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EXPLICIT FORMULAS FOR THE TWISTED KOECHER-MAASS
SERIES OF THE DUKE-IMAMOGLU-IKEDA LIFT AND THEIR
APPLICATIONS

HIDENORI KATSURADA

ABSTRACT. We give an explicit formula for the twisted Koecher-Maaf} series
of the Duke-Imamoglu-Tkeda lift. As an application we prove a certain alge-
braicity result for the values of twisted Rankin-Selberg series at integers of
half-integral weight modular forms, which was not treated by Shimura [19].

Keywords Koecher-Maafl series, Duke-Imamoglu-Ikeda lift, Rankin-Selberg
series of half-integral weight modular forms

Mathmatical Subject Classification(2000) 11F67

1. INTRODUCTION

It is an interesting problem to give an explicit formula for the Koecher-Maafl
series of a Siegel modular form F for the symplectic group Sp,(Z), and several
results have been obtained (cf. Boécherer [2], Ibukiyama and Katsurada [7], [8],
[9]). Such explicit formulas are not only interesting in its own right but also have
some important applications in the theory of modular forms. For example, we refer
to [3], [6]. Now we consider a twist of such a Koecher-Maaf series by a Dirichlet
character x. As for this, in view of Saito [15] for example, we can naturally consider
the following Dirichlet series:

Z x( 22 /2] det T)er(T)

F,
(s, ) )(det T)® ’

where T runs over a complete set of representatives of S L, (Z)-equivalence classes
of positive definite half-integral symmetric matrices of degree n, cg(T') is the T-th
Fourier coefficient of F' and e(T) = #{U € SL,(Z);T[U] = T}. We will sometimes
call L*(s, F, x) the twisted Koecher-Maaf} series of the second kind.

On the other hand, Choie and Kohnen [4] introduced a different type of “twist”.
For a positive integer N, let SL, ny(Z) = {U € SL,(Z);U = 1,, mod N} and
en(T) = #{U € SL, n(Z);T[U] = T}. For a primitive Dirichlet character x mod
N, the Koecher-Maa$ series L(s, F, x) of F twisted by x is defined to be

det T)S ’

where T' runs over a complete set of representatives of SL,, n(Z)-equivalence classes
of positive definite half-integral symmetric matrices of degree n. In [4], Choie
and Kohnen proved an analytic continuation of L(s, F,x) to the whole s-plane
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2 HIDENORI KATSURADA

and a functional equation (cf. Theorem 2.1). Moreover they got a result on the
algebraicity of its special values (cf. Theorem 2.2.) We shall call L(s, F,x) the
twist of the first kind.

In this paper we give explicit formulas for the twisted Koecher-Maaf} series of
the first and second kinds associated with the Duke-Imamoglu-Ikeda lift and apply
them to the study of the special values of the Rankin-Selberg series for half-integral
weight modular forms. We explain our main results more precisely. Let k and n
be positive even integers such that n > 4 and 2k — n > 12. For a cuspidal Hecke
eigenform h in the Kohnen plus subspace of weight k — n/2 + 1/2 for T'g(4), let
I,(h) be the Duke-Imamoglu-Tkeda lift of h to the space of cusp forms of weight
k for Sp,(Z). Moreover let S(h) be the normalized Hecke eigenform of weight
2k — n for SLs(Z) corresponding to h under the Shimura correspondence, and
E, /2412 be Cohen’s Eisenstein series of weight n/2 + 1/2 for I'g(4). We then
give explicit formulas for L(s, I,,(h), x) and L*(s, I, (h),x) in terms of the twisted
Rankin-Selberg series R(s, h, E,,/241/2,m) of h and E,, /5.1/o and twisted Hecke’s
L-function L(s,S(h),n’) of S(h), where n and 1’ are Dirichlet characters related
with x. It is relatively easy to get an explicit form of L*(s, I, (h),x). In fact, by
using the same argument as in Ibukiyama and Katsurada [8], we can easily obtain
its explicit formula (cf. Theorem 4.1). On the other hand, it seems nontrivial to
get that of L(s, I,(h), x) (cf. Theorem 6.1), and we need some explicit formula for
a certain character sum associated with a Dirichlet character (cf. Theorem 5.6).
Using Theorem 6.1 combined with the result of Choie-Kohnen, we prove certain
algebraicity results on R(s,h, Ey,/211/2,7m) at an integer s = m (cf. Theorems 7.1
and 7.2), which were announced in [10]. We note that the algebraicity of the special
values of such a Rankin-Selberg series at half-integers was investigated by Shimura
[19]. However there are few results on the algebracity of such values at integers.
As an attempt, Mizuno and the author [11] proved linear dependency of Rankin-
Selberg L-values of a cuspidal Hecke eigenform belonging to Kohnen plus subspace
of half integral weight and the Zagier’s Eisenstein series of weight 3/2. Our present
result can be regarded as a generalization of our previous result.

