between pairs of rollers. Traction drives have several advantages over 
gears, notably, lower vibration and noise, and capability in assembling continuously 
variable transmissions (CVT). Since contact forces play an integral role in traction drives 
for power transmission, high contact pressures arise at the points of contact between rollers. 
For example, toroidal CVTs for automobiles are operated at maximum Hertzian pressures 
exceeding 4 GPa(1). These high contact pressures cause failure through rolling contact 
fatigue, which occurs in bearings and gears. The most common mode of failure is flaking of 
the surface. Therefore, prediction of the rolling contact fatigue strength is essential during 
the design of a traction drive. 

A number of studies have reported on the fatigue strength in traction drives. Many 
kinds of fatigue tests have been carried out on rollers and balls to examine the influence of 
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failure mechanisms, operating conditions, lubrication modes, roller materials, etc., on 
fatigue strength(2)-(5). Coy et al.(6)(7) estimated the finite life region of a Nasvytis multiroller 
traction drive under the assumption of no fatigue limit by using the Lundenberg–Palmgren 
theory(8) to predict the bearing life. Their research suggested an internal fatigue failure 
model in which cracks initiate at inclusions and other originations of defects due to shear 
stresses within the material. However, that approach does not take into account the 
influence of defect size. Nikas proposed a fatigue life prediction model for a toroidal 
CVT(9), but his model is based on a modified Lundberg–Palmgren model, which was 
improved by Ioannides et al.(10). This model also does not take into account the influence of 
defect size. Murakami proposed an equation for predicting the fatigue limit, which 
considers the size of microdefects or inclusions(11), and Yamanaka et al. extended 
Murakami’s method and proposed a prediction equation for estimating the rolling contact 
fatigue strength of traction drive elements(12). 

It is well known that the high-strength materials employed in traction drives and gears 
show high scatter in fatigue strength(13). A large number of fatigue tests must be performed 
to estimate such scatter. It would be very useful in the strength design if the scatter could be 
estimated by simulation. Masuyama et al. proposed a modification of Murakami’s equation 
for estimating the bending fatigue strength of tooth roots in carburized gears based on 
hardness, residual stress, and inclusion size(14). They constructed a simulation model of a 
gear containing distributed inclusions, simulated the bending fatigue strength, and showed 
that the predicted fatigue strength and scatter matched the experimental results(15). 
Masuyama’s approach was employed in this study to propose a simulation of the rolling 
contact fatigue strength of traction drive elements. In this paper, first the simulation 
procedure is described, followed by explanations of the simulated roller and the method for 
calculating the strength. Finally, the simulation results are compared with the experimental 
results to validate the simulation. 

 

2. Criterion of Rolling Contact Fatigue(12) 

During rolling contact fatigue, cracks propagate parallel to the rolling direction. 
Therefore, as in previous research, we concentrate on the shear stress parallel to the rolling 
direction, τxz. These cracks initiate from the inclusions and defects within the material and 
propagate to the point of failure by this τxz. This study uses the following criterion for the 
failure from a given defect in a traction drive element: rolling contact fatigue strength τw is 
assumed around a defect, and failure is assumed to occur if the shear stress τxz due to the 
contact force Fc, which is normal to contact point, exceeds τw. The prediction equation for 
τw is given below(12) and is defined as the rolling contact fatigue strength for 107 cycles: 

 
( )

( ) 61
12056.1

area

Hvcw
+

×=τ  (1) 

 
where Hv is the Vickers hardness and area is the projected area of an inclusion onto a plane 
perpendicular to the evaluation stress. Coefficient c is assigned the value 0.97 on the basis 
of the rolling contact fatigue strength found in a preliminary experiment using rollers with 
artificially induced defects of determined dimensions. The details of the derivation of 
coefficient c are presented in the appendix. 

 

3. Simulation Method 

3.1 Simulation procedure 
The inclusion that ultimately causes failure must be identified, and its dimensions must 



 

 

Journal of  Advanced Mechanical Design,
Systems, and   
Manufacturing  

Vol. 7, No. 3, 2013 

434 

be found in order to use Eq. (1) to estimate the rolling contact fatigue strength. This 
identification is extremely difficult. The purpose of this simulation is to make a simple 
calculation of the fatigue strength and scatter by using the parameters of an inclusion in the 
material, the roller shape, and the traction coefficient. Figure 1 is a flow chart of the 
proposed simulation of the rolling contact fatigue strength of the traction drive elements. 
 

