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EXPLICIT FORMULAS FOR THE TWISTED KOECHER-MAASS
SERIES OF THE DUKE-IMAMOGLU-IKEDA LIFT AND THEIR

APPLICATIONS

HIDENORI KATSURADA

Abstract. We give an explicit formula for the twisted Koecher-Maaß series
of the Duke-Imamoglu-Ikeda lift. As an application we prove a certain alge-
braicity result for the values of twisted Rankin-Selberg series at integers of

half-integral weight modular forms, which was not treated by Shimura [19].
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1. Introduction

It is an interesting problem to give an explicit formula for the Koecher-Maaß
series of a Siegel modular form F for the symplectic group Spn(Z), and several
results have been obtained (cf. Böcherer [2], Ibukiyama and Katsurada [7], [8],
[9]). Such explicit formulas are not only interesting in its own right but also have
some important applications in the theory of modular forms. For example, we refer
to [3], [5]. Now we consider a twist of such a Koecher-Maaß series by a Dirichlet
character χ. As for this, in view of Saito [15] for example, we can naturally consider
the following Dirichlet series:

L∗(s, F, χ) =
∑
T

χ(22[n/2] det T )cF (T )
e(T )(detT )s ,

where T runs over a complete set of representatives of SLn(Z)-equivalence classes
of positive definite half-integral symmetric matrices of degree n, cF (T ) is the T -th
Fourier coefficient of F and e(T ) = #{U ∈ SLn(Z); T [U ] = T}. We will sometimes
call L∗(s, F, χ) the twisted Koecher-Maaß series of the second kind.

On the other hand, Choie and Kohnen [4] introduced a different type of “twist”.
For a positive integer N , let SLn,N (Z) = {U ∈ SLn(Z); U ≡ 1n mod N} and
eN (T ) = #{U ∈ SLn,N (Z);T [U ] = T}. For a primitive Dirichlet character χ mod
N , the Koecher-Maaß series L(s, F, χ) of F twisted by χ is defined to be

L(s, F, χ) =
∑
T

χ(tr(T ))cF (T )
eN (T )(det T )s ,

where T runs over a complete set of representatives of SLn,N (Z)-equivalence classes
of positive definite half-integral symmetric matrices of degree n. In [4], Choie
and Kohnen proved an analytic continuation of L(s, F, χ) to the whole s-plane
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2 HIDENORI KATSURADA

and a functional equation (cf. Theorem 2.1). Moreover they got a result on the
algebraicity of its special values (cf. Theorem 2.2.) We shall call L(s, F, χ) the
twist of the first kind.

In this paper we give explicit formulas for the twisted Koecher-Maaß series of
the first and second kinds associated with the Duke-Imamoglu-Ikeda lift and apply
them to the study of the special values of the Rankin-Selberg series for half-integral
weight modular forms. We explain our main results more precisely. Let k and n
be positive even integers such that n ≥ 4 and 2k − n ≥ 12. For a cuspidal Hecke
eigenform h in the Kohnen plus subspace of weight k − n/2 + 1/2 for Γ0(4), let
In(h) be the Duke-Imamoglu-Ikeda lift of h to the space of cusp forms of weight
k for Spn(Z). Moreover let S(h) be the normalized Hecke eigenform of weight
2k − n for SL2(Z) corresponding to h under the Shimura correspondence, and
En/2+1/2 be Cohen’s Eisenstein series of weight n/2 + 1/2 for Γ0(4). We then
give explicit formulas for L(s, In(h), χ) and L∗(s, In(h), χ) in terms of the twisted
Rankin-Selberg series R(s, h,En/2+1/2, η) of h and En/2+1/2 and twisted Hecke’s
L-function L(s, S(h), η′) of S(h), where η and η′ are Dirichlet characters related
with χ. It is relatively easy to get an explicit form of L∗(s, In(h), χ). In fact, by
using the same argument as in Ibukiyama and Katsurada [8], we can easily obtain
its explicit formula (cf. Theorem 4.1). On the other hand, it seems nontrivial to
get that of L(s, In(h), χ) (cf. Theorem 6.1), and we need some explicit formula for
a certain character sum associated with a Dirichlet character (cf. Theorem 5.6).
Using Theorem 6.1 combined with the result of Choie-Kohnen, we prove certain
algebraicity results on R(s, h,En/2+1/2, η) at an integer s = m (cf. Theorems 7.1
and 7.2), which were announced in [10]. We note that the algebraicity of the special
values of such a Rankin-Selberg series at half-integers was investigated by Shimura
[19]. However there are few results on the algebracity of such values at integers.
As an attempt, Mizuno and the author [11] proved linear dependency of Rankin-
Selberg L-values of a cuspidal Hecke eigenform belonging to Kohnen plus subspace
of half integral weight and the Zagier’s Eisenstein series of weight 3/2. Our present
result can be regarded as a generalization of our previous result.

Notation We denote by e(x) = exp(2π
√
−1x) for a complex number x. For a

commutative ring R, we denote by Mmn(R) the set of (m,n)-matrices with entries
in R. In particular put Mn(R) = Mnn(R). For an (m,n)-matrix X and an (m,m)-
matrix A, we write A[X] = tXAX, where tX denotes the transpose of X. Let a be
an element of R. Then for an element X of Mmn(R) we often use the same symbol X
to denote the coset X mod aMmn(R). Put GLm(R) = {A ∈ Mm(R) | det A ∈ R∗},
and SLm(R) = {A ∈ Mm(R) | det A = 1}, where det A denotes the determinant
of a square matrix A and R∗ is the unit group of R. We denote by Sn(R) the set
of symmetric matrices of degree n with entries in R. For a subset S of Mn(R) we
denote by S× the subset of S consisting of non-degenerate matrices. In particular,
if S is a subset of Sn(R) with R the field of real numbers, we denote by S>0 (resp.
S≥0) the subset of S consisting of positive definite (resp. semi-positive definite)
matrices. The group SLn(Z) acts on the set Sn(R) in the following way:

SLn(Z) × Sn(R) 3 (g,A) −→ tgAg ∈ Sn(R).

Let G be a subgroup of GLn(Z). For a subset B of Sn(R) stable under the action
of G we denote by B/G the set of equivalence classes of B with respect to G.
We sometimes identify B/G with a complete set of representatives of B/G. Two
symmetric matrices A and A′ with entries in R are said to be equivalent with respect
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to G and write A ∼G A′ if there is an element X of G such that A′ = A[X]. For
an integral domain R of charactersitic different from 2, let Ln(R) denote the set
of half-integral matrices of degree n over R, that is, Ln(R) is the set of symmetric
matrices of degree n with entries in the field of fractions of R whose (i, j)-component
belongs to R or 1

2R according as i = j or not. In particular we put Ln = Ln(Z).

For square matrices X and Y we write X⊥Y =
(

X O
O Y

)
. For a subset S of a

ring R we put S2 = {s2 | s ∈ S}.

2. Twisted Koecher-Maaß series

Put Jn =
(

On −1n

1n On

)
, where 1n and On denotes the unit matrix and the

zero matrix of degree n, respectively. Furthermore, put

Spn(Z) = {M ∈ GL2n(Z) | Jn[M ] = Jn}.

Let l be an integer or a half-integer, and N a positive integer. Let Γ(n)
0 (N) be the

congruence subgroup of Spn(Z) consisting of matrices whose left lower n×n block
are congruent to On mod N. Moreover let χ be a Dirichlet character mod N. We
then denote by Ml(Γ

(n)
0 (N), χ) the space of modular forms of weight l and character

χ for Γ(n)
0 (N), and by Sl(Γ

(n)
0 (N), χ) the subspace of Ml(Γ

(n)
0 (N), χ) consisting of

cusp forms. If χ is the trivial character mod N , we simply write Ml(Γ
(n)
0 (N), χ) and

Sl(Γ
(n)
0 (N), χ) as Ml(Γ

(n)
0 (N)) and Sl(Γ

(n)
0 (N)), respectively. Let k be a positive

integer, and let F (Z) ∈ Mk(Spn(Z)). Then F (Z) has the Fourier expansion:

F (Z) =
∑

T∈Ln≥0

cF (T )e(tr(TZ)),

where tr(X) denotes the trace of a matrix X. For N ∈ Z>0, put SLn,N (Z) =
{U ∈ SLn(Z) | U ≡ 1n mod N}, and for T ∈ Ln>0 put eN (T ) = #{U ∈
SLn,N (Z) | T [U ] = T}. For a primitive Dirichlet character χ mod N let

L(s, F, χ) =
∑

T∈Ln>0/SLn,N (Z)

χ(tr(T ))cF (T )
eN (T )(det T )s

be the twisted Koecher-Maaß series of the first kind of F as in Section 1. The
following two theorems are due to Choie and Kohnen [4].