Notation We denote by e(r) = exp(2my/—1x) for a complex number z. For a
commutative ring R, we denote by M,,,(R) the set of (m,n)-matrices with entries
in R. In particular put M,,(R) = My, (R). For an (m,n)-matrix X and an (m,m)-
matrix A, we write A[X] =X AX, where !X denotes the transpose of X. Let a be
an element of R. Then for an element X of M,,,,(R) we often use the same symbol X
to denote the coset X mod aM,,,(R). Put GL,,(R) = {A € M,,,(R) | det A € R*},
and SL;,(R) = {A € M,,(R) | det A = 1}, where det A denotes the determinant
of a square matrix A and R* is the unit group of R. We denote by S,,(R) the set
of symmetric matrices of degree n with entries in R. For a subset S of M, (R) we
denote by S* the subset of S consisting of non-degenerate matrices. In particular,
if S is a subset of S,,(R) with R the field of real numbers, we denote by S~ (resp.
S>0) the subset of S consisting of positive definite (resp. semi-positive definite)
matrices. The group SL,(Z) acts on the set S, (R) in the following way:

SLn(Z) x Sp(R) 3 (9,A) — ‘gAg € Su(R).

Let G be a subgroup of GL,(Z). For a subset B of S,(R) stable under the action
of G we denote by B/G the set of equivalence classes of B with respect to G.
We sometimes identify B/G with a complete set of representatives of B/G. Two
symmetric matrices A and A’ with entries in R are said to be equivalent with respect
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to G and write A ~g A’ if there is an element X of G such that A’ = A[X]. For
an integral domain R of charactersitic different from 2, let £,,(R) denote the set
of half-integral matrices of degree n over R, that is, £,,(R) is the set of symmetric
matrices of degree n with entries in the field of fractions of R whose (i, j)-component
belongs to R or %R according as ¢ = j or not. In particular we put £,, = £,(Z).

X 0 >.ForasubsetSofa

For square matrices X and Y we write X 1Y = < 0 v

ring R we put SY = {s? | s € S}.

2. TWISTED KOECHER-MAASS SERIES

_ On _1n
Put J, = < 1, o,
zero matrix of degree n, respectively. Furthermore, put

Spn(Z) = {M € GL2n(Z) | Jn[M] = Jn}-

) , where 1,, and O,, denotes the unit matrix and the

Let [ be an integer or a half-integer, and N a positive integer. Let F(") (N) be the
congruence subgroup of Sp,,(Z) consisting of matrices whose left lower n x n block
are congruent to O, mod N. Moreover let x be a Dirichlet character mod N. We
then denote by 9)?;(1“8") (N), x) the space of modular forms of weight [ and character
x for F(()")(N), and by @l(F(()")(N), X) the subspace of E))tl(l"(()n)(N)7 X) consisting of
cusp forms. If x is the trivial character mod N, we simply write E))tl(F(()”)(N), x) and
@l(I‘(()") (N),x) as E))tl(f‘(()") (N)) and @l(I‘(()n) (N)), respectively. Let k be a positive
integer, and let F'(Z) € Mi(Spn(Z)). Then F(Z) has the Fourier expansion:

F(Z)= > cp(T)e(tx(TZ)),

TGEn>0

where tr(X) denotes he trace of a matrix X. For N € Zs, put SL, nv(Z) =
{U € SL,(Z) | U = 1, mod N}, and for T € L, put en(T) = #{U €
SL, n(Z) | T[U] =T}. For a primitive Dirichlet character x mod N let

L(s,F,x) = 3 x(tr(T))er(T)

Ty olBinn(Z) en(T)(det T)®

be the twisted Koecher-Maafl series of the first kind of F' as in Section 1. The
following two theorems are due to Choie and Kohnen [4].

Theorem 2.1. Let F € &(Sp,(Z)), and x a primitive character of conductor N.
Put

n

(s e [I=r - G- 172,

and
A(s, F.x) = N™7(x) "' (s)L(s, F,x) - (Re(s) >> 0),
where T(x) is the Gauss sum of x, and I'(s) is the Gamma function. Then A(s, F, x)
has an analytic continuation to the whole s-plane and has the following functional
equation:
A(k -5 F7 X) = (_1)nk/2X(_1)A(Sv Fa Y)
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_ Theorem 2.2. Let I' and x be as above. Then there exists a finite dimensional
Q-vector space Vi in C such that

Lim, F, )7~ "™ € Vg

for any primitive character x and any integer m such that (n +1)/2 < m <
kE—(n+1)/2.

Now let
Z x(220/2 det T ep (T)

L*(s,F,x) = e(T)(det T)*

TeLn~o/SLn(Z)

be the twisted Koecher-Maafl series of the second kind of F' as in Section 1. We
will discuss a relation between these two Dirichlet series in Section 5.

3. REVIEW ON THE ALGEBRAICITY OF L-VALUES OF ELLIPTIC MODULAR FORMS
OF INTEGRAL AND HALF-INTEGRAL WEIGHT

In this section, we review on the special values of L functions of elliptic modular
forms of integral and half-integral weights. For a modular form g¢(z) of integral or
half-integral weight for a certain congruence subgroup I' of SLy(Z), let Q(g) denote
the field generated over Q by all the Fourier coefficients of g, and for a Dirichlet
character 1 let Q(n) denote the field generated over Q by all the values of 7.