 
Fig. 1  Flow chart of simulation 

We began by constructing the simulated roller. Inclusions were distributed throughout 
the interior of the roller and the locations of these were recorded in terms of depth below the 
roller surface z and angular position θ. Equation (1) was then employed to calculate the 
rolling contact fatigue strength in the vicinity of each inclusion. The distribution of shear 
stresses inside the roller due to the contact force and the traction force was then calculated. 
Finally, instead of rotating the roller, each inclusion was shifted toward the rolling direction 
in the stress distribution and the rolling contact fatigue strength τw, calculated in Eq. (1), 
was compared with τxz. Since the sign of τxz changes about the roller contact point, |τxz| was 
compared. Failure was assumed to occur when τw < |τxz|, and the fatigue strength for that 
case was recorded. When failure occurred from multiple inclusions, the inclusion with the 
lowest θ was designated as the failure initiation site. When no failure occurred, the contact 
force Fc was increased, the stress distribution was re-calculated, and the comparison of the 
fatigue strength with |τxz| was repeated. This process was repeated for a given number of 
simulated rollers and a histogram of the fatigue strength was output. 
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3.2 Method for creation of simulated rollers 
The simulated roller is created in a given shape and assigned characteristic material 

properties. Here, to compare the simulation with the experimental results, the procedure for 
modeling the actual roller used in the experiments is described. Figure 2 shows the 
dimensions of the rollers employed in the experiment. The material was carburized Japan 
Industrial Standard (JIS) SCM415H low-alloy steel. Figure 3 presents the measured 
distribution of hardness in the depth direction. The effective case depth deff was 0.8 mm and 
the maximum hardness H2 was 840 HV at depth d2 = 0.2 mm. The surface hardness H1 was 
750 HV and the core hardness H3 was 400 HV(12). The hardness Hv at any depth z can be 
approximated with the following equation(16): 

 
( ) ( ){ } 3

2
232  exp HdzAHHHv +−−−=  (2) 

 
The above values were substituted for surface hardness H1, maximum hardness H2, core 
hardness H3, depth of maximum hardness d2, and effective case depth deff. By using the 
relationship between depth z and deff, A was calculated as follows: 
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The approximated curve of hardness Hv according to Eq. (2) is also shown in Fig.3 
 

 
Fig. 2  Shape and dimension of test roller pair 

 
Fig. 3  Measured and approximated Vickers hardness 
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Next, the dimensional distribution of the inclusions and their density in the simulated 
roller are set according to observations of the test specimen. Test specimen was made of 
pre-quenched SCM415H. The bar stock used to build the rollers was cut with a fine cutter 
and buffed to create the specimen. The number of inclusions and the surface area of each 
inclusion on the surface of the specimen were measured under a digital microscope 
(Keyence VH-8000, 2.11 megapixels). To increase the observed area, inclusions at least 20 
μm2 in size were measured in 270 views at 450× magnification. Each view was 0.74 mm2 
and a total of 200 mm2 of surface was examined. For higher precision, inclusions of ≤ 20 
μm2 were also observed at 1500× in 170 views for a total of 5 mm2. These results at 1500×  
were then multiplied by 40 to estimate the results for observation of 200 mm2 of area and 
added to the results at the 450× magnification. According to the research on SUJ2 by 
Hiroshi Murakami, inclusions less than area  = 2 μm in size do not affect the fatigue life 
of a roller(17); that is, such inclusions do not become the initiation sites of failure. In view of 
that report and the limits of precision of the digital microscope, we decided not to measure 
inclusions less than 1 μm2 in size. Figure 4 is a histogram of the areas of observed 
inclusions. It should be noted that the greater the inclusion size, the lower the frequency of 
occurrence. The measurement of the largest inclusion was area  = 36.2 μm. The 
inclusion density was 107/mm2. 