Theorem 2.1. Let F ∈ Sk(Spn(Z)), and χ a primitive character of conductor N.
Put

γn(s) = (2π)−ns
n∏

i=1

π(i−1)/2Γ(s − (i − 1)/2),

and
Λ(s, F, χ) = Nnsτ(χ)−1γn(s)L(s, F, χ) (Re(s) >> 0),

where τ(χ) is the Gauss sum of χ, and Γ(s) is the Gamma function. Then Λ(s, F, χ)
has an analytic continuation to the whole s-plane and has the following functional
equation:

Λ(k − s, F, χ) = (−1)nk/2χ(−1)Λ(s, F, χ).
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Theorem 2.2. Let F and χ be as above. Then there exists a finite dimensional
Q-vector space VF in C such that

L(m,F, χ)π−nm ∈ VF

for any primitive character χ and any integer m such that (n + 1)/2 ≤ m ≤
k − (n + 1)/2.

Now let

L∗(s, F, χ) =
∑

T∈Ln>0/SLn(Z)

χ(22[n/2] detT )cF (T )
e(T )(det T )s

be the twisted Koecher-Maaß series of the second kind of F as in Section 1. We
will discuss a relation between these two Dirichlet series in Section 5.

3. Review on the algebraicity of L-values of elliptic modular forms
of integral and half-integral weight

In this section, we review on the special values of L functions of elliptic modular
forms of integral and half-integral weights. For a modular form g(z) of integral or
half-integral weight for a certain congruence subgroup Γ of SL2(Z), let Q(g) denote
the field generated over Q by all the Fourier coefficients of g, and for a Dirichlet
character η let Q(η) denote the field generated over Q by all the values of η.

First let

f(z) =
∞∑

m=1

cf (m)e(mz)

be a normalized Hecke eigenform in Sk(SL2(Z)), and χ be a primitive Dirichlet
character. Then let us define Hecke’s L-function L(s, f, χ) of f twisted by χ as

L(s, f, χ) =
∞∑

m=1

cf (m)χ(m)m−s.

Then we have the following result (cf. [18]):

Proposition 3.1. There exist complex numbers u±(f) uniquely determined up to
Q(f)× multiple such that

L(m, f, χ)
(2π

√
−1)mτ(χ)uj(f)

∈ Q(f)Q(χ)

for any integer 0 < m ≤ k−1 and a primitive character χ, where τ(χ) is the Gauss
sum of χ, and j = + or − according as (−1)mχ(−1) = 1 or −1.
Corollary. Under the above notation and the assumption, we have

L(m, f, χ)π−m ∈ Quj(f)

for any integer 0 < m ≤ k − 1 and a primitive character χ.
We remark that we have L(m, f, χ) 6= 0 if m 6= k/2, and L(k/2, f, χ) 6= 0 for

infinitely many χ.
Next let us consider the half-integral weight case. From now on we simply write

Γ(1)
0 (M) as Γ0(M). Let

h1(z) =
∞∑

m=1

ch1(m)e(mz)



TWISTED KOECHER-MAASS SERIES OF THE DUKE-IMAMOGLU-IKEDA LIFT 5

be a Hecke eigenform in Sk1+1/2(Γ0(4)), and

h2(z) =
∞∑

m=0

ch2(m)e(mz)

be an element of Mk2+1/2(Γ0(4)). For a fundamental discriminant D let χD be the
Kronecker character corresponding to D. Let χ be a primitive character mod N.
Then we define

R̃(s, h1, h2, χ) = L(2s − k1 − k2 + 1, ω)
∞∑

m=1

ch1(m)ch2(m)χ(m)m−s,

where ω(d) = χk1−k2
−4 χ2(d). We also define R(s, h1, h2, χ) as

R(s, h1, h2, χ) = L(2s − k1 − k2 + 1, χ2)
∞∑

m=1

ch1(m)ch2(m)χ(m)m−s.

Now let S(h1) be the normalized Hecke eigenform in S2k1(SL2(Z)) corresponding to
h1 under the Shimura correspondence. Then the following result is due to Shimura
[19].

Proposition 3.2. Assume that k1 > k2. Under the above notation we have

R̃(m + 1/2, h1, h2, χ)
u−(S(h1))τ(χ2)π−k2+1+2m

√
−1

∈ Q(h1)Q(h2)Q(χ)

for any integer k2 ≤ m ≤ k1 − 1 and a primitive character χ.

Proof. Let N be the conductor of χ. Put

h2χ(z) =
∞∑

m=0

ch2(m)χ(m)e(mz).

Then h2χ(z) ∈ Mk2+1/2(4N2, χ2). We can regard h1 as an element of Sk1+1/2(Γ0(4N2)).
Then the assertion follows from [[19], Theorem 2]. ¤

Corollary. Assume that ch1(n), ch2(n) ∈ Q for any n ∈ Z≥0. Then there exists a
one-dimensional Q-vector space Uh1,h2 in C such that

R̃(m + 1/2, h1, h2, χ)π−2m ∈ Uh1,h2

for any integer k2 ≤ m ≤ k1 − 1 and a primitive character χ.

4. Explicit formulas for the twisted Koecher-Maaß series of the
second kind of the Duke-Imamoglu-Ikeda lift

Throughout this section, we assume that n and k are even positive integers. Let
h be a Hecke eigenform of weight k − n/2 + 1/2 for Γ0(4) belonging to the Kohnen
plus space. Then h has the following Fourier expansion:

h(z) =
∑

e

ch(e)e(ez),
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where e runs over all positive integers such that (−1)k−n/2e ≡ 0, 1 mod 4. Let

S(h)(z) =
∞∑

m=1

cS(h)(m)e(mz)

be the normalized Hecke eigenform of weight 2k − n for SL2(Z) corresponding
to h via the Shimura correspondence (cf. [14].) For a prime number p let βp

be a nonzero complex number such that βp + β−1
p = p−k+n/2+1/2cS(h)(p). For

non-negative integers l and m, the Cohen function H(l,m) is given by H(l,m) =
L−m(1 − l). Here

LD(s)

=


ζ(2s − 1), D = 0

L(s, χDK )
∑
a|f

µ(a)χDK (a)a−sσ1−2s(f/a), D 6= 0, D ≡ 0, 1 mod 4

0, D ≡ 2, 3 mod 4,

where the positive integer f is defined by D = DKf2 with the discriminant DK of
K = Q(

√
D), µ is the Möbius function, and σs(n) =

∑
d|n ds. Furthermore, for an

even integer l ≥ 4, we define the Cohen Eisenstein series El+1/2(z) by

El+1/2(z) =
∞∑

e=0

H(l, e)e(ez).

It is known that El+1/2(z) is a modular form of weight l + 1/2 for Γ0(4) belonging
to the Kohnen plus space.

For a prime number p let Qp and Zp be the field of p-adic numbers, and the
ring of p-adic integers, respectively. We denote by νp the additive valuation on Qp

normalized so that νp(p) = 1, and by ep the continuous homomorphism from the
additive group Qp to C× such that ep(a) = e(a) for a ∈ Q. We put Ln,p = Ln(Zp).
We also put Sn(Zp)e = 2Ln,p and Sn(Zp)o = Sn(Zp) r Sn(Zp)e. For a p-adic
number c put

ξ̃p(c) = 1,−1 or 0

according as Qp(
√

c) = Qp,Qp(
√

c)/Qp is quadratic unramified, or Qp(
√

c)/Qp is
quadratic ramified. We note that ξ̃p(D) = χD(p) for a fundamental discriminant
D. For a non-degenerate half-integral matrix T over Zp, let

bp(T, s) =
∑

R∈Sn(Qp)/Sn(Zp)

ep(tr(TR))p−νp(µp(R))s

be the local Siegel series, where µp(R) = [RZn
p + Zn

p : Zn
p ]. Then there exists a

polynomial Fp(T,X) in X such that

bp(T, s) = Fp(T, p−s)(1 − p−s)(1 − ξp(T )pn/2−s)−1

n/2∏
i=1

(1 − p2i−2s)

(cf. [12],) where ξp(T ) = ξ̃p((−1)n/2 det T ). For a positive definite half integral
matrix T of degree n write (−1)n/2 det(2T ) as (−1)n/2 det(2T ) = dT f

2
T with dT a

fundamental discriminant and fT a positive integer. We then put

F̃p(T,X) = X−νp(fT )Fp(T, p−(n+1)/2X),
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and
cIn(h)(T ) = ch(|dT |)

∏
p

(pk−n/2−1/2)νp(fT )F̃p(T, βp).

