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Abstract. We give a moving frame of a Legendre curve (or, a frontal)
in the unit tangent bundle and define a pair of smooth functions of a
Legendre curve like as the curvature of a regular plane curve. It is quite
useful to analyse the Legendre curves. The existence and uniqueness
for Legendre curves hold similarly to the case of regular plane curves.
As an application, we consider contact between Legendre curves and
the arc-length parameter of Legendre immersions in the unit tangent
bundle.
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1. Introduction

A regular plane curve determines a curvature function, providing valuable
geometric information about the original curve by using a moving frame of
the curve. The existence and uniqueness results are fundamental theorems
for regular plane curves, see below Theorems 1.1 and 1.2.

Let I be an interval or R. Suppose that γ : I → R2 is a regular curve,
that is, γ̇(t) ̸= 0 for any t ∈ I. If s is the arc-length parameter of γ, we denote
t(s) by the unit tangent vector t(s) = γ′(s) = dγ/ds(s) and n(s) by the unit
normal vector n(s) = J(t(s)) of γ(s), where J is the anticlockwise rotation
by π/2. Then we have the Frenet formula as follows:(

t′(s)
n′(s)

)
=

(
0 κ(s)

−κ(s) 0

)(
t(s)
n(s)

)
,

where κ(s) = t′(s) · n(s) is the curvature of γ and · is the inner product on
R2.
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Even if t is not the arc-length parameter, we have the unit tangent
vector t(t) = γ̇(t)/|γ̇(t)|, the unit normal vector n(t) = J(t(t)) and the
Frenet formula(

ṫ(t)
ṅ(t)

)
=

(
0 |γ̇(t)|κ(t)

−|γ̇(t)|κ(t) 0

)(
t(t)
n(t)

)
,

where γ̇(t) = dγ/dt(t), |γ̇(t)| =
√
γ̇(t) · γ̇(t) and κ(t) = det(γ̇(t),γ̈(t))/|γ̇(t)|3=

ṫ(t)·n(t)/|γ̇(t)|. Note that κ(t) is independent on the choice of a parametriza-
tion.

Let γ and γ̃ : I → R2 be regular curves. We say that γ and γ̃ are
congruent if there exists a congruence C on R2 such that γ̃(t) = C(γ(t))
for all t ∈ I, where the congruence C is a composition of a rotation and a
translation on R2.

As well-known results, the existence and uniqueness for regular plane
curves are as follows (cf. [5, 6]):

Theorem 1.1. (The Existence Theorem) Let κ : I → R be a smooth func-
tion. There exists a regular parametrized curve γ : I → R2 whose associated
curvature function is κ.

Theorem 1.2. (The Uniqueness Theorem) Let γ and γ̃ : I → R2 be regular

curves whose speeds s = |γ̇(t)| and s̃ = | ˙̃γ(t)|, and also curvatures κ and κ̃
each coincide. Then γ and γ̃ are congruent.

If γ has a singular point, we can not construct a moving frame of γ.
In the analytic category, there is a construction of a moving frame of an
analytic curve under a mild condition, see in [9]. However, we can define a
moving frame of a frontal for a Legendre curve in the unit tangent bundle
in the smooth category. By using the moving frame, we define a pair of
smooth functions like as the curvature of a regular curve. We call the pair
the curvature of the Legendre curve. It is quite useful to analyse the Legendre
curves (or, frontals). In this paper, we give the existence and uniqueness for
Legendre curves similarly to the case of regular plane curves, see Theorems
1.4 and 1.5. These results are elementary, however, they might be new results,
as far as we know.

We say that (γ, ν) : I → R2 × S1 is a Legendre curve if (γ, ν)∗θ = 0
for all t ∈ I, where θ is a canonical contact form on the unit tangent bundle
T1R2 = R2 × S1 (cf. [1, 2]). This condition is equivalent to γ̇(t) · ν(t) = 0
for all t ∈ I. Moreover, if (γ, ν) is an immersion, we call (γ, ν) a Legendre
immersion. We say that γ : I → R2 is a frontal (respectively, a front or a
wave front) if there exists a smooth mapping ν : I → S1 such that (γ, ν) is a
Legendre curve (respectively, a Legendre immersion).