 

 
Fig. 4  Histogram of size of observed inclusions 

These results were statistically examined to generate a roller model with a distribution 
of inclusions resembling the actual roller. Masuyama et al. reported that area  was best 
represented by a composite Weibull distribution(15). This study uses that approximation. The 
following equations provide the composite Weibull distribution: 
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where F(t) is the cumulative distribution percentage, m is the shape parameter, η is the scale 
parameter, and δ is the separation parameter. In this study, the Weibull random number was 
t = area . Rewriting the above equations, we obtain the following: 
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As can be seen from the equations, the plot of Y with respect to ln t is a linear function. We 
can obtain m and η from the slope of the line and the intercept, respectively. The separation 
parameter δ in Eqs. (4) and (5) can be found by using intersection tc of the two above lines: 
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=  (8) 

 
Figure 5 combines the Weibull plot of the measured inclusion area area  and the linear 
approximations of these results obtained from Eqs. (6) and (7). Table 1 provides the Weibull 
parameters obtained from the linear approximations. The above densities and probabilities 
were applied to the inclusions in the simulated model. To obtain the reciprocal functions of 
Eqs. (4) and (5), we find 

 

( )( )[ ]mtFt
1

1ln −−η=  (9) 
 
Uniform random numbers were applied in F(t) over the semi-open interval [0,1) to 
numerically obtain the Weibull random number t = area . These random numbers were 
used to randomize the locations of the inclusions. 

 

 
Fig. 5  Weibull plot of distribution of inclusions 

Table 1  Weibull parameters 

 

 

ln
ln

(1
/(

1–
F

(t
))

)

0.1 10 1001
-1

0

1

2

3

Size of inclusions   area   μm

  Weibull parameter m1          0.942
  Weibull parameter m2          0.514
  Weibull parameter η1          2.467
  Weibull parameter η2          0.467
  Boundary tc                          18.28
  Density of inclusions [/mm2]                       107
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3.3 Estimating maximum inclusion area and lower limit of rolling contact fatigue 
strength with statistics of extremes 

Masuyama et al. reported that some huge inclusions were generated when they 
generated many amount of inclusions by applying uniform random numbers to find the 
Weibull random number t = area , and thus they underestimated the fatigue limit(15). 
Murakami suggested a way around this, however. He showed the statistics of extremes for 
predicting the lower limit of scatter in the fatigue limit by estimating the maximum value of 
the inclusion area maxarea  included in the material(11). In the present study, the lower 
limit of rolling contact fatigue strength τw was found by calculating maxarea  with the 
statistics of extremes. It was also decided to impose an upper bound on area  in the 
simulated roller to prevent the generation of inclusions having an area larger than 

maxarea . 
First, a graph was created by using the statistics of extremes, based on observations of 

the specimen. The reference area S0 was determined and maxarea  was recorded at each 

visual field. The maxarea  values were then sorted in ascending order and designated as  

jarea max,  (j = 1, …, n). The reduced variate yi was evaluated for each j by using the 

following equation, and yi was plotted (as the vertical axis) with respect to maxarea : 
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Approximating these results as a linear relation, we obtain the following: 

 
β+α= iyarea max  (11) 

 
If V is the volume to be predicted, the next return period T is found with: 
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where h is the virtual thickness of the solid created by extending S0. By using T in the 
preceding equation, yi is found as follows: 
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These results are substituted into Eq. (11) to estimate maxarea . 

Figure 6 is a graph of the analysis results of the experimental specimen by the statistics 
of extremes. The specimen used to create this graph was the same one used to determine the 
distribution of inclusion sizes, as described in the previous section. The magnification was 
450× , 270 visual fields n were observed, and the reference area S0 was 0.74 mm2. The 
virtual thickness h was set at the mean value, 1.28 × 10-5 mm, for maxarea  in the visual 
fields. Thus, we obtained V0 = 9.46 × 10-6 mm3. The critical volume V we are attempting to 
predict must be in a portion of the roller subject to high stresses so that this portion is likely 
to become a failure initiation site(11). The Lundberg–Palmgren theory for bearing life(8) uses 
a hollow cylindrical critical volume V whose height is 2a, which is the width of the Hertzian 
contact patch, and whose hollow circular base extends from the roller surface to depth z0, 
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where the shear stress τxz reaches the maximum. This theory does not consider regions at 
greater depths than z0. However, τxz is a high value at depths greater than z0. Therefore, it is 
possible that the theory underestimates the critical volume. Unigame et al. considered 
cylindrical V, whose height is 2a and whose hollow circular base extends from the roller 
surface past the depth of maximum τxz to the depth where the shear stress falls to 90% of 
the maximum τxz

(18). The maximum shear stress occurred in the interior of the material, and 
the stress at the material surface was lower than the maximum. Ionnides et al. defined V as 
the locations where the stress exceeds some threshold value(10). That method is adopted in 
this study. As Fig. 7 shows, the threshold is assumed to be 90% of the maximum shear 
stress τxz max. The location where the stress exceeds this threshold becomes the hollow 
circular disk, as shown in Fig. 7, and the critical volume V becomes the hollow cylinder of 
height 2a. 