We note that cIn(h)(T ) does not depend on the choice of βp. Define a Fourier series
In(h)(Z) by

In(h)(Z) =
∑

T∈Ln>0

cIn(h)(T )e(tr(TZ)).

In [6] Ikeda showed that In(h)(Z) is a Hecke eigenform in Sk(Spn(Z)) and its
standard L-function L(s, In(h), St) is given by

L(s, In(h), St) = ζ(s)
n∏

i=1

L(s + k − i, S(h)).

We call In(h) the Duke-Imamoglu-Ikeda lift (D-I-I lift) of h.

Theorem 4.1. Let χ be a primitive Dirichlet character mod N . Then we have

L∗(s, In(h), χ) = cnR(s, h,En/2+1/2, χ)
n/2−1∏

j=1

L(2s − 2j, S(h), χ2)

+dnch(1)
n/2∏
j=1

L(2s − 2j + 1, S(h), χ2),

where cn and dn are nonzero rational numbers depending only on n.

To prove Theorem 4.1, we reduce the problem to local computations. For a, b ∈
Q×

p let (a, b)p the Hilbert symbol on Qp. Following Kitaoka [13], we define the
Hasse invariant ε(A) of A ∈ Sm(Qp)× by

ε(A) =
∏

1≤i≤j≤n

(ai, aj)p

if A is equivalent to a1⊥ · · ·⊥an over Qp with some a1, a2, · · · , an ∈ Q×
p . For non-

degenerate symmetric matrices A of degree n with entries in Zp we define the local
density αp(A) = αp(A,A) representing A by A as

αp(A) = 2−1 lim
a→∞

pa(−n2+n(n+1)/2)#Aa(A,A),

where

Aa(A,A) = {X ∈ Mn(Zp)/paMn(Zp) | A[X] − B ∈ paSn(Zp)e},

Furthermore put

M(A) =
∑

A′∈G(A)

1
e(A′)

for a positive definite symmetric matrix A of degree n with entries in Z, where G(A)
denotes the set of SLn(Z)-equivalence classes belonging to the genus of A. Then
by Siegel’s main theorem on quadratic forms, we obtain

M(A) = κn2−n/2 det A(n+1)/2
∏
p

αp(A)−1
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where en = 1 or 2 according as n = 1 or not, and κn = ΓC(n/2)
∏n/2−1

i=1 ΓC(2i)
with ΓC(s) = 2(2π)−sΓ(s) (cf. Theorem 6.8.1 in [13] ). Put

Fp = {d0 ∈ Zp | νp(d0) ≤ 1}
if p is an odd prime, and

F2 = {d0 ∈ Z2 | d0 ≡ 1 mod 4, or d0/4 ≡ −1 mod 4, or ν2(d0) = 3}.
For d ∈ Z×

p put

Sn(Zp, d)

= {T ∈ Sn(Zp) | (−1)n/2 det T = p2id mod Z∗
p
2 with some i ∈ Z},

and Sn(Zp, d)x = Sn(Zp, d) ∩ Sn(Zp)x for x = e or o. Put L(0)
n,p = Sn(Zp)×e and

L(0)
n,p(d) = Sn(Zp, d)∩L(0)

n,p. Let ιn,p be the constant function on L×
n,p taking the value

1, and εn,p the function on L×
n,p assigning the Hasse invariant of A for A ∈ L×

n,p. We
sometimes drop the suffix and write ιn,p as ιp or ι and the others if there is no fear
of confusion. From now on we sometimes write ω = εl with l = 0 or 1 according
as ω = ι or ε. For T ∈ Sn(Zp)e, put T (0) = 2−1T, F

(0)
p (T,X) = Fp(T (0), X), and

F̃
(0)
p (T,X) = F̃p(T (0), X). For d0 ∈ Fp and ω = εl with l = 0, 1, we define a formal

power series P
(0)
n,p(d0, ω,X, t) in t by

P (0)
n,p(d0, ω,X, t) = κ(d0, n, l)−1

∑
B∈L(0)

n,p(d0)

F̃
(0)
p (B,X)
αp(B)

ω(B)tνp(det B),

where
κ(d0, n, l) = κ(d0, n, l)p = {(−1)n(n+2)/8((−1)n/22, d0)2}lδ2,p .

Let F denote the set of fundamental discriminants, and for l = ±1, put

F (l) = {d0 ∈ F | ld0 > 0}.

Theorem 4.2. Let the notation and the assumption be as above. Then for Re(s) À
0, we have

L∗(s, In(h), χ) = κn2ns−1−n/2

× {
∑

d0∈F((−1)n/2)

ch(|d0|)|d0|n/4−k/2+1/4
∏
p

P (0)
n,p(d0, ιp, βp, p

−s+k/2+n/4+1/4χ(p))

+ (−1)n(n+2)/8

×
∑

d0∈F((−1)n/2)

((−1)n/22, d0)2ch(|d0|)|d0|n/4−k/2+1/4
∏
p

P (0)
n,p(d0, εp, βp, p

−s+k/2+n/4+1/4χ(p))}.

Proof. Let T ∈ Ln>0. Then the T -th Fourier coefficient cIn(h)(T ) of In(h) is
uniquely determined by the genus to which T belongs, and, by definition, it can be
expressed as

cIn(h)(T ) = ch(|dT |)fk−n/2−1/2
T

∏
p

F̃ (0)(2T, βp)

We also note that

f
k−n/2−1/2
T = |dT |−(k/2−n/4−1/4)(det(2T ))(k/2−n/4−1/4)
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and e(2T ) = e(T ) for T ∈ Ln>0. Hence we have∑
2T ′∈G(2T )

cIn(h)(T ′)
e(2T ′)

= det(2T )k/2+n/4+1/4|dT |−k/2+n/4+1/4ch(|dT |)
∏
p

F̃
(0)
p (2T, βp)
αp(2T )

.

Thus, similarly to [7], Theorem 3.3, (1), and [8], Theorem 3.2, we obtain

L∗(s, In(h), χ) = κn2ns−1−n/2
∑

d0∈F((−1)n/2)

ch(|d0|)|d0|n/4−k/2+1/4

×{
∏
p

P (0)
n,p(d0, ιp, βp, p

−s+k/2+n/4+1/4χ(p))

+(−1)n(n+2)/8((−1)n/22, d0)2
∏
p

P (0)
n,p(d0, εp, βp, p

−s+k/2+n/4+1/4χ(p))}.

This proves the assertion.
¤

For a non-negaive integer r we define a polynimial φr(x) in x by φr(x) =∏r
i=1(1 − xi).

Proposition 4.3. Let d0 ∈ Fp and ξ0 = ξ̃(d0). Then

P (0)
n (d0, ι,X, t) =

(p−1t)νp(d0)

φn/2−1(p−2)(1 − p−n/2ξ0)

× (1 + t2p−n/2−3/2)(1 + t2p−n/2−5/2ξ2
0) − ξ0t

2p−n/2−2(X + X−1 + p1/2−n/2 + p−1/2+n/2)

(1 − p−2Xt2)(1 − p−2X−1t2)
∏n/2

i=1(1 − t2p−2i−1X)(1 − t2p−2i−1X−1)
,

and

P (0)
n (d0, ε,X, t) =

1
φn/2−1(p−2)(1 − p−n/2ξ0)

ξ2
0∏n/2

i=1(1 − t2p−2iX)(1 − t2p−2iX−1)
.