Let γ = (γ1, γ2) : (R, 0) → (R2, 0) be a plane curve germ. Then it can
be easily shown that, if γ is not infinitely flat, namely, if either γ1 or γ2 does
not belong to m∞

1 (the ideal of infinitely flat function germs), then γ is a
frontal. In fact, there exists a smooth function germ α such that γ̇1(t) =

α(t)γ̇2(t) (or, γ̇2(t) = α(t)γ̇1(t)). Thus if ν(t) = (1/
√
α2(t) + 1)(−α(t), 1)
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(or, ν(t) = (1/
√
α2(t) + 1)(1,−α(t))), then (γ, ν) is a Legendre curve. On

the other hand, constant maps are frontals (fronts), which do not satisfy
the above sufficient condition. In particular an analytic curve germ is always
frontal, because if it is infinitely flat, then it is constant. We give an explicit
example of plane curve which is not a frontal, using a pair of infinitely flat
C∞ functions, see Example 3 in §2.

If γ is a regular curve around a point t0, then we have the Frenet formula
of γ. On the other hand, if γ is singular at a point t0, then we can not, in
general, define such a frame. However, for a Legendre curve (γ, ν), the frame
of γ is defined by ν even if t is a singular point of γ.

Let (γ, ν) : I → R2 × S1 be a Legendre curve. Then we have the Frenet
formula of a frontal γ as follows. We put on µ(t) = J(ν(t)). We call the pair
{ν(t),µ(t)} a moving frame of a frontal γ(t) in R2 and we have the Frenet
formula of a frontal (or, Legendre curve) which is given by(

ν̇(t)
µ̇(t)

)
=

(
0 ℓ(t)

−ℓ(t) 0

)(
ν(t)
µ(t)

)
, (1.1)

where ℓ(t) = ν̇(t) · µ(t). Moreover, if γ̇(t) = α(t)ν(t) + β(t)µ(t) for some
smooth functions α(t), β(t), then α(t) = 0 follows from the condition γ̇(t) ·
ν(t) = 0. Hence, there exists a smooth function β(t) such that

γ̇(t) = β(t)µ(t). (1.2)

The pair (ℓ, β) is an important invariant of Legendre curves (or, frontals).
We call the pair (ℓ(t), β(t)) the curvature of the Legendre curve (with respect
to the parameter t).

Definition 1.3. Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves. We
say that (γ, ν) and (γ̃, ν̃) are congruent as Legendre curves if there exists a
congruence C on R2 such that γ̃(t) = C(γ(t)) = A(γ(t)) + b and ν̃(t) =
A(ν(t)) for all t ∈ I, where C is given by the rotation A and the translation
b on R2.

The main results in this paper are the existence and uniqueness for
Legendre curves in the unit tangent bundle similarly to the case of regular
plane curves, see Theorems 1.1 and 1.2.

Theorem 1.4. (The Existence Theorem) Let (ℓ, β) : I → R2 be a smooth
mapping. There exists a Legendre curve (γ, ν) : I → R2×S1 whose associated
curvature of the Legendre curve is (ℓ, β).

Theorem 1.5. (The Uniqueness Theorem) Let (γ, ν) and (γ̃, ν̃) : I → R2 ×
S1 be Legendre curves whose curvatures of Legendre curves (ℓ, β) and (ℓ̃, β̃)
coincide. Then (γ, ν) and (γ̃, ν̃) are congruent as Legendre curves.

We shall prove these theorems in §2. Moreover, we consider properties
of the curvatures of Legendre curves. As an application, we consider contact
between Legendre curves in §3 and give a special parameter, so-called the
arc-length parameter, of Legendre immersions in the unit tangent bundle in
§4. As further applications, we give the evolute of a front by using the moving
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frame of a front and the curvature of the Legendre immersion, for more detail
in [4].

All maps and manifolds considered here are differential of class C∞.

2. Properties of Legendre curves

First we prove the existence theorem (Theorem 1.4).

Proof of Theorem 1.4. Let θ : I → R be any function with the property that
θ̇(t) = ℓ(t) for all t ∈ I. Furthermore, let

ν(t) = (cos θ(t), sin θ(t)), µ(t) = (− sin θ(t), cos θ(t))

be the curves in the unit circle. Define smooth functions x(t) and y(t) with
ẋ(t) = −β(t) sin θ(t) and ẏ(t) = β(t) cos θ(t). Then γ : I → R2 is given by
γ(t) = (x(t), y(t)), that is,

γ(t) =

(
−
∫ (

β(t) sin

∫
ℓ(t) dt

)
dt,

∫ (
β(t) cos

∫
ℓ(t) dt

)
dt

)
.