 

 
Fig. 6  Results of statistics of extremes 

 
Fig. 7  Schematic of critical volume 

The range of depth z for τxz = 90% of τxz max under the contact force of Fc = 1800 N 
(maximum Hertzian pressure 4.06 GPa), which corresponds to the fatigue strength found in 
an experiment, was calculated by the numerical solver TED/CPA (TriboLogics Corporation) 
by the boundary element method(19). This depth was 0.07 to 0.28 mm, 2a was 0.64 mm, and 
V was 24.6 mm3. The above values were inserted into Eqs. (10) through (14) and the 
maximum inclusion areas maxarea  were estimated, and the values of α = 3.92, β = 
10.54, yi = 14.8, and maxarea  = 68.4 μm were obtained from Eq. (11). This result was 
89% larger than the observed maximum area  = 36.2 μm．Though, the expansion of 
observed area may result in the finding of such a large inclusion. Due to these results, 
inclusions generated in the simulation whose area  exceeded 69 μm were excluded. 
Also, the lower limit of rolling contact fatigue strength τw was evaluated using Eq. (1) when 
inclusions with maxarea  = 69 μm were present in the above critical volume. This lower 
limit was found to be 688 MPa. 
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3.4 Calculation of shear stress distribution in interior of roller under a traction force 
The shear stress τxz, which is in the interior of the roller and compared with rolling 

fatigue strength τw, was calculated by using the boundary element method software 
TED/CPA(19). In Hertzian contact, extremely high stresses are generated in the vicinity of 
the contact patch. To reduce computation time, the inclusions for which calculations were 
performed were limited to those within 2 mm of depth from the surface of the simulated 
roller. The limits of the calculation were 0 ≤ z ≤ 2 mm in the depth direction and −5 ≤ x ≤+5 
mm in the rolling direction, with the coordinate origin at the point of contact. The x 
coordinate was positive in the rolling direction. TED/CPA(19) is capable of calculating 
internal stresses in the roller due to friction at the surface. Figure 8 presents an example of 
the calculations when the traction coefficient was μ = 0.12, the same as that used in the 
experiment(12). The roller dimensions were identical to those of the driven roller shown in 
Fig. 2. The values of Young’s modulus = 207.5 GPa, Poisson’s ratio = 0.3, and contact force 
Fc = 1800 N were employed in the calculations. The scale of the vertical axis in the figure is 
double that of the horizontal axis. The distribution of τxz was symmetric about x = 0 under 
frictionless contact. As seen in the figure, the presence of the traction forces increases τxz in 
the positive x region. In this region, τxz max was 790 MPa, while it was 41% higher at 560 
MPa in the negative x region. Figure 9 is a graph of τxz max as the traction coefficient μ was 
varied from zero to 0.2 under constant Fc = 1800 N. We see that τxz max increased with μ, as 
it was 30% higher at μ = 0.2 than at μ = 0. 

 

 
Fig. 8  Distribution of shear stress τxz of driven roller (Fc = 1800 N) 

 
Fig. 9  Relationship between traction coefficient μ and maximum shear stress τxz max (Fc = 1800 N) 

 

4. Simulation Results 

The rolling contact fatigue strength of a traction drive element was simulated and those 
results were compared with the results of an experiment. One hundred simulated rollers 
were created and each roller was assigned approximately 14,000 inclusions. Six of the 
rollers were each assigned one inclusion whose area index area  exceeded 69 μm in the 
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analysis of the specimen by the statistics of extremes. As described in 3.3, those inclusions 
were excluded from the calculations. 