Proof. Put Hk =
(

O 1k

1k O

)
, and for d ∈ Z∗

p put

D = {x ∈ M2k,n(Zp) | det(Hk[x]) ∈ dpiZ∗
p
2 with some i ∈ Z≥0}.

We then define Z2k(u, εl, d) as

Z2k(u, εl, d) =
∫

D

εl(Hk[x])|det(Hk[x])|s−k
p dx

with u = p−s, where | ∗ |p denotes the normalized valuation on Qp, and dx is the
measure on M2k,n(Qp) normalized so that the volume of M2k,n(Zp) is 1. Moreover
put

Z2k,e(u, εl, d) =
1
2
(Z2k,n(u, εl, d) + Z2k,n(−u, εl, d)),

and
Z2k,o(u, εl, d) =

1
2
(Z2k,n(u, εl, d) − Z2k,n(−u, εl, d)).

Then it is well known that

Z2k,x(d0)(u, εl, (−1)n/2p−νp(d0)d0) = φn(p−1)
∑

T∈L(0)
n,p(d0)

bp(2−δ2,pT, p−k)
αp(T )

(pkt)νp(det(T )
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for d0 ∈ Fp, where x(d0) = e or o according as νp(d0) is even or odd. Recall that

bp(2−δ2,pT, p−k) =
(1 − p−k)

∏n/2
i=1(1 − p−2k+2i)

1 − ξ(2−δ2,pT )p−k+n/2
F (0)

p (T, p−k)

and

F (0)
p (T, p−k) = p(−k/2+(n+1)/4)(νp(det T )−νp(d0))F̃ (0)

p (T, p−k+(n+1)/2).

Hence we have

Z2k,x(d0)(u, εl, (−1)n/2p−νp(d0)d0) = φn(p−1)
(1 − p−k)

∏n/2
i=1(1 − p−2k+2i)

1 − ξ(2−δ2,pT )p−k+n/2

×p(k/2−(n+1)/4)νp(d0)P (0)
n (d0, ε

l, p−k+(n+1)/2, upk/2+(n+1)/4).
Let T (d0, ω,X, t) denote the right-hand side of the formula for ω = εl (l = 0, 1) in
the proposition. Then, by [[16], Theorem 3.4 (2)], we have

Z2k,x(d0)(u, εl, (−1)n/2p−νp(d0)d0) = φn(p−1)
(1 − p−k)

∏n/2
i=1(1 − p−2k+2i)

1 − ξ(T )p−k+n/2

×p(k/2−(n+1)/4)νp(d0)T (d0, ε
l, p−k+(n+1)/2, upk/2+(n+1)/4).

(Remark that there are misprints in [16]; the (q−1)n on page 197, lines 9 and 15
should be (q−1)r.) Hence we have

P (0)
n (d0, ε

l, p−k+(n+1)/2, upk/2+(n+1)/4) = T (d0, ε
l, p−k+(n+1)/2, upk/2+(n+1)/4)

for infinitely many positive integers k. Hence we have

P (0)
n (d0, ε

l, X, t) = T (d0, ε
l, X, t).

¤
Proof of Theorem 4.1.
Put Ω = {ωp}, and let d0 ∈ F ((−1)n/2). Put

P (s, d0, Ω, χ) =
∏
p

P (0)
n,p(d0, ωp, βp, p

−s+k/2+n/4+1/4χ(p)).

Then by Proposition 4.3, we have

P (s, d0, {ιp}, χ)

= |d0|−s+k/2+n/4−3/4χ(d0)
n/2−1∏

i=1

ζ(2i)L(n/2, χd0)
n/2∏
i=1

L(2s + 2i − n, S(h), χ2)

×L(2s − n + 1, S(h), χ2)
∏
p

{(1 + p−2s+k−1χ(p)2)(1 + χd0(p)2p−2s+2k−2χ(p)2)

−χd0(p)p−2s+k−3/2χ(p)2βp(1 + p1/2−n/2β−1
p )(1 + p−1/2+n/2β−1

p )}.
We note that L(s, h) and L(s,En/2+1) can be expressed as

L(s, h) = L(2s, S(h))
∑

d0∈F((−1)n/2)

c(|d0|)|d0|−s
∏
p

(1 − χd0(p)pk−n/2−1−2s),

and
L(s,En/2+1) = ζ(2s)ζ(2s − n + 1)

×
∑

d0∈F((−1)n/2)

L(1 − n/2, χd0)|d0|−s
∏
p

(1 − χd0(p)pn/2−1−2s),
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and therefore, we easily see that L(s, h,En/2+1/2, χ) can be expressed as

R(s, h,En/2+1/2, χ) = L(2s, S(h), χ2)L(2s − n + 1, S(h), χ2)

×
∑

d0∈F((−1)n/2)

|d0|−sc(|d0|)χ(d0)L(1 − n/2, χd0)

×
∏
p

{(1 + p−2s+k−1χ(p)2)(1 + χd0(p)2p−2s+k−2χ(p)2)

−χd0(p)p−2s+k−3/2χ(p)2βp(1 + p1/2−n/2β−1
p )(1 + p−1/2+n/2β−1

p )}
(cf. [17], Lemma 1.) Thus, by remarking the functional equation

L(1 − n/2, χd0) = 21−n/2π−n/2Γ(n/2)|d0|(n−1)/2L(n/2, χd0),

we have ∑
d0∈F((−1)n/2)

ch(|d0|)|d0|−s+k/2+n/4+1/4P (s, d0, {ιp}, χ)

=
n/2−1∏

i=1

ζ(2i)
2n/2−1πn/2

Γ(n/2)
R(s, h,En/2+1/2; χ)

n/2−1∏
i=1

L(2s − 2i + n, S(h), χ2).

On the other hand, if d0 6= 1, by Proposition 4.3, we have

P (s, d0, {εp}, χ) = 0.

Thus if n ≡ 2 mod 4, for any d0 ∈ F ((−1)n/2),

P (s, d0, {εp}, χ) = 0.

If n ≡ 0 mod 4, by Proposition 4.3, we have

P (s, 1, {εp}, χ) = ζ(n/2)
n/2−1∏

i=1

ζ(2i)
n/2∏
i=1

L(2s − 2i + 1, S(h), χ2).

Thus the assertion follows from Theorem 4.2. 2

5. Relation between twisted Kocher-Maaß series of the first and
second kinds

Let N be a positive integer. Let g be a periodic function on Z with a period N and
φ a polynomial in t1, · · · , tr. Then for an element u = (a1 mod N, · · · , ar mod N) ∈
(Z/NZ)r, the value g(φ(a1, · · · , ar)) does not depend on the choice of the represen-
tative of u. Therefore we denote this value by g(φ(u)). In particular we sometimes
regard a Dirichlet character mod N as a function on Z/NZ.

For a Dirichlet character χ mod N and A ∈ Lm>0, put

h(A,χ) =
∑

U∈SLm,N (Z)\SLm(Z)

χ(tr(A[U ])).

As was shown in [[11], Proposition 3.1], the twisted Koecher-Maaß series of the first
kind of a Siegel modular form can be expressed in terms of h(A,χ) as stated later.
Therefore we shall compute h(A,χ) in the case where A is an element of Lm>0. For
A = (aij)m×m ∈ Sm(Z/NZ) and c ∈ Z/NZ, put

RN (A, c) = {X = (xij)m×m ∈ Mm(Z/NZ) |
m∑

i=1

m∑
α,β=1

aα,βxiαxiβ − c = 0
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and detX − 1 = 0}.
Then we have

h(A,χ) =
∑

c∈Z/NZ

χ(c)#(RN (A, c)).

From now on let p be an odd prime number and Fp be the field with p elements.
For S ∈ Sm(Fp) and T ∈ Sr(Fp) put

A(S, T ) = {Y ∈ Mr,m(Fp) | Y S tY = T}.

For an element S ∈ Sm(Fp) with m even put χ(S) =
(

(−1)m/2 det S
p

)
.