It follows that γ̇(t) = β(t)µ(t), ν̇(t) = ℓ(t)µ(t) and γ̇(t) · ν(t) = 0 for all
t ∈ I. Therefore, there exists a Legendre curve (γ, ν) : I → R2 × S1 whose
associated curvature of the Legendre curve is (ℓ(t), β(t)).

�
In order to prove the uniqueness theorem (Theorem 1.5), we need two Lem-
mas.

Lemma 2.1. Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be congruent as Legendre
curves. Then (γ, ν) and (γ̃, ν̃) have the same curvatures of Legendre curves

(ℓ, β) and (ℓ̃, β̃) respectively.

Proof. Since (γ, ν) and (γ̃, ν̃) are congruent as Legendre curves, there exist
a rotation A and a fixed vector b with the property that

γ̃(t) = A(γ(t)) + b, ν̃(t) = A(ν(t))

for all t ∈ I. Since the definition of µ and JA = AJ , we have µ̃(t) = A(µ(t))
for all t ∈ I. By γ̇(t) = β(t)µ(t) and ν̇(t) = ℓ(t)µ(t),

d

dt
γ̃(t) = A(γ̇(t)) = A(β(t)µ(t)) = β(t)A(µ(t)) = β(t)µ̃(t),

d

dt
ν̃(t) = A(ν̇(t)) = A(ℓ(t)µ(t)) = ℓ(t)A(µ(t)) = ℓ(t)µ̃(t).

Hence we have β(t) = β̃(t) and ℓ(t) = ℓ̃(t). �

Lemma 2.2. Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves hav-

ing equal curvatures of Legendre curves, that is, (ℓ(t), β(t)) = (ℓ̃(t), β̃(t))
for all t ∈ I. If there exists a parameter t = t0 for which (γ(t0), ν(t0)) =
(γ̃(t0), ν̃(t0)), then (γ, ν) and (γ̃, ν̃) coincide.



Existence and uniqueness for Legendre curves 5

Proof. Let f(t) = ν(t) · ν̃(t) + µ(t) · µ̃(t) be a smooth function on I. Then

ḟ(t) = ν̇(t) · ν̃(t) + ν(t) · ˙̃ν(t) + µ̇(t) · µ̃(t) + µ(t) · ˙̃µ(t)
= (ℓ(t)µ(t)) · ν̃(t) + ν(t) · (ℓ̃(t)µ̃(t))

+(−ℓ(t)ν(t)) · µ̃(t) + µ(t) · (−ℓ̃(t)ν̃(t))

= (ℓ(t)− ℓ̃(t))µ(t) · ν̃(t) + (ℓ̃(t)− ℓ(t))ν(t) · µ̃(t)
= 0,

since ℓ(t) = ℓ̃(t) by the assumption. It follows that f is constant. Moreover,
setting t = t0 and ν(t0) = ν̃(t0), then µ(t0) = µ̃(t0) and hence f(t0) =
|ν(t0)|2+|µ(t0)|2 = 2. The function f is the constant value 2. By the Cauchy-
Schwarz inequality, we have

ν(t) · ν̃(t) ≤ |ν(t)||ν̃(t)| = 1, µ(t) · µ̃(t) ≤ |µ(t)||µ̃(t)| = 1.

If either of these inequalities were strict, the value of f(t) would be less
than 2. It follows that both these inequalities are equalities, and we have
ν(t) · ν̃(t) = 1, µ(t) · µ̃(t) = 1 for all t ∈ I. Then we have

|ν(t)− ν̃(t)|2 = ν(t) · ν(t)− 2ν(t) · ν̃(t) + ν̃(t) · ν̃(t) = 0,

and also |µ(t)− µ̃(t)|2 = 0. Hence ν(t) = ν̃(t) and µ(t) = µ̃(t) for all t ∈ I.