First let

f(z) =) es(m)e(mz)
m=1
be a normalized Hecke eigenform in & (SL2(Z)), and x be a primitive Dirichlet
character. Then let us define Hecke’s L-function L(s, f, x) of f twisted by x as
L(s, f.x) = Y ep(m)x(m)m™".
m=1

Then we have the following result (cf. [18]):

Proposition 3.1. There exist complex numbers uy (f) uniquely determined up to
Q(f)* multiple such that

L(m, f,x)
2mv=1)"7(x)u; (f)
for any integer 0 < m < k—1 and a primitive character x, where 7(x) is the Gauss
sum of x, and j =+ or — according as (—=1)™x(=1) =1 or —1.
Corollary. Under the above notation and the assumption, we have

L(m, f,x)m™ € Qu;(f)

for any integer 0 < m < k — 1 and a primitive character x.

We remark that we have L(m, f,x) # 0 if m # k/2, and L(k/2, f,x) # 0 for
infinitely many Y.

Next let us consider the half-integral weight case. From now on we simply write
I{" (M) as To(M). Let

€ Q(f)Qx)

hi(z) = Z ch, (M)e(mz)
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be a Hecke eigenform in &, 4 1/2(I'0(4)), and

oo

Z Chy (M)e(mz)

m=0

hQ(Z)

be an element of My, 1/2(T'0(4)). For a fundamental discriminant D let xp be the
Kronecker character corresponding to D. Let x be a primitive character mod N.
Then we define

E(Sv h’lv h27X) = L(QS — k1 — ko + 1,(4)) Z Chy (m)chz (m)X(m)mii

m=1

where w(d) = ", *2x2(d). We also define R(s,hy, ha, x) as

R(Sa hla h2a X) = L(2S - kl - k2 + 17 XZ) Z Chy (m)chz (m)X(m)m_s

m=1

Now let S(h1) be the normalized Hecke eigenform in &ay, (SL2(Z)) corresponding to
hy under the Shimura correspondence. Then the following result is due to Shimura
[19].

Proposition 3.2. Assume that k1 > ko. Under the above notation we have

R(m + 1/27 ]’Ll, ]’LQ,X)
w_(S(h))r (@) m ket irem /=T

for any integer ko < m < ki — 1 and a primitive character x.

€ Q(h1)Q(h2)Q(x)

Proof. Let N be the conductor of x. Put
hay(2) = Y eny(m)x(m)e(mz).
m=0

Then ha, (2) € My, +1/2(4N?, x?). We can regard hy as an element of &, 41 /2(To(4N?)).
Then the assertion follows from [[19], Theorem 2]. O

Corollary. Assume that cp,(n),cp,(n) € Q for any n € Zsq. Then there exists a
one-dimensional Q-vector space Uy, 1, in C such that

E(m + 1/27 h17 h27 X)ﬂ—_2m S Uhl,h2

for any integer ko < m < ki — 1 and a primitive character x.

4. EXPLICIT FORMULAS FOR THE TWISTED KOECHER-MAASS SERIES OF THE
SECOND KIND OF THE DUKE-IMAMOGLU-IKEDA LIFT

Throughout this section, we assume that n and k are even positive integers. Let
h be a Hecke eigenform of weight k —n/2+ 1/2 for I'y(4) belonging to the Kohnen
plus space. Then h has the following Fourier expansion:

h(z) = Z cn(e)e(ez),
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where e runs over all positive integers such that (—1)*~"/2¢ = 0,1 mod 4. Let
S(h)(z) = > csmy(m)e(mz)
m=1

be the normalized Hecke eigenform of weight 2k — n for SLs(Z) corresponding
to h via the Shimura correspondence (cf. [14].) For a prime number p let 5,
be a nonzero complex number such that 3, + ﬂp_l = p‘k+"/2+1/2cs(h)(p). For
non-negative integers | and m, the Cohen function H(l,m) is given by H(l,m) =
L_,,(1—1). Here

Lp(s)
¢(2s = 1), D=0
L(s,XDx) Zﬂ(a)XDK (a)a™01-25(f/a), D +#0,D=0,1mod 4
alf
0, D = 2,3 mod 4,

where the positive integer f is defined by D = Dy f? with the discriminant Dy of
K = Q(v/D), p is the Mébius function, and oy (n) = >4 @°- Furthermore, for an
even integer | > 4, we define the Cohen Eisenstein series £y /2(2) by

Eip12(2) = Z H(l,e)e(ez).

It is known that Ej;;/5(2) is a modular form of weight [ +1/2 for I'g(4) belonging
to the Kohnen plus space.

For a prime number p let Q, and Z, be the field of p-adic numbers, and the
ring of p-adic integers, respectively. We denote by v, the additive valuation on Q,
normalized so that v,(p) = 1, and by e, the continuous homomorphism from the
additive group Q, to C* such that e,(a) = e(a) for a € Q. We put £,, , = L,,(Z,,).
We also put S,(Z,)e = 2L, and Sy (Zy)o = Sn(Zp) \ Sn(Zp)e. For a p-adic
number ¢ put

&(c)=1,—1or 0

according as Q,(v/¢) = Qyp, Qp(+v/¢)/Q, is quadratic unramified, or Q,(1/¢)/Q, is

quadratic ramified. We note that £,(D) = xp(p) for a fundamental discriminant
D. For a non-degenerate half-integral matrix 1" over Z,, let

b(Tos)= > eplte(TR)p #w (s
RESL(Qp)/Sn(Zy)

be the local Siegel series, where u,(R) = [RZy + Zy : Z;]. Then there exists a
polynomial F,(T, X) in X such that

n/2
b (T8) = E(T.p*)(1 = p*)(1 = (D) [[ (1 =2~

(cf. [12],) where &,(T) = gp((—l)”/2 det T'). For a positive definite half integral
matrix T of degree n write (—1)™/2det(2T) as (—1)"/? det(2T) = drf2 with v a
fundamental discriminant and f; a positive integer. We then put