Lemma 5.1. Let S ∈ Sm(Fp)×.
(1) Let T ∈ Sr(Fp)× with m ≥ r.
(1.1) Let r be even. Then

#A(S, T ) = prm−r(r+1)/2(1−χ(S)p−m/2)(1+χ((−S)⊥T )p(r−m)/2)
∏

m−r+1≤e≤m−1
e even

(1−p−e)

or
#A(S, T ) = prm−r(r+1)/2

∏
m−r+1≤e≤m−1

e even

(1 − p−e)

according as m is even or odd.
(1.2) Let r be odd. Then

#A(S, T ) = prm−r(r+1)/2(1 − χ(S)p−m/2)
∏

m−r+1≤e≤m−1
e even

(1 − p−e)

or

#A(S, T ) = prm−r(r+1)/2(1 + χ((−S)⊥T )p(r−m)/2)
∏

m−r+1≤e≤m−1
e even

(1 − p−e)

according as m is even or odd. In particular, for c ∈ F×
p , we have

#A(S, c) = pm/2−1(pm/2 −
(

(−1)m/2 det S

p

)
)

or

#A(S, c) = p(m−1)/2(p(m−1)/2 +
(

(−1)(m+1)/2c detS

p

)
)

according as m is even or odd.
(2) We have

#A(S, 0) = pm/2−1(pm/2 −
(

(−1)m/2 det S

p

)
) + pm/2

(
(−1)m/2 det S

p

)
or

#A(S, 0) = pm−1

according as m is even or odd.

Proof. The assertions (1) and (2) follow from [[12], Theorem 1.3.2], and [[12],
Lemma 1.3.1], respectively. ¤
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Proposition 5.2. Let A = a1⊥ · · ·⊥am with ai ∈ Fp. For c ∈ F×
p put

Mp(A, c) = {Z = (zij) ∈ Sm(Fp) | det(Z) = 1 and c −
m∑

i=1

aizii = 0},

and

γm,p = pm2−m(m+1)/2(1 − p−m/2)
(m−2)/2∏

e=1

(1 − p−2e)

or

γm,p = pm2−m(m+1)/2

(m−1)/2∏
e=1

(1 − p−2e)

according as m is even or odd. Then we have

#Rp(A, c) = γm,p#Mp(A, c).

Proof. Let Φ : GLm(Fp) −→ Sm(Fp) ∩ GLm(Fp) be the mapping defined by
Φ(X) = XtX. Then by Lemma 5.1, we have #Φ−1(Z) = 2γm,p for any Z ∈
Sm(Fp)∩SLm(Fp). We note that detX = ±1 for any X ∈ Φ−1(Z). Hence we have
#(Φ−1(Z) ∩ SLm(Fp)) = γm,p. Moreover we have

tr(tXAX) = tr(AXtX),

and hence X ∈ Rp(A, c) if and only if Φ(X) ∈ Mp(A, c). This proves the assertion.
¤

We rewrite Mp(A, c) in more concise form. For a positive integer N we denote
by DN the set of Dirichlet charcters mod N, and for a positive integer m we denote
by DN,m the subset of DN consisiting of Dirichlet characters whose m-th power is
the trivial character. We note that Dp,m = Dp,l with l = GCD(m, p − 1) if p is

an odd prime number. We denote by
( ∗

N

)
the Jacobi symbol for a positive odd

integer N . For two Dirichlet characters χ and η mod N we define Jm(χ, η) and
Im(χ, η)

Jm(χ, η) =
∑

Z∈Sm(Z/NZ)

χ(detZ)η(1 − tr(Z))

and
Im(χ, η) =

∑
Z∈Sm(Z/NZ)

χ(detZ)η(tr(Z)).

By definition, Jm(χ, η) is an algebraic number. We note that J1(χ, η) is the Ja-
cobi sum J(χ, η) associated with χ and η. We also define Jm(χ) as Jm(χ) =
Jm(χ

( ∗
N

)m−1
, χ).

Lemma 5.3. Let η be a primitive character mod p. Let c ∈ Fp and S ∈ Sl(Fp) of
rank r. Let S ∼ S0⊥Ol−r with detS0 6= 0. Put

Iη,S,c =
∑

w∈F l
p

η(S[tw] + c).
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Assume that r is odd, and that η2 6= 1. Then

Iη,S,c = pl−(r+1)/2J(η, (
∗
p
))

(
(−1)(r+1)/2 det S0

p

)
η(c)

(
c

p

)
.

Assume that r is even, and that η 6= 1. Then

Iη,S,c = pl−r/2

(
(−1)r/2 detS0

p

)
η(c).

Here we make the convention that
(

(−1)r/2 det S0
p

)
= 1 if r = 0.

Proof. We have
Iη,S,c = pl−rIη,S0,c.

Hence we may assume that r = l. Then

Iη,S,c =
∑

u∈Fp

η(u)#A(S, u − c).

Let l be odd. Then by Lemma 5.1,

#A(S, u − c) = p(l−1)/2(p(l−1)/2 +
(

(−1)(l−1)/2(u − c) det S

p

)
).

Hence we have

Iη,S,c = p(l−1)/2

(
(−1)(l+1)/2 det S

p

) ∑
u∈Fp

η(u)
(

u − c

p

)
.

Since η2 is nontrivial, we have Iη,S,c = 0 if c = 0. If c 6= 0, then∑
u∈Fp

η(u)
(

u − c

p

)
=

(
−c

p

) ∑
u∈Fp

η(u)
(

1 − c−1u

p

)

= η(c)
(
−c

p

) ∑
u∈Fp

η(v)
(

1 − v

p

)
= η(c)

(
−c

p

)
J(η,

(
∗
p

)
).

Let l be even. Then

#A(S, u − c) = (pl/2 −
(

(−1)l/2 detS

p

)
)pl/2−1 + pl/2

(
(−1)l/2 det S

p

)
a0,

where a0 = 1 or 0 according as u = c or not. Hence

Iη,S,c = pl/2

(
(−1)l/2 detS

p

)
η(c).

¤

Corollary. Let d ∈ F×
p . Then we have

Iη,S,cd = η(d)
(

d

p

)r

Iη,S,c.

Proposition 5.4. Let η be a primitive character mod p. For Z1 ∈ Sl−1(Fp) and
zll ∈ Fp, put

I(Z1, zll) =
∑

w∈Ml−1,1(Fp)

η(det
(

Z1 w
tw zll

)
).
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(1) Assume that l is even, and that η2 6= 1. Then

I(Z1, zll) = p(l−2)/2J(η, (
∗
p
))

(
(−1)l/2 det Z1

p

)
η(detZ1zll)

(
zll

p

)
.

(2) Assume that l is odd, and that η2 6= 1. Then

I(Z1, zll) = p(l−1)/2

(
(−1)(l−1)/2 det Z1

p

)
η(detZ1zll).

Proof. We note that

det
(

Z1 w
tw zll

)
= −Adj(Z1)[w] + det Z1zll,

where Adj(Z1) is the (l− 1)× (l− 1) matrix whose (i, j)-th component is the (j, i)-
th cofactor of Z1. We also note that det(−Adj(Z1)) = (−1)l−1(detZ1)l−2. Thus
the assertion follows directly from Lemma 5.3 if det Z1 6= 0. If det Z1 = 0, then
rankFpAdj(Z1) ≤ 1, and the assertion follows also from Lemma 5.3. ¤

Let χ be a Dirichlet character of odd conductor and A ∈ Lm>0. Then 22[m/2] detA

belongs to Z, and we define χ(detA) as χ(22[m/2])χ(22[m/2] det A).

Theorem 5.5. Let χ be a primitive character mod p. Let l = GCD(m, p − 1), and
u0 be a primitive l-th root of unity mod p. Let A ∈ Lm>0.
(1) If χ(u0) 6= 1, then we have h(A, χ) = 0.
(2) Assume that χ(u0) = 1. Fix a character χ̃ such that χ̃m = χ.
(2.1) Let m be even. Then

h(A,χ) = γm,pAm,p

∑
η∈Dp,m

(χ̃η)(detA)J(χ̃η,

(
∗
p

)
)Jm−1(χ̃η),

where Am,p = p(m−2)/2(−1)m(p−1)/4.
(2.2) Let m be odd and assume that χ2 6= 1. Then

h(A,χ) = γm,pAm,p

∑
η∈Dp,m

(χ̃η)(det A)Jm−1(χ̃η),

where Am,p = p(m−1)/2(−1)(m−1)(p−1)/4.
Remark. The above formulation is based on the referee’s suggestion. In the
original version, we formulated Theorems 5.5 and 5.6 in terms of “modified power
residue symbols”.