Since γ̇(t) = β(t)µ(t), ˙̃γ(t) = β̃(t)µ̃(t) and the assumption β(t) = β̃(t),
(d/dt)(γ(t)−γ̃(t)) = 0. It follows that γ(t)−γ̃(t) is constant. By the condition
γ(t0) = γ̃(t0), we have γ(t) = γ̃(t) for all t ∈ I. �

Proof of Theorem 1.5. Choose any fixed value t = t0 of the parameter. By
using a rotation A and a translation b, we can assume that γ̃(t0) = A(γ(t0))+
b and ν̃(t0) = A(ν(t0)). By Lemma 2.1, the curvatures of the Legendre curves
(γ, ν) and (A(γ(t)) + b, A(ν(t))) coincide. By Lemme 2.2, γ̃(t) = A(γ(t)) +
b, ν̃(t) = A(ν(t)) for all t ∈ I. It follows that (γ, ν) and (γ̃, ν̃) are congruent
as Legendre curves.

�

Remark 2.3. Both Theorems 1.4 and 1.5 can be proved also by using the
theory of the existence and uniqueness for the system of ordinary differential
equations.

Let I and I be intervals. A smooth function s : I → I is a (positive)
change of parameter when s is surjective and has a positive derivative at
every point. It follows that s is a diffeomorphism map by calculus.

Let (γ, ν) : I → R2 × S1 and (γ, ν) : I → R2 × S1 be Legendre curves
whose curvatures of Legendre curves are (ℓ, β) and (ℓ, β) respectively. Suppose
(γ, ν) and (γ, ν) are parametrically equivalent via the change of parameter
s : I → I. Thus (γ(t), ν(t)) = (γ(s(t)), ν(s(t))) for all t ∈ I. By differentiation,
we have

ℓ(t) = ℓ(s(t))ṡ(t), β(t) = β(s(t))ṡ(t).
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Hence the curvature of the Legendre curve is depended on a parametriza-
tion. However, for a Legendre immersion (γ, ν) : I → R2 × S1, we can de-
fine the normalized curvature and the arc-length parameter. Then the nor-
malized curvature of the Legendre curve independent on the change of a
parametrization, see §4. Note that (γ, ν) is a Legendre immersion if and only
if (ℓ(t), β(t)) ̸= (0, 0) for all t ∈ I.

Remark 2.4. By the definition of the Legendre curve, if (γ, ν) is a Legendre
curve, then (γ,−ν) is also. In this case, ℓ(t) does not change, but β(t) changes
to −β(t).

Now we give examples of Legendre curves.

Example 1. One of the typical example of a front (and hence a frontal) is
a regular plane curve. Let γ : I → R2 be a regular plane curve. In this
case, we may take ν : I → S1 by ν(t) = n(t). Then it is easy to check that
(γ, ν) : I → R2 × S1 is a Legendre immersion (a Legendre curve).

By a direct calculation, we give a relationship between the curvature of
the Legendre curve (ℓ(t), β(t)) and the curvature κ(t) if γ is a regular curve.

Proposition 2.5. ([4, Lemma 3.1]) Under the above notions, if γ is a regular
curve, then ℓ(t) = |β(t)|κ(t).

Example 2. Let n,m and k be natural numbers with m = n+ k. Let (γ, ν) :
R → R2 × S1 be

γ(t) =

(
1

n
tn,

1

m
tm
)
, ν(t) =

1√
t2k + 1

(
−tk, 1

)
.

It is easy to see that (γ, ν) is a Legendre curve, and a Legendre immersion
when k = 1. We call γ is of type (n,m). For example, the frontal of type (2, 3)
has the 3/2-cusp (A2 singularity) at t = 0, of type (3, 4) has the 4/3-cusp
(E6 singularity) at t = 0 and of type (2, 5) has the 5/2-cusp (A4 singularity)

at t = 0 (cf. [2, 3, 7]). By definition, we have µ(t) = (1/
√
t2k + 1)(−1,−tk)

and

ℓ(t) =
ktk−1

t2k + 1
, β(t) = −tn−1

√
t2k + 1.

We also give an explicit example of plane curve which is not a frontal.

Example 3. Let γ : R → R2 be

γ(t) =

 (0, e−1/t2) if t > 0,
(0, 0) if t = 0,

(e−1/t2 , 0) if t < 0.