ﬁp(T,X) - Xf’”’(fT)Fp(T,p*(”+1)/2X)7
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and

cr, ) (T) = en(or|) [T (" /21 /2) w00 By (T ).
[2
We note that ¢z, (,)(T") does not depend on the choice of 3,. Define a Fourier series
I1,(h)(Z) by
L(0)(Z)= Y cr,m(Te(tx(T2)).
T€Ln >0

In [6] Tkeda showed that I, (h)(Z) is a Hecke eigenform in & (Sp,(Z)) and its
standard L-function L(s, I,,(h), St) is given by

L(s, I.(h),St) = ((s) HL(S +k —1i,5(h)).

i=1
We call I,,(h) the Duke-Imamoglu-Tkeda lift (D-I-I lift) of A.

Theorem 4.1. Let x be a primitive Dirichlet character mod N. Then we have
n/2—1
L*(S, In(h)a X) = CnR(Sa h; En/2+1/Za X) H L(QS - 2ja S(h)v X2)
j=1

n/2
+dpen(1) [T L(2s — 25 + 1,8(h), x),

j=1
where ¢, and d,, are nonzero rational numbers depending only on n.

To prove Theorem 4.1, we reduce the problem to local computations. For a,b €
Q, let (a,b), the Hilbert symbol on Q. Following Kitaoka [13], we define the
Hasse invariant e(A) of A € S,,(Q,)* by

e(4) = H (ai,aj)p
1<i<j<n

if A is equivalent to a; L --- La, over Q, with some a1, az, - ,a, € Q). For non-
degenerate symmetric matrices A of degree n with entries in Z, we define the local
density a,(A) = a,(A, A) representing A by A as

ap(A) =271 lim p*C D244 (A, A),

a— 00

where
Ao (A A) ={X € M,,(Z,)/p* M, (Z,) | A[X] — B € p*S,(Zyp).},

Furthermore put

M= 3 o

A’€G(A)
for a positive definite symmetric matrix A of degree n with entries in Z, where G(A)
denotes the set of SL,(Z)-equivalence classes belonging to the genus of A. Then
by Siegel’s main theorem on quadratic forms, we obtain
M(A) = k5,272 det AP [T o (4) 7

p
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where e, = 1 or 2 according as n = 1 or not, and x, = I'c(n/2) H:Lﬁ_l Ic(29)

with T'c(s) = 2(27) ~°T'(s) (cf. Theorem 6.8.1 in [13] ). Put
Fp={do € Zy, | vp(do) < 1}
if p is an odd prime, and
Fo={do €Zy | do=1mod 4, or dg/4 = —1 mod 4, or vy(dy) = 3}.
For d € Z,; put
Sn(Zyp, d)
= {T € Su(Zy) | (—1)"/?det T = p*d mod Z;" with some i € Z},

and S, (Zy,,d)y = Sp(Zp,d) N S, (Zy), for x = e or o. Put £$LO,§, = 5,(Z,)r and
L',gg;,(d) = Sp(Z,, d)ﬂﬁg%. Let ¢y, be the constant function on £ , taking the value
1, and €, , the function on L , assigning the Hasse invariant of A for A € L} . We
sometimes drop the suffix and write ¢, p, as ¢, or ¢ and the others if there is no fear
of confusion. From now on we sometimes write w = ! with [ = 0 or 1 according
asw =t ore For T € S,(Zp)., put T(® = 27T, FIEO)(T,X) = F,(T©, X), and
EEO) (T,X) = ﬁp(T(O), X). For dy € F, and w = €' with [ = 0,1, we define a formal

power series PT(L?;);(do, w,X,t) in t by
7(0)
_ F,” (B, X)
(0) _ 1 p ’ vp(det B)
Pn,p(d(%waXat) - H(d()vnvl) Z ap(B) W(B)t )
BEL;,(do)
where

Iﬁ(doﬂhl) = H(do,’n,l) {( )n(n+2 /8(( )n/227d0)2}162’p‘
Let F denote the set of fundamental discriminants, and for [ = +1, put

FO = {dy € F | ldy > 0}.