Proof. We may regard A as an element of Sm(Fp). If A = Om then we have
h(A,χ) = 0. Hence we assume that A 6= Om. Then we may assume that A =
a1⊥ · · ·⊥am−1⊥d with d 6= 0. Put

M̃p(A, c)

= {(Z1, w) ∈ Sm−1(Fp)×Mm−1,1(Fp) | det
(

Z1 w
tw d−1(1 −

∑m−1
i=1 aizii)

)
cm = 1}.
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Write Z ∈ Sm(Fp) as Z =
(

Z1 w
tw zm

)
with Z1 ∈ Sm−1(Fp), w ∈ Mm−1,1(Fp), z ∈ Fp.

Then the mapping Sm(Fp) 3 Z 7→ (c−1Z1, c
−1w) ∈ Sm−1(Fp) × Mm−1,1(Fp) in-

duces a bijection from Mp(A, c) to M̃p(A, c), and hence #M̃p(A, c) = #Mp(A, c).
Put

K(A) =
∑

c

#M̃p(A, c)χ(c).

Assume that χ(u0) 6= 1. Then we have

K(A) =
∑
c∈Fp

χ(cu0)#M̃p(A, cu0).

We note that M̃p(A, cu0) = M̃p(A, c). Hence we have

K(A) = χ(u0)K(A).

Hence we have K(A) = 0.
Assume that χ(u0) = 1. Then we can take a Dirichlet character χ̃ such that

χ̃m = χ. First assume that det A = 0. Then we may assume that we have A = A0⊥0
with A0 ∈ Sm−1(Fp). Let Pm−1,m be the set of (m − 1) × m matrices with entries
in Fp of rank m− 1. Then for each X1 ∈ Pm−1,m there exist exactly pm−1 elements

X2 ∈ M1,m(Fp) such that
(

X1

X2

)
∈ SLm(Fp). Hence we have

h(A,χ) = pm−1
∑

X1∈Pm−1,m

χ(tr(A0[X1])).

Let m be even. Then we can take an element α ∈ F×
p such that χ(α) 6= 1. Moreover

we can take U0 ∈ GLm(Fp) such that tU0U0 = α1m in view of (1.1) of Lemma 5.1.
Hence

h(A, χ) = pm−1
∑

X1∈Pm−1,m

χ(tr(A0[X1
tU0])) = χ(α)h(A,χ).

Hence we have h(A,χ) = 0. Let m be odd and assume that χ2 6= 1. Then we
can take an element α ∈ (F×

p )2 such that χ(α) 6= 1. Moreover we can take U0 ∈
GLm(Fp) such that tU0U0 = α1m in view of (1.2) of Lemma 5.1. Thus by the same
argument as above we have h(A,χ) = 0. This proves the assertion. Next assume
that det A 6= 0. We may assume that

A = 1m−1⊥d

with d = det A. Then we have

K(A) =
∑

c

#M̃p(A, c)χ̃(cm).

Hence we have

K(A) =
∑

(Z1,w)

χ̃(det
(

Z1 w
tw d−1(1−tr(Z1))

)
),

where (Z1, w) runs over elements of Sm−1(Fp) × Mm−1,1(Fp) such that

(∗) det
(

Z1 w
tw d−1(1 − tr(Z1))

)
= um
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with some u ∈ F×
p , and for such a matrix

(
Z1 w
tw d−1(1 − tr(Z1))

)
, there exist

exactly l elements u of Fp satisfying (*). We have∑
η∈Dp,m

η(v) = l or 0

according as v = um with some u ∈ F×
p or not. Hence we have

K(A) =
∑

η∈Dp,m

∑
(Z1,w)

(χ̃η)(det
(

Z1 w
tw d−1(1−tr(Z1))

)
).

For each η ∈ Dp,m put

K(A)η =
∑

(Z1,w)

(χ̃η)(det
(

Z1 w
tw d−1(1−tr(Z1))

)
)

We note that (χ̃η)2 6= 1 for any η. Hence by Proposition 5.4 we have

K(A)η = Am,pJη

∑
Z1∈Sm−1(Fp)

(χ̃η)∗(detA)(χ̃η)∗(detZ1)(χ̃η)∗(1 − tr(Z1))
(

det Z1

p

)m

,

where Jη = J(χ̃η,
(

∗
p

)
) or 1 according as m is even or odd, and (χ̃η)∗ = χ̃η

(
∗
p

)m−1

.

This proves the assertion if m is odd. Assume that m is even. Then it is easily
seen that the set {χ̃η

(
∗
p

)
}η∈Dp,m of Dirichlet characters coincides with {χ̃η}η∈Dp,m .

Moreover (χ̃η)2 6= 1 for any η. This proves the assertion. ¤

Let χ be a Dirichlet character mod N. Fix a prime factor p of N. For an integer
n prime to p, take an integer m such that

m ≡
{

n mod pe

1 mod N/pe .

We then put

χ(p)(n) =
{

χ(m) if (n, p) = 1
0 if (n, p) 6= 1 .

Then it is independent of the choice of m, and χ(p) is a character mod pe, and we
have χ =

∏
p|N χ(p).

Theorem 5.6. Let N = p1 · · · pr with p1, · · · , pr distinct odd prime numbers. Put
li = G.C.D(pi − 1,m). Let χ be a primitive Dirichlet character mod N. Let u0,i be
a primitive li-th root of unity mod pi. Let A ∈ Lm>0.
(1) If χ(pi)(u0,i) 6= 1 for some i. Then we have h(A, χ) = 0.

(2) Assume that χ(pi)(u0,i) = 1 for all i. Fix a character χ̃ such that χ̃m = χ.
(2.1) Let m be even. Then we have

h(A,χ) =
r∏

i=1

(−1)m(pi−1)/4p
(m−2)/2
i γm,pi

×
∑

η∈DN,m

(χ̃η)(det A)J(χ̃η,
( ∗

N

)
)Jm−1(χ̃η).
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(2.2) Let m be odd, and assume that χ2 is primitive. Then we have

h(A,χ) =
r∏

i=1

(−1)(m−1)(pi−1)/4p
(m−1)/2
i γm,pi

×
∑

η∈DN,m

(χ̃η)(det A)Jm−1(χ̃η).

Proof. We note that the mapping DN 3 χ 7→ (χ(p1), · · · , χ(pr)) ∈ Dp1 × · · · × Dpr

induces a bijection from DN,m to Dp1,m×· · ·×Dpr,m. We also note that Jm(η1, η2) =∏r
i=1 Jm(η(pi)

1 , η
(pi)
2 ) for primitive characters η1 and η2 mod N. Moreover η2

j is

primitive if and only if η
(pi)
j

2
6= 1 for any 1 ≤ i ≤ r. Thus the assertion follows from

Theorem 5.5 and [[11], Lemma 3.2]. ¤

Now we give explicit formulas for Jm(χ, η) and Im(χ, η).

Proposition 5.7.Let χ and η be primitive characters mod p. Assume that χ2 6= 1.
Put cm(χ, η) = 1 or 0 according as χmη = 1 or not.
(1) Assume that m is odd. Then

Im(χ, η) = cm(χ, η)
(
−1
p

)(m−1)/2

p(m−1)/2(p − 1)Jm−1(χ
(
∗
p

)
, η).

(2) Assume that m is even. Then

Im(χ, η) = cm(χ, η)
(
−1
p

)m/2

p(m−2)/2(p − 1)χ(−1)J(χ,

(
∗
p

)
)Jm−1(χ

(
∗
p

)
, η).

Proof. By Proposition 5.4, we have

Im(χ, η) = I ′m ×

 p(m−1)/2
(

(−1)(m−1)/2

p

)
if m is odd

p(m−2)/2
(

(−1)(m−2)/2

p

)
J(χ,

(
∗
p

)
) if m is even,

where

I ′m =
∑

zmm∈Fp

Z1∈Sm−1(Fp)×

χ(zmm)χ(detZ1)
(

detZ1

p

)
η(zmm + tr(Z1))

(
zmm

p

)m−1

.

Then we have

I ′m =
∑

zmm∈F
×
p

Z1∈Sm−1(Fp)×

χ(zmm)η(zmm)χ(detZ1)
(

det Z1

p

)
η(1+z−1

mmtr(Z1))
(

zmm

p

)m−1

.