Then one can show that γ is not a frontal.
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3. Contact between Legendre curves

In this section, we discuss contact between Legendre curves. Let (γ, ν) : I →
R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2 × S1;u 7→ (γ̃(u), ν̃(u)) be
Legendre curves, respectively and let k be a natural number. We say that
(γ, ν) and (γ̃, ν̃) have k-th order contact at t = t0, u = u0 if

(γ, ν)(t0) = (γ̃, ν̃)(u0),
d

dt
(γ, ν)(t0) =

d

du
(γ̃, ν̃)(u0),

· · · , d
k−1

dtk−1
(γ, ν)(t0) =

dk−1

duk−1
(γ̃, ν̃)(u0)

and

dk

dtk
(γ, ν)(t0) ̸=

dk

duk
(γ̃, ν̃)(u0).

Moreover, we say that (γ, ν) and (γ̃, ν̃) have at least k-th order contact at
t = t0, u = u0 if

(γ, ν)(t0) = (γ̃, ν̃)(u0),
d

dt
(γ, ν)(t0) =

d

du
(γ̃, ν̃)(u0),

· · · , d
k−1

dtk−1
(γ, ν)(t0) =

dk−1

duk−1
(γ̃, ν̃)(u0).

Let (γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2 × S1;u 7→
(γ̃(u), ν̃(u)) be Legendre curves. In general, we may assume that (γ, ν) and
(γ̃, ν̃) have at least first order contact at any point t = t0, u = u0, up to
congruence as Legendre curves. We denote the curvatures of the Legendre

curves (ℓ(t), β(t)) of (γ, ν) and (ℓ̃(u), β̃(u)) of (γ̃, ν̃), respectively.

Theorem 3.1. Let (γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ →
R2 × S1;u 7→ (γ̃(u), ν̃(u)) be Legendre curves. If (γ, ν) and (γ̃, ν̃) have at
least (k + 1)-th order contact at t = t0, u = u0 then

(ℓ, β)(t0) = (ℓ̃, β̃)(u0),
d

dt
(ℓ, β)(t0) =

d

du
(ℓ̃, β̃)(u0),

· · · , dk−1

dtk−1
(ℓ, β)(t0) =

dk−1

duk−1
(ℓ̃, β̃)(u0). (3.1)

Conversely, if the condition (3.1) holds, then (γ, ν) and (γ̃, ν̃) have at least
(k + 1)-th order contact at t = t0, u = u0, up to congruence as Legendre
curves.

Proof. Suppose that (γ, ν) and (γ̃, ν̃) have at least second order contact at
t = t0, u = u0. Since ν(t0) = ν̃(u0), we have µ(t0) = µ̃(u0). By (1.1) and

(1.2), (d/dt)(γ, ν)(t) = (β(t)µ(t), ℓ(t)µ(t)) and (d/du)(γ̃ , ν̃)(u)=(β̃(u)µ̃(u),

ℓ̃(u)µ̃(u)). It follows that ℓ(t0) = ℓ̃(u0), β(t0) = β̃(u0). Hence, the first asser-
tion of Theorem 3.1 holds in the case of k = 1.
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Suppose that (γ, ν) and (γ̃, ν̃) have at least (k + 1)-th order contact at
t = t0, u = u0 and

(ℓ, β)(t0) = (ℓ̃, β̃)(u0),
d

dt
(ℓ, β)(t0) =

d

du
(ℓ̃, β̃)(u0),

· · · , dk−2

dtk−2
(ℓ, β)(t0) =

dk−2

duk−2
(ℓ̃, β̃)(u0)

hold. It follows that (dk/dtk)γ(t) and (dk/dtk)ν(t) are given by the form

dk−1

dtk−1
β(t)µ(t) + f1

(
β(t), ℓ(t), . . . ,

dk−2

dtk−2
β(t),

dk−2

dtk−2
ℓ(t)

)
ν(t)

+ f2

(
β(t), ℓ(t), . . . ,

dk−2

dtk−2
β(t),

dk−2

dtk−2
ℓ(t)

)
µ(t)

and

dk−1

dtk−1
ℓ(t)µ(t) + g1

(
β(t), ℓ(t), . . . ,

dk−2

dtk−2
β(t),

dk−2

dtk−2
ℓ(t)

)
ν(t)

+ g2

(
β(t), ℓ(t), . . . ,

dk−2

dtk−2
β(t),

dk−2

dtk−2
ℓ(t)

)
µ(t)

for some smooth functions f1, f2, g1 and g2. By the same calculations,

dk

duk
γ̃(u) =

dk−1

duk−1
β̃(u)µ̃(u)