Figure 10 presents the results of the simulation of rolling contact fatigue strength τw 
when the traction coefficient μ was 0.12, the same value as that in the experiment(12). Here, 
τw was distributed between 710 and 892 MPa with a standard deviation σ = 39.2 MPa. 
Figure 11 is a normal probability plot of the results. The figure shows these points in a 
linear curve, thus indicating that the results of the simulation approximately obey a normal 
distribution. The rolling contact fatigue strength resulting in a failure rate of 50% was 
calculated at 810 MPa. Comparing that result with the experimentally determined value of 
τw = 790 MPa(12), we find an error of 2.5%. The simulation successfully reproduced the 
process of finding the mean value of strength in a fatigue test of a large number of 
specimens. The scatter in the experimental results for fatigue strength was not obtained, 
because the number of specimens was too low; therefore, no meaningful comparison of the 
scatter could be made. 

 

 
Fig. 10  Estimated rolling contact fatigue strength 

 
Fig. 11  Normal probability plot of estimated rolling contact fatigue strength 

Figure 12 is a histogram of area  of the inclusions that were failure initiation sites. 
In this figure, area  was distributed between 18.0 and 65.8 μm and the most commonly 
appearing values were around 25 μm. Few sites showed area  greater than 50 μm. The 
scatter of the rolling contact fatigue strength in Fig. 10 occurred because area  showed 
this kind of distribution. Figure 13 presents the distribution of τxz under simulated mean 
contact force Fc = 1950 N during failure and the failure initiation sites. The reader can see 
that failure is concentrated in locations where τxz reached a maximum. Figure 14 is a 
histogram of the depths of the failure initiation sites in combination with the distribution of 
τxz when Fc = 1950 N. The graphed values of τxz are those appearing at x = 0.575 mm, 
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Fig. 12  Histogram of size of failure initiation sites 

 
Fig. 13  Distribution of shear stress τxz (Fc = 1950 N) and failure initiation sites 

 

Fig. 14  Histogram of depth of failure initiation sites 

where τxz max occurred. The depth of failure initiation z was in the range 0.07 to 0.31 mm. 
These results match quite well with the range of depths for critical volume V given in 3.3. 
Figure 15 is a histogram of the x values of the initiation site of failure. These sites were 
centered around 0.575 mm, where the maximum shear stress was observed. The range of 
these values was 0.50 to 0.65 mm. None of the roller models exhibited failure initiation 
sites in the x < 0 region. This was because the shear stresses are increased in the positive x 
region by the traction forces operating on the roller surface. 

Next, the rollers whose inclusions were exactly the same as above were employed in 
simulations with μ = 0 and μ = 0.06. The rolling contact fatigue strength distribution was 
nearly identical to that when μ = 0.12, and the means and standard deviations were exactly 
identical for each value of μ. From Eq. (1), if the size of an inclusion in the simulated roller 
is the same as its depth, the strength of the roller is unaffected. This explains the above 
results. Nevertheless, as μ takes different values, the contact force capable of causing failure 
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Fig. 15  Histogram of distance from contact center of failure initiation sites 

 
Fig. 16  Mean contact force Fc of occasion of failure and torque capacity T 

also varies. Figure 16 shows how the mean contact force Fc during failure varies with μ. As 
shown, Fc falls as μ increases. This is because τxz is increased by the presence of traction 
force and reaches τw, regardless of low values of Fc. The figure also provides the values of 
torque capacity T corresponding to Fc. T was found by multiplying Fc by μ and the radius of 
30 mm of the experimental roller shown in Fig. 2. T increases with μ; therefore, the torque 
capacity is higher at high values of μ, regardless of the rolling contact fatigue strength. 
 

5. Summary 

A simulation of the rolling contact fatigue strength of a traction drive element was 
proposed. The simulation can account for both the distribution of sizes of inclusions in the 
element material and the influence of traction forces at the element surface. The following 
results were obtained. 
1) The shear strength of the matrix structure surrounding an inclusion was estimated with 

an equation, and a simulation of the rolling contact fatigue strength in a traction drive 
element was proposed to compare that strength with the distribution of stresses in a 
roller affected by traction forces. 

2) The hardness distribution and the Weibull distribution of inclusion dimensions, which 
were necessary parameters for the prediction equation to calculate the value of the 
rolling contact fatigue strength, were determined by observation of an actual test 
specimen. 