Theorem 4.2. Let the notation and the assumption be as above. Then for Re(s) >
0, we have

L*(S,In(h),X) _ KHQnsflfn/2

> { Z (|d0|)|d ‘n/4 k/2+1/4 HP(O) do, Lp,ﬁp,p_s+k/2+”/4+1/4x(p))
doeF(=1D"/?) P

+ (_1)71(n+2)/8

X Z ((*1)n/227do)QCh(|do|)|d0\n/47k/2+1/4HPrg?;),(do,Ep,5p,P78+k/2+n/4+1/4x(19))}-
doe F((=1)"/?) P

Proof. Let T € Ly ~o. Then the T-th Fourier coefficient c;, ) (T) of I,(h) is
uniquely determined by the genus to which 7" belongs, and, by definition, it can be
expressed as

cr,m(T) = en(por|)i "> ”2Hﬁ<°><2T,ﬁp>

We also note that
fk n/2-1/2 _ |bT|7(k/27n/471/4)(det(QT))(k/an/élfl/éL)
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and e(2T) = e(T) for T € L,,~o. Hence we have

7(0)
cr, (1) k/24n/a+1/4) | —k/2+n/4+1/4 Fy (2T, By)
—— = = det(2T ? ? —_
3 o et(27) or| en(pr) I o (2T
27" €G(27)
Thus, similarly to [7], Theorem 3.3, (1), and [8], Theorem 3.2, we obtain
L*(S7In(h)7X) = HnQns_l_n/Z Z Ch(‘d0|)|do|n/4_k/2+l/4

doeF((=1D)"/?)
X{H PO)(do, 1, By, p~*TH/ZHM AN (p))

(=) ((—1)"/22, dg 2HP( )(do, €, By, p~ TR Ay (p)),

This proves the assertion.
O

TFor a non-negaive integer r we define a polynimial ¢,(z) in x by ¢.(2) =
Lo, (1—2a").
Proposition 4.3. Let dy € F, and & = g(do). Then
(p~ "))
bryja—1(p2)(1 — p=/2&)
§ (1+ £2p~/273/2)(1 4 £2p~/2-5/2€2) — got2p~/22(X + X~ + pl/2-7/2 4 p=1/24n/2)
(1= p2Xe2)(1 = p2X 1) [[1(1 - 2p2-1X) (1 — 2p=2-1X 1)

7

PT(LO) (do, L, )(7 t) =

and

1 £2
PO (dy, e, X, t) = 0 )
(do )= o 0 — %) TI72(1 — 12p=2X)(1 — t2p=2i X 1)

O 1
1, O

D = {zx € Mayn(Zy) | det(Hy[z]) € dp'Z3" with some i € Zxo}.
We then define Zay(u, e, d) as

m@@@:Lﬂmmwwmuwwx

with uw = p~*, where | x|, denotes the normalized valuation on Q,, and dz is the
measure on Moy »(Qp) normalized so that the volume of May »(Zp) is 1. Moreover
put

Proof. Put H, = < > , and for d € Z; put

S

1
Z2k,e(u7 Ela d) = §(Z2k,n(ua 5l7 d) + Z2k,n(_u7 Ela d))a

and 1
Z2k‘,o(u7 El) d) = §(Z2k,n(u7 ela d) - ZQk,'rL(_u7 517 d))

Then it is well known that

n —v — b 2762’pT7pik vy (de
Zokew(de) (s €1, (—1) P2p=veldo)de)y = ¢, (p7 1) Z p(a(T))(pkt) p(det(T)
TeLl) (do) ?
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for dy € F,, where z(dy) = e or o according as v,(dp) is even or odd. Recall that

(1—p M) T — p 2420
1— 5(2_52,pT)p7k7+n/2

by(27 020 T, pF) = FOT, p~*)

and
FISO)(T,pfk) — p(fk/2+(n+1)/4)(u,,(dct T)fyp(do))ﬁzgo) (T, pfk+(n+1)/2)'

Hence we have
1 7k) HﬁZQ(l _ 72k+2i)
I (_1\n/2, —vp(do) _ N p i=1 p
ZQk,m(do)(u75 »( ]-) pr dO) ¢n(p ) 1— 5(2_62=1’T)p7k+"/2
xp(k/Q—("+1)/4)Vp(do)péo) (do, 5l7p—k+(n+1)/2’ upk/2+("+1)/4).

Let T(dy,w, X,t) denote the right-hand side of the formula for w = ¢! (I = 0,1) in
the proposition. Then, by [[16], Theorem 3.4 (2)], we have

1—p n/2 o —2k+2i
ot 2 (1) 2 ) = g,y E LIS

) pB12= (1) [ (o) (o gl (A 1)/2 /24 (1) 4y,

(Remark that there are misprints in [16]; the (¢ 1),, on page 197, lines 9 and 15
should be (¢~ 1),.) Hence we have

—k+(n+1)/2 upk/2+(n+1)/4) — —k+(n+1)/27upk'/2+(n+1)/4)

PT(LO)(dOvEl7p T(d07517p
for infinitely many positive integers k. Hence we have
PO(dy, ', X, t) = T(do, ", X, t).

O
Proof of Theorem 4.1. ,
Put Q@ = {w,}, and let dy € FEU) Pyt
P(s, do, 2, x) HP(O) do,wp, By, p~THEEA Ay ().
Then by Proposition 4.3, we have
P(57 d07 {[/;D}a X)

n/2—1 n/2

= |do| 7SR/ ZHN/A=3/4y (4 H ¢(20)L(n/2, xa,) HL (25 +2i —n, S(h), x?)
i=1

xL(2s —n+1,5(h H{ (1472 ()) (1 + x40 ()22 2x(p)?)