Put Y1 = −z−1
mmZ1. Then detY1 = (−1)m−1z1−m

mm detZ1. Hence we have

I ′m = χ((−1)m−1)
(

(−1)m−1

p

)
×

∑
zmm∈F×

p

χ(zmm)mη(zmm)
∑

Y1∈Sm−1(Fp)×

χ(detY1)
(

det Y1

p

)
η(1 − tr(Y1)).
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We have ∑
zmm∈F×

p

χ(zmm)mη(zmm) = p − 1 or 0

according as χmη is trivial or not. This proves the assertion. ¤

Proposition 5.8. Let χ and η be as in Proposition 5.7.
(1) Assume that m is odd. Then

Jm(χ, η) =
(

(−1)(m−1)/2

p

)
p(m−1)/2

×{J(χ, χm−1η)Jm−1(χ
(
∗
p

)
, η) + η(−1)Im−1(χ

(
∗
p

)
, η)}.

(2) Assume that m is even. Then

Jm(χ, η) =
(
−1
p

)m/2

p(m−2)/2J(χ,

(
∗
p

)
)

×{J(χ
(
∗
p

)
, χm−1

(
∗
p

)
η)Jm−1(χ

(
∗
p

)
, η) + η(−1)Im−1(χ

(
∗
p

)
, η)}.

Proof. By Proposition 5.4, we have

Jm(χ, η) = (J ′
m + J ′′

m) ×

 p(m−1)/2
(

(−1)(m−1)/2

p

)
if m is odd

p(m−2)/2
(

(−1)(m−2)/2

p

)
J(χ,

(
∗
p

)
) if m is even,

where

J ′
m =

∑
zmm∈Fp,zmm 6=1

Z1∈Sm−1(Fp)×

(
det Z1

p

)(
zmm

p

)m−1

χ(zmm)χ(detZ1)η(1 − zmm − tr(Z1)),

and

J ′′
m =

∑
Z1∈Sm−1(Fp)×

(
det Z1

p

)
χ(detZ1)η(−tr(Z1)).

Then we have J ′′
m = η(−1)Im−1(χ

(
∗
p

)
, η). Moreover

J ′
m =

∑
zmm∈Fp,zmm 6=1

Z1∈Sm−1(Fp)×

χ(zmm)
(

detZ1

p

)(
zmm

p

)m−1

χ(detZ1)

×η(1 − zmm)η(1 − (1 − zmm)−1tr(Z1)).
Put Y1 = (1 − zmm)−1Z1. Then detY1 = (1 − zmm)1−m det Z1. Hence we have

J ′
m =

∑
zmm∈Fp

χ(zmm)
(

zmm

p

)m−1 (
1 − zmm

p

)m−1

χ(1 − zmm)m−1η(1 − zmm)

×
∑

Y1∈Sm−1(Fp)×

(
det Y1

p

)
χ(det Y1)η(1 − tr(Y1)).

This proves the assertion. ¤
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Theorem 5.9. Let χ be a primitive character mod p.
(1) Let m be odd, and assume that χ2 6= 1.
(1.1) Assume that χm 6= 1. Then

Jm(χ
(
∗
p

)i

, χ) =
(
−1
p

)(m−1)/2

p(m−1)/2J(χ
(
∗
p

)i

, χm)Jm−1(χ
(
∗
p

)i+1

, χ).

(1.2) Assume that χm = 1. Then

Jm(χ
(
∗
p

)i

, χ) = pm−1

(
−1
p

)i+1

J(χ
(
∗
p

)i+1

,

(
∗
p

)
)Jm−2(χ

(
∗
p

)i

, χ).

(2) Let m be even.

(2.1) Assume that χm
(

∗
p

)i+1

6= 1. Then

Jm(χ
(
∗
p

)i

, χ) =
(
−1
p

)(m−2)/2

J(χ
(
∗
p

)i

,

(
∗
p

)
)J(χ

(
∗
p

)i+1

, χm

(
∗
p

)i+1

)Jm−1(χ
(
∗
p

)i+1

, χ).

(2.2) Assume that χm
(

∗
p

)i+1

= 1. Then

Jm(χ
(
∗
p

)i

, χ) = χ(−1)pm−1J(χ
(
∗
p

)i

,

(
∗
p

)
)Jm−2(χ

(
∗
p

)i

, χ).

Proof. Let m be odd. Then, by (1) of Proposition 5.8, we have

Jm(χ
(
∗
p

)i

, χ) =
(
−1
p

)(m−1)/2

p(m−1)/2

×{J(χ
(
∗
p

)i

, χm)Jm−1(χ
(
∗
p

)i+1

, χ) + χ(−1)Im−1(χ
(
∗
p

)i+1

, χ)}.

Thus the assertion holds if χm 6= 1. Assume that χm = 1. Then by (2) of Proposition
5.8 and (2) of Proposition 5.7 we have

Jm−1(χ
(
∗
p

)i+1

, χ) =
(
−1
p

)(m−1)/2

p(m−3)/2J(χ
(
∗
p

)i

,

(
∗
p

)
)

×J(χ
(
∗
p

)i

, χm−1

(
∗
p

)i

)Jm−2(χ
(
∗
p

)i

, χ).

and

Im−1(χ
(
∗
p

)i+1

, χ) =
(
−1
p

)(m−3)/2

p(m−3)/2(p − 1)χ(−1)
(
−1
p

)i+1

×J(χ
(
∗
p

)i

,

(
∗
p

)
)Jm−2(χ

(
∗
p

)i

, χ).

We note that J(χ
(

∗
p

)i

, χm) = −1, χ(−1) = 1 and

J(χ
(
∗
p

)i

, χm−1

(
∗
p

)i

) = J(χ
(
∗
p

)i

, χ

(
∗
p

)i

) = −χ(−1)
(
−1
p

)i

=
(
−1
p

)i+1

.

This proves the assertion.
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Let m be even. Then, by (2) of Proposition 5.8, we have

Jm(χ
(
∗
p

)i

, χ) =
(
−1
p

)(m−2)/2

p(m−2)/2J(χ
(
∗
p

)i

,

(
∗
p

)
)

×{J(χ
(
∗
p

)i

, χm

(
∗
p

)i+1

)Jm−1(χ
(
∗
p

)i+1

, χ) + χ(−1)Im−1(χ
(
∗
p

)i+1

, χ)}.

Thus the assertion holds if χm
(

∗
p

)i+1

6= 1. Assume that χm
(

∗
p

)i+1

= 1. Then by
(1) of Proposition 5.7 and (1) of Proposition 5.8, we have

Jm−1(χ
(
∗
p

)i+1

, χ) =
(
−1
p

)(m−2)/2

p(m−2)/2

×J(χ
(
∗
p

)i+1

, χm−1)Jm−2(χ
(
∗
p

)i

, χ),

and

Im−1(χ
(
∗
p

)i+1

, χ) =
(
−1
p

)(m−2)/2

p(m−2)/2Jm−2(χ
(
∗
p

)i

, χ)(p − 1).

We note that J(χ
(

∗
p

)i

, χm
(

∗
p

)i+1

) = −1,
(

−1
p

)i+1

= 1 and

J(χ
(
∗
p

)i+1

, χm−1) = J(χ
(
∗
p

)i+1

, χ

(
∗
p

)i+1

) = −χ(−1)
(
−1
p

)i+1

= −χ(−1).

This proves the assertion.
¤

Corollary. Let χ be a primitive character with an odd square free conductor N.
Assume that χ2 is primitive. Then the value Jm(χ) is nonzero.

Proof. The assertion follows directly from the above theorem if N is an odd prime.
In general case, the assertion can also be proved by remarking that Jm(χ) =∏

p|N Jm(χ(p)) and that χ(p)2 6= 1 for any p|N. ¤

To compare our present result with the result in [11], we give the following:

Proposition 5.10. Let χ be a primitive Dirichlet character mod p. Assume that
χ2 6= 1. Then we have

J(χ,

(
∗
p

)
)J(χ

(
∗
p

)
, χ

(
∗
p

)
) =

(
−1
p

)
χ̄(4)p.

Proof. The assertion follows from [[1], Theorems 2.3 and 2.4]. ¤

Remark. The above proof is due to the referee. We note that the asserion can
also be proved by using the same argument as in the proof of Theorem 5.5, and
Lemma 5.3.