3) A simulation assuming the same traction coefficient as that in the experiment predicted 
a rolling contact fatigue strength of 810 MPa with a standard deviation of 39.2 MPa, 
which differed from the experimental value by only 2.5%. 
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4) Simulations of the rolling contact fatigue strength were then carried out by using the 
same roller model while varying the traction coefficient. The contact force resulting in 
failure was observed to fall as the traction coefficient increased and the torque capacity 
increased. Thus, the torque capacity increases with the traction coefficient, regardless 
of changes in the rolling contact fatigue strength. 
 

Appendix   Experimental Determination of Coefficient c(12) 

To find the value of c in Eq. (1), it is necessary to know the size and location of the 
inclusion that gave rise to the failure in the experiment. However, this is quite difficult, due 
to the challenge of identifying the actual site of the origin of failure and the potential for 
actual inclusions to disappear from the material during crack propagation or during surface 
flaking. Therefore, artificial defects with controlled dimensions were introduced into a 
roller and the rolling contact fatigue test was conducted, based on the results of the 
experiments of Endo(20) and Fujii(21). 

Figure 2 shows the pair of rollers employed in the experiment. The ellipticity parameter 
k (= a/b) was 0.51. The surface roughness of the rollers was ≤ 0.03 μmRa. As shown in 
Fig. 17, holes 5 mm deep and located 0.3 mm below the rolling contact surface were bored 
in the side of the driven roller one by one with electric discharge machining. The diameters 
of these holes were either all 120 μm on the roller or all 160 μm on the roller. These holes 
were the artificial defects. It was desirable to place the artificial defects where the shear 
stress τxz was maximal. However, that location was approximately at z = 0.15 mm below the 
roller surface. This was too close to the surface to be reached by machining. Therefore, the 
artificial defect was placed at z = 0.3 mm. As described in 3.2, the material of the rollers 
was carburized SCM415H. The measured hardness at each depth is shown in Fig. 3. 

 

 
Fig. 17  Test roller containing artificial small defect 

The two-roller fatigue tester shown in Fig. 18 was used for these tests. The drive roller 
and the driven roller were rotated by servo motors at 3000 and 2940 min-1, respectively, for 
a slip ratio Cr of 2%. ITF32 (Idemitsu Kosan Co., Ltd.) was employed as the traction oil. 
Table 2 shows the properties of the traction oil. The temperature was controlled at 313 K 
and the oil was supplied to the rollers at 540 ml/min. The traction coefficient μ was 
measured while Cr = 2% on another two-disk tester, and the value of μ = 0.12 was found. 

Figure 19 provides the results of the rolling contact fatigue test. In the TED/CPA 
package(19), Young’s modulus, Poisson’s ratio, and the traction coefficient μ were set to 
207.5 GPa, 0.3, and 0.12, respectively, and the shear stress of the vertical axis was 
calculated. This software package does not provide for calculating the stress around a hole. 
Therefore, the influence of the stress distribution by the artificial defect was neglected. 
Here, it was assumed that there was no horizontal portion of the S-N curve for the bearing, 
whose failure mode is rolling contact fatigue. Therefore, the fatigue strength τw was sought 
at 107 cycles, as described in Section 2. 

The value of c in Eq. (1) was found by experiment. As Fig. 20 shows, area  for the 
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Fig. 18  Schematic of two-roller fatigue tester 

Table 2  Properties of traction oil 

 

 
Fig. 19  S-N curves using rollers with artificial defects 

artificial defect was defined by using the product of width 2a of the Hertzian contact patch 
and the diameter of the defect hole. The Hertzian contact patch width 2a was calculated 
with TED/CPA(19) at the same time that the maximum Hertzian pressure PH was calculated. 
These calculations yielded area  = 267 μm for the 120 μm diameter hole and area  = 
299 μm for the 160 μm hole. It was also found that, due to traction forces, τxz is not uniform 
throughout a fully reversed cycle. Because of this, a modified Goodman’s diagram was 
employed to correct the effect of mean stress on the evaluation stress value. The diagram 
indicated c values of 1.01 for the 120 μm hole and 0.93 for the 160 μm hole. This difference 
was approximately 8%, so these values were averaged to obtain c = 0.97. These results are 
summarized in Table 3. 
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Fig. 20  Schematic of area of artificial defect 

Table 3  Values used for calculating c 
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