~Xdo (D)0 > 3/2><(p) Bp(L+pt 2720 ) (1 p~ /225y,
We note that L(s,h) and L(s, E,/241) can be expressed as

L(s,h) = L(2s,S(h)) Z c(|do])|do| H(1 — xa (p)pF/2172s),
doeF((=1"/?) P

and
L(s,Eyj211) = C(25)C(25 —n + 1)

X Z L(1—n/2,x4,)|do|™° H(l _Xdo(p)pn/Z—lfzs),

doe F((=D"/?) P
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and therefore, we easily see that L(s, h, E,/241/2,X) can be expressed as

R(S7 ha En/2+1/27X) = L<235 S(h)7X2)L(28 -—n+ 17 S(h’)a X2)
X Z |d0|_qc(|d0|)X(d0)L(1 _n/2deo)

doeF((=1"/?)

< [TH@ + 72X A + xa0 ()20~ 221 (p)?)

—Xao (P)D T3 2x(p)2 By (L + pM /2728, ) (1 4 p~ /228 71}
(cf. [17], Lemma 1.) Thus, by remarking the functional equation
L(1 = n/2,x4,) = 27270721 (n/2)|do| " V/2L(n/2, X4, ),
we have
Z Ch(|do|)\do|7s+k/2+n/4ﬂ/4p(8,do,{Lp}aX)
doeF(=1)"/?)

n/2-1 2n/2—1ﬂ_n/2 n/2-1

_ ; . ; 2
= £[1 C(QZ)WR(S» h, En/2+1/27 X) £[1 L(2s —2i+n,S(h),x").
On the other hand, if dy # 1, by Proposition 4.3, we have

P(sdea {gp}y)() =0.
Thus if n = 2 mod 4, for any do € F(=1D"""),

P(s,do,{ep},x) = 0.
If n = 0 mod 4, by Proposition 4.3, we have

n/2-1 n/2
P(s,1,{ep},x) = C(n/2) T ¢(@i) J]L(2s —2i+1,5(h),x>).
i=1 i=1
Thus the assertion follows from Theorem 4.2. O

5. RELATION BETWEEN TWISTED KOCHER-MAASS SERIES OF THE FIRST AND
SECOND KINDS

Let N be a positive integer. Let g be a periodic function on Z with a period N and
¢ a polynomial in 1, -+ ,¢,. Then for an element © = (a; mod N, -+ ,a, mod N) €
(Z/NZ)", the value g(¢(a1,- - ,a,)) does not depend on the choice of the represen-
tative of u. Therefore we denote this value by g(¢(u)). In particular we sometimes
regard a Dirichlet character mod N as a function on Z/NZ.

For a Dirichlet character x mod N and A € L,,~q, put

h(A,y) = > x(tr(A[U])).
UESLm,N(Z)\SLm (Z)

As was shown in [[11], Proposition 3.1], the twisted Koecher-Maaf series of the first
kind of a Siegel modular form can be expressed in terms of h(A, x) as stated later.
Therefore we shall compute h(A, x) in the case where A is an element of £,,~¢. For
A = (aij)mxm € Sm(Z/NZ) and c € Z/NZ, put

RN(A,¢) ={X = (@i})mxm € Mm(Z/NZ) | > Y aapziazip —c=0
i=1 a,8=1
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and det X — 1 =0}.
Then we have

h(A,x)= Y x(O#(Rn(4,0)).

c€Z/NZ

From now on let p be an odd prime number and Fj, be the field with p elements.
For S € S,,,(F,) and T € S,.(F},) put

A(S,T) ={Y € M, ,,(F,) | YS Y = T}.

For an element S € S,,(F},) with m even put x(S) = (M) '

p

Lemma 5.1. Let S € S,,,(Fp)*.
(1) Let T € S, (Fp)™ withm > r.
(1.1) Let r be even. Then

#A(S,T) = p™ OV (Ax(S)p ™) (Lx((=S)LT)p ™) ] (1-p7)

m—r+l1<e<m-—1
e even

or

#AST)=pm 2T (-p7)

m—r+l1<e<m-—1
e even

according as m is even or odd.
(1.2) Let r be odd. Then

#HAS,T) =p "R A—x(S)p~?) [ -p7)

m—r41<e<m—1

e even

or

BA(S,T) = p™ O (L) [ - )

m—r+1<e<m—1
e even

according as m is even or odd. In particular, for c € F, we have

_1\ym/2 e
#A(S,c) = p™/27L(pm/2 — ((1)dt5>)

p
or
#A(S7 C) _ p(mfl)/Q(p(ﬂ’L7l)/2 + ((—1)(m+1)/20det S>)
p
according as m is even or odd.
(2) We have
a(5.0) = ot e - (S, 4 s (LS

’ p p

or
#A(S,0) =p™!

according as m is even or odd.

Proof. The assertions (1) and (2) follow from [[12], Theorem 1.3.2], and [[12],
Lemma 1.3.1], respectively. a
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Proposition 5.2. Let A=a; L --- Lay, with a; € Fy. For c € F, put

Mp(A,c) ={Z = (zij) € Sm(Fp) | det(Z) =1 and ¢ — iaizii =0},

i=1
and
(m—2)/2
277774 m —m — e
Ymp =p™ D212y TT (1—p )
e=1
or
(m—1)/2
277774 m —ze
Ymp = p" VR T (1= p7)
e=1

according as m is even or odd. Then we have

#Rp(A, ) = ymp#Mp(A,c).