+f1

(
β̃(u), ℓ̃(u), . . . ,

dk−2

duk−2
β̃(u),

dk−2

duk−2
ℓ̃(u)

)
ν̃(u)

+f2

(
β̃(u), ℓ̃(u), . . . ,

dk−2

duk−2
β̃(u),

dk−2

duk−2
ℓ̃(u)

)
µ̃(u),

dk

duk
ν̃(u) =

dk−1

duk−1
ℓ̃(u)µ̃(u)

+g1

(
β̃(u), ℓ̃(u), . . . ,

dk−2

duk−2
β̃(u),

dk−2

duk−2
ℓ̃(u)

)
ν̃(u)

+g2

(
β̃(u), ℓ̃(u), . . . ,

dk−2

duk−2
β̃(u),

dk−2

duk−2
ℓ̃(u)

)
µ̃(u).

It follows that (dk−1/dtk−1)(ℓ, β)(t0) = (dk−1/duk−1)(ℓ̃, β̃)(u0). By the in-
duction, we have the first assertion.

Suppose that the condition (3.1) holds. By the above calculations, we
have (di/dti)(γ, ν)(t0) = (di/dui)(γ̃, ν̃)(u0) for i = 1, . . . , k. Therefore, (γ, ν)
and (γ̃, ν̃) have at least (k + 1)-th order contact at t = t0, u = u0, up to
congruence as Legendre curves. �

Note that if γ is a regular curve, then we also consider a contact between

curves (cf. [4]). Let γ : I → R2; t 7→ γ(t) and γ̃ : Ĩ → R2;u 7→ γ̃(u) be regular
plane curves, respectively. We say that γ and γ̃ have at least k-th order contact
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at t = t0, u = u0 if

γ(t0) = γ̃(u0),
dγ

dt
(t0) =

dγ̃

du
(u0), · · · , dkγ

dtk
(t0) =

dkγ̃

duk
(u0).

By Example 1, we take ν : I → S1, ν(t) = n(t) and ν̃ : Ĩ → S1, ν̃(u) = ñ(u).

If s be the arc-length parameter of γ, then ℓ(t) = κ(t) and |β(t)| = 1 by
Proposition 2.5. Therefore, we have following result as a corollary of Theorem
3.1.

Corollary 3.2. Let γ : I → R2 and γ̃ : Ĩ → R2 be regular curves with the arc-
length parameters. Under the above notations, (γ, ν) and (γ̃, ν̃) are Legendre
immersions. Then (γ, ν) and (γ̃, ν̃) have at least (k + 1)-order contact at
t = t0, u = u0 if and only if γ and γ̃ have at least (k + 1)-order contact at
t = t0, u = u0.

4. Legendre immersions

In this section, we consider Legendre immersions in the unit tangent bundle.
Let (γ, ν) : I → R2 × S1 be a Legendre immersion. Then the curvature
of the Legendre immersion (ℓ(t), β(t)) ̸= (0, 0). In this case, we define the
normalized curvature for the Legendre immersion by

(
ℓ(t), β(t)

)
=

(
ℓ(t)√

ℓ(t)2 + β2(t)
,

β(t)√
ℓ(t)2 + β(t)2

)
.

By a direct calculation, the normalized curvature
(
ℓ(t), β(t)

)
is independent

on the choice of a parametrization, see §2. Moreover, since ℓ(t)2 + β(t)2 = 1,
there exists a smooth function θ(t) such that

ℓ(t) = cos θ(t), β(t) = sin θ(t).

It is helpful to introduce the notion of the arc-length parameter of Legendre
immersions. In general, we can not consider the arc-length parameter of the
front γ, since γ may have singularities. However, (γ, ν) is an immersion, we
introduce the arc-length parameter for the Legendre immersion (γ, ν). The
speed s(t) of the Legendre immersion at the parameter t is defined to be the
length of the tangent vector at t, namely,

s(t) = |(γ̇(t), ν̇(t))| =
√

γ̇(t) · γ̇(t) + ν̇(t) · ν̇(t).

Given scalars a, b ∈ I, we define the arc-length from t = a to t = b to be the
integral of the speed,

L(γ, ν) =

∫ b

a

s(t) dt.