By virtue of the above proposition, we see that Theorem 5.6 coincides with [11],
Proposition 3.7 in case m = 2.
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Now let
F (Z) =

∑
A∈Ln≥0

cF (A)e(tr(AZ))

be an element of Mk(Spn(Z)) and let χ be a Dirichlet character mod N. Assume
N 6= 2. Then by [[11], Proposition 3.1], we have

L(s, F, χ) =
∑

A∈Ln>0/SLn(Z)

cF (A)h(A,χ)
e(A)(detA)s

.

Thus by Theorem 5.6 we easily obtain:

Theorem 5.11. Let N, pi, li, u0,i (i = 1, · · · , r) and χ be as in Theorem 5.6, and
let F be an element of Mk(Spn(Z)).
(1). If χ(pi)(u0,i) 6= 1 for some i. Then we have L(s, F, χ) = 0.

(2). Assume that χ(pi)(u0,i) = 1 for any i. Fix a character χ̃ such that χ̃n = χ.
(2.1) Let n be even. Then we have

L(s, F, χ) =
r∏

i=1

(−1)(n−2)(pi−1)/4γn,pi

×
∑

η∈DN,n

(χ̃η)(2n)J(χ̃η,
( ∗

N

)
)Jn−1(χ̃η)L∗(s, F, χ̃η).

(2.2) Let n be odd, and assume that χ2 6= 1. Then we have

L(s, F, χ) =
r∏

i=1

(−1)(n−1)(pi−1)/4γn,pi

×
∑

η∈DN,n

(χ̃η)(2n−1)Jn−1(χ̃η)L∗(s, F, χ̃η).

6. Twisted Koecher-Maaß series of the first kind of the D-I-I lift

By Theorems 4.1 and 5.11, we obtain the following.

Theorem 6.1. Let k and n be positive even integers such that n ≥ 4, 2k−n ≥ 12.
Let h(z) and En/2+1/2 be as in Section 4. Let N be a square free odd integer,
and N = p1 · · · pr be the prime decomposition of N. For each i = 1, · · · , r let
li = GCD(n, pi − 1) and ui ∈ Z be a primitive li-th root of unity mod pi.
(1) Assume χ(pi)(ui) 6= 1 for some i. Then L(s, In(h), χ) = 0.
(2) Assume χ(pi)(ui) = 1 for all i. Then

L(s, In(h), χ) = 2ns
∑

η∈DN,n

χ̃η(2n)J(χ̃η,
( ∗

N

)
)Jn−1(χ̃η)

×{cn,NR(s, h,En/2+1/2, χ̃η)
n/2−1∏

j=1

L(2s − 2j, S(h), (χ̃η)2)

+dn,Nch(1)
n/2∏
j=1

L(2s − 2j + 1, S(h), (χ̃η)2)},
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where cn,N and dn,N are nonzero rational numbers depending only on n and N, and
χ̃ is a character such that χ̃n = χ.

Remark. In the case n = 2, an explicit formula for L(s, I2(h), χ) was given by
Katsurada-Mizuno [11].

7. Applications

Let h1 and h2 be modular forms of weight k1 + 1/2 and k2 + 1/2, respectively,
and χ be a Dirichlet character . In Section 2, we reviewed on the algebraicity of
the values R̃(m,h1, h2, χ) at half integers. We then naturally ask the following
question:
Question. What can one say about the algebraicity of R̃(m, h1, h2, χ) with m an
integer?

As an application of Theorem 6.1, we give a partial answer to this question. We
note that

R(s, h1, h2, χ) = (1 − 2−2s+k1+k2−1χ2(2))−1R̃(s, h1, h2, χ)

if the conductor of χ is odd. Hence it suffices to consider the above question for
R(m,h1, h2, χ) with integer m if k1 + k2 is even.

Let k and n be positive even integers such that n ≥ 4, 2k − n ≥ 12. Let h(z)
and En/2+1/2 be as in Section 4. For a Dirichlet character χ of odd square free
conductor N = p1 · · · pr, we define

R(χ)(s, h,En/2+1/2) =
∑

η∈DN,n

χη(2n)J(χη,
( ∗

N

)
)Jn−1(χη)

×R(s, h,En/2+1/2, χη)
n/2−1∏

j=1

L(2s − 2j, S(h), (χη)2).

Theorem 7.1. There exists a finite dimensional Q-vector space Wh,En/2+1/2 in C
such that

R(χ)(m,h,En/2+1/2)
πmn

∈ Wh,En/2+1/2

for any integer n/2 + 1 ≤ m ≤ k − n/2 − 1 and all characters χ of odd square free
conductor such that χn is primitive.

Proof. Put

M(χ)(s, S(h)) =
∑

η∈DN,n

χη(2n)J(χ̃η,
( ∗

N

)
)Jn−1(χη)

×
n/2∏
j=1

L(2s − 2j + 1, S(h), (χη)2).

Then by Corollary to Proposition 3.1, we have

M(χ)(m, S(h))
πmn

∈ Qu−(S(h))n/2π−n2/4.

By Theorem 6.1, we have
L(m, In(h), χn)

= 2nm{cn,NR(χ)(m,h,En/2+1/2) + dn,Nch(1)M(χ)(m,S(h))}.
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Hence by Theorem 2.2, we have

R(χ)(m,h,En/2+1/2)
πmn

∈ Qu1 ⊗Q VIn(h) + Qu2

with some complex numbers u1 and u2, where VIn(h) is the Q-vector space associ-
ated with In(h) in Theorem 2.2. This proves the assertion. ¤

By the above theorem, we immediately obtain the following:
Theorem 7.2. Let d > dimQ Wh,En/2+1/2 . Let m1,m2, · · · ,md be integers such that
n/2+1 ≤ m1,m2, · · · ,md ≤ k−n/2− 1 and χ1, χ2, · · · , χd be Dirichlet characters
of odd square free conductors N1, N2, · · · , Nd, respectively such that χn

i is primitive

for any i = 1, 2, · · · d. Then the values
R(χ1)(m1, h, En/2+1/2)

πm1n , · · · ,

R(χd)(md, h, En/2+1/2)
πmdn are linearly dependent over Q.

Corollary. In addition to the notation and the assumption as above, assume that
n ≡ 2 mod 4. Then the values{

R(mi, h, En/2+1/2, χiηij)
π2mi

}
1≤i≤d,ηij∈DNi,n

are linearly dependent over Q.

Proof. Put Ln(s, S(h), (χiηij)2) =
∏n/2−1

l=1 L(2s− 2l, S(h), (χiηij)2). Then by The-

orem 1.1, the value Ln(mi,S(h),(χiηij)
2)

πmi(n−2) belongs to Qu+(S(h))n/2−1π−n2/4+n/2, and
in particular if n ≡ 2 mod 4, then it is nonzero for any χ. Moreover, by Corollary
to Theorem 5.10, J(χiηij , ( ∗

N ))Jn−1(χiηij) is non-zero and belongs to Q. Thus the
assertion holds. ¤

As another application of Theorem 6.1, we also have a functional equation for
R(χ)(s, h,En/2+1/2). Namely, by Theorem 2.1 we obtain:
Theorem 7.3. Let h be as above. Let χ be a primitive character of odd square

free conductor N. Assume that n ≡ 2 mod 4, and that χn is primitive. Put

R(χ)(s, h,En/2+1/2) = N2sτ(χn)−1γn(s)R(χ)(s, h,En/2+1/2).

Then R(χ)(s, h,En/2+1/2) has an analytic continuation to the whole s-plane, and
has the following functional equation:

R(χ)(k − s, h,En/2+1/2) = R(χ)(s, h,En/2+1/2).

Remark. (1) As functions of s, the Dirichlet series{
R(s, h,En/2+1/2, χiηij)

}
1≤i≤d,ηij∈DNi,n

are linearly independent over C.

(2) In the case of n = 2, this type of result was given for R(m, h,E3/2) with E3/2

Zagier’s Eisenstein series of weight 3/2 by [11].
(3) The meromorphy of this type of series was derived in [19] by using so called

the Rankin-Selberg integral expression in more general setting, but we don’t know
whether the functional equation of the above type can be directly proved without
using the above method.
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