Proof. Let ® : GL,,(F,) — Sw(F,) N GL,,(F,) be the mapping defined by
®(X) = X'X. Then by Lemma 5.1, we have #®71(Z) = 2v,,, for any Z €
Sm(F,) N SLy,(F,). We note that det X = +1 for any X € ®1(Z). Hence we have
#(®1(Z)N SLyw(F,)) = Ym,p- Moreover we have

tr('XAX) = tr(AX'X),

and hence X € R,(A4,¢) if and only if ®(X) € M, (A4, ¢). This proves the assertion.
(]

We rewrite M, (A4, ¢) in more concise form. For a positive integer N we denote
by Dy the set of Dirichlet charcters mod N, and for a positive integer m we denote
by Dy m the subset of Dy consisiting of Dirichlet characters whose m-th power is
the trivial character. We note that Dy, = D, with | = GCD(m,p — 1) if p is

*
an odd prime number. We denote by (N) the Jacobi symbol for a positive odd

integer N. For two Dirichlet characters y and n mod N we define J,,(x,n) and
I (X, M)

TmCem) = > x(det Z)n(1 — tx(2))
Z€Sm(Z/NZ)
and
LnCom) = > x(det Z)n(tr(2)).
Z€8m(Z/NZ)

By definition, J,,,(x,n) is an algebraic number. We note that Ji(x,n) is the Ja-
cobi sum J(x,n) associated with x and n. We also define J,,(x) as Jn(x) =

Jm(X (%)m_l 7X)-

Lemma 5.3. Let ) be a primitive character mod p. Let ¢ € F,, and S € Si(F},) of
rank r. Let S ~ So L O;_, with det Sy # 0. Put

Iys.c= Z n(S['w] + c).

weF!
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Assume that r is odd, and that n? # 1. Then

* —1)(r+1)/2 det S, c
In,s,cpl(”l)/zc](??,(p))(( ) ) °>n<c>().

Assume that r is even, and that n # 1. Then

. —1)"/2 det S,
i G L}
p
Here we make the convention that <(_1W#) =1i¢r=0.

Proof. We have
Ins.e= P 7,50,¢*
Hence we may assume that » = [. Then
Iyse= Z n(uw)#A(S,u — c).

u€F),
Let [ be odd. Then by Lemma 5.1,

—1)=D/2(y — ¢)det S
BA(S,u— ¢) = pl=D/2(p=D/2 | <( ) (u—c) >).

p
Hence we have

_ —1)+1)/2 qet S uU—c
Iyse=p'=""? (( ) > > 77(u)< 5 )

p u€Fy,

Since n? is nontrivial, we have I,s.=0ifc=0.1If c #0, then

30 (59) - (5) 2w (5)

u€EF, uEFy,

w5 g (5) w0 () )

Let [ be even. Then

/2 2
BAS,u—c) = (/? - (W]D‘iets))pz/u e <<1>dtS> .

where ag = 1 or 0 according as v = ¢ or not. Hence

—1)/2det S
I’r],S,c = pl/2 (()> 77(8)

b

Corollary. Let d € F. Then we have

d\"
In,S,cd = 77(d) (p) In,S,c-

Proposition 5.4. Let n be a primitive character mod p. For Z; € S;_1(F,) and
2y € Fy, put

[Zi)= Y n(det(i;;jl)).

weM;_1,1(Fp)
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(1) Assume that [ is even, and that n? # 1. Then

* —1)2det Z z
1z, a0) = 2725, () (S en 2 (21).
b p b
(2) Assume that [ is odd, and that n? # 1. Then

—1)U=1/2 qet 7
p

) n(det Z1zy).

Proof. We note that

det< il, ;U” ) = —Adj(Z1)[w] + det Z1 2y,

where Adj(Z) is the (I —1) x (I — 1) matrix whose (¢, j)-th component is the (j, ¢)-
th cofactor of Z;. We also note that det(—Adj(Z;)) = (—1)"*(det Z;)!~2. Thus
the assertion follows directly from Lemma 5.3 if det Z; # 0. If det Z; = 0, then
rankp, Adj(Z1) < 1, and the assertion follows also from Lemma 5.3. g

Let x be a Dirichlet character of odd conductor and A € L,,,~o. Then 22"/l det A
belongs to Z, and we define x(det A) as x(22[m/2)y(22m/2] det A).

Theorem 5.5. Let x be a primitive character mod p. Let | = GCD(m,p — 1), and
ug be a primitive l-th root of unity mod p. Let A € L,>0.

(1) If x(ug) # 1, then we have h(A,x) = 0.

(2) Assume that x(ug) = 1. Fiz a character X such that X™ = x.

(2.1) Let m be even. Then

DA =y S et )T (5 )11 )

N€Dp,m

where Ap, p = p(m=2/2(_1)m-1)/4,
(2.2) Let m be odd and assume that x> # 1. Then

WA X) = YmpAmp > (Xn)(det A) T 1 (),
NE€Dp,m

whefr'e Am P = p(m_l)/2(_1)(m_1)(p_1)/4.

Remark. The above formulation is based on the referee’s suggestion. In the
original version, we formulated Theorems 5.5 and 5.6 in terms of “modified power
residue symbols”.