By the same method for the are-length parameter of a regular plane curve,
one can prove the following:
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Proposition 4.1. Let (γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) be a Legendre
immersion, and let t0 ∈ I. Then (γ, ν) is parametrically equivalent to a unit
speed curve

(γ, ν) : I → R2 × S1; s 7→ (γ(s), ν(s)) = (γ ◦ u(s), ν ◦ u(s)),
under a change of parameter u : I → I with u(0) = t0 and with u′(s) > 0.

We call the above parameter s in Proposition 4.1 the arc-length parame-
ter for the Legendre immersion. Let s be the are-length parameter for (γ, ν).
By definition, we have γ′(s) · γ′(s) + ν′(s) · ν′(s) = 1, where ′ is the deriva-
tion with respect to s. It follows that ℓ(s)2 + β(s)2 = 1. Then there exists a
smooth function θ(s) such that

ℓ(s) = cos θ(s), β(s) = sin θ(s).

Also, as a corollary of Theorem 3.1, we have the following corollary:

Corollary 4.2. Let (γ, ν) : I → R2×S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2×
S1;u 7→ (γ̃(u), ν̃(u)) be Legendre immersions with the arc-length parameters.

Suppose that θ : I → R and θ̃ : Ĩ → R are smooth functions with the
conditions

ℓ(t) = cos θ(t), β(t) = sin θ(t), ℓ̃(u) = cos θ̃(u), β̃(u) = sin θ̃(u).

If (γ, ν) and (γ̃, ν̃) have at least (k + 1)-th order contact at t = t0, u = u0,
then there exists a integer n ∈ Z such that

θ(t0) = θ̃(u0) + 2nπ,
dθ

dt
(t0) =

dθ̃

du
(u0), · · · , dk−1θ

dtk−1
(t0) =

dk−1θ̃

duk−1
(u0). (4.1)

Conversely, if the condition (4.1) holds, then (γ, ν) and (γ̃, ν̃) have at least
(k + 1)-th order contact at t = t0, u = u0, up to congruence as Legendre
immersions.

Finally, we consider a relation between the curvature of the Legendre
immersion and the zigzag number (or Maslov index) (cf. [8]).

Proposition 4.3. Let (γ, ν) : [a, b] → R2 ×S1 be a closed Legendre immersion
with the curvature of the Legendre immersion (ℓ, β). Suppose that (γ, ν) is
parametrized by the arc-length parameter t and θ is a smooth function which
satisfies ℓ(t) = cos θ(t) and β(t) = sin θ(t). Then (1/2π)|θ(b)− θ(a)| is equal
to the zigzag number of the front γ.

Proof. Let z(γ) be the zigzag number of γ, By the definition of the zigzag
number (see [8] for example), z(γ)=|deg([−ν̇(t), γ̇(t)])|=|deg([−ℓ(t), β(t)])|=
|deg([− cos θ(t), sin θ(t)])|, where [−ν̇(t), γ̇(t)] is a ratio as the proportional
constant of two vectors, [−ℓ(t), β(t)] and [− cos θ(t), sin θ(t)] are ratios of two
real numbers, in other words, elements of the real projective line. We consider
the real projective line as S1, then deg([− cos θ(t), sin θ(t)]) means a rotation
number of the map t 7→ (− cos θ(t), sin θ(t)) ∈ S1. It follows that |θ(b) −
θ(a)| = 2π|deg([− cos θ(t), sin θ(t)])|. Therefore, we obtain (1/2π)|θ(b)−θ(a)|
= z(γ). �
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Remark 4.4. Let (γ, ν) : [a, b] → R2×S1 be a closed Legendre immersion with
the curvature (ℓ, β). Suppose that (γ, ν) is parametrized by the arc-length
parameter t and θ is a smooth function which satisfies ℓ(t) = cos θ(t) and
β(t) = sin θ(t). Then the curvature of the Legendre immersion (γ,−ν) is equal

to (ℓ,−β) (Remark 2.4). We denote (ℓ(t),−β(t)) = (cos θ̃(t), sin θ̃(t)) for a

smooth function θ̃. Then we obtain simultaneous equations cos θ(t) = cos θ̃(t)

and sin θ(t) = − sin θ̃(t). It follows that there exists an integer n such that

θ(t) = −θ̃(t) + 2nπ. Thus θ(b)− θ(a) = −θ̃(b) + θ̃(a).
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