Proof. We may regard A as an element of S,,(F,). If A = O,, then we have
h(A,x) = 0. Hence we assume that A # O,,. Then we may assume that A =
a1l Llay,_11d with d # 0. Put

My(4A,c)

= {(Z1,w) € Spm_1(Fp)x My, _11(F,) | det( tZui 11— Ewm,l ) )cm = 1}.

i=1 @iZii
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Then the mapping S, (F,) > Z — (c7'Z1,c7 w) € Sp1(Fp) X Myy—1.1(F),) in-
duces a bijection from M, (A4, ¢) to Mp(A, ¢), and hence #M,,(A,c) = #M,(4,c).
Put

Write Z € S,,,(F)) as Z = (tZ1 v ) with Zy € S;—1(Fp),w € My,—11(F}), 2z € Fp.

K(A) =Y #M,(4,0)x(0).
Assume that x(ug) # 1. Then we have

K(A) = Y~ x(cuo)#My (A, cup).

ceFy,
We note that /,\/lvp(A, cug) = /T/l/p(A7 ¢). Hence we have
K(A) = x(uo) K(A).

Hence we have K(A) = 0.

Assume that x(ug) = 1. Then we can take a Dirichlet character X such that
X™ = x. First assume that det A = 0. Then we may assume that we have A = Ay 10
with Ag € Sy—1(Fp). Let Ppy_1.4, be the set of (m — 1) X m matrices with entries
in F, of rank m — 1. Then for each X; € P,,_1 ., there exist exactly p™ ! elements

Xs € My (F)p) such that < §1 > € SL,,(F),). Hence we have
2

h(AX)=p™ " > x(tr(Ao[X1))).

X1€Pm—1,m

Let m be even. Then we can take an element o € F)¢ such that x(a) # 1. Moreover

we can take Uy € GL,,(F,) such that 'UyUy = al,, in view of (1.1) of Lemma 5.1.
Hence

h(A,x)=p™ " > x(tr(Ao[X:iUp))) = x(@)h(A, x).
X1€Pm_1,m

Hence we have h(A,x) = 0. Let m be odd and assume that y? # 1. Then we
can take an element a € (F)” such that x(a) # 1. Moreover we can take Uy €
GL,,(F},) such that *UyUy = al,, in view of (1.2) of Lemma 5.1. Thus by the same
argument as above we have h(A,x) = 0. This proves the assertion. Next assume
that det A # 0. We may assume that

A=1,,_11d
with d = det A. Then we have
K(A) = > #My(A, o)X(c™).

Hence we have

K(A) = 37 et (72 iz )

(Z1,w)

where (Z1,w) runs over elements of S,,_1(F,) X M,,—11(F),) such that

) (2 0 Ly ) ="
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w

. X
with some u € F d=1(1 —tr(Zy))

. Z
, and for such a matrix ;'
p w

) , there exist
exactly [ elements u of F, satisfying (*). We have
Z nw)=1lor0
NEDp.m
according as v = u™ with some u € F* or not. Hence we have

K= 3 Y et (a0 iy )

N€Dp,m (Z1,w)

For each n € D, ,, put

K(A)y= 3 @ndet (7 116 "y )
(Z1,w)

We note that (Yn)? # 1 for any 1. Hence by Proposition 5.4 we have

K(A)y = Amply > (%) (det A)(X)*(det Z0) ()" (1 - tx(Z1)) <detzl),
Z1€8m—1(Fp)

N m—1
where J,, = J(x7, (;)) or 1 according as m is even or odd, and (xn)* = X7 (%
This proves the assertion if m is odd. Assume that m is even. Then it is easily

seen that the set {xn (;) Ynep, . of Dirichlet characters coincides with {x1},ep

p,m "

Moreover (xn)? # 1 for any 7. This proves the assertion. O

Let x be a Dirichlet character mod N. Fix a prime factor p of N. For an integer
n prime to p, take an integer m such that

_ n mod p°
=19 1mod N/pc

We then put
x(m if (n,p) =1

) :{ (0 | if En,p; #1
Then it is independent of the choice of m, and y? is a character mod p¢, and we
have x =[], xP).
Theorem 5.6. Let N = py ---p, with py,--- ,p, distinct odd prime numbers. Put
l; = G.C.D(p; — 1,m). Let x be a primitive Dirichlet character mod N. Let ug; be
a primitive l;-th root of unity mod p;. Let A € L,~0.
(1) If xP) (ug ;) # 1 for some i. Then we have h(A,x) = 0.
(2) Assume that xP)(ug;) = 1 for all i. Fiz a character X such that Y™ = x.
(2.1) Let m be even. Then we have

T

h(A,x) = [[()meDripm=2y,,

i=1

x Y (Endet AR, (7)) Tmms (K0)-
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(2.2) Let m be odd, and assume that x* is primitive. Then we have

T

WA, x) = [J(=1) D@m=z,
i=1

x> (Xn)(det A) Ty 1 (Xn).-

Proof. We note that the mapping Dy > x — (x®), - x#)) € Dp, X -+ XD,
induces a bijection from Dy, t0 Dp, X - - XDy, . We also note that J,, (71, 12) =
T Jm(ngp i),nép i)) for primitive characters n; and 7 mod N. Moreover 17]2 is

i=1
2
primitive if and only if nﬁp 2 # 1 for any 1 < ¢ < r. Thus the assertion follows from

Theorem 5.5 and [[11], Lemma 3.2]. O

Now we give explicit formulas for J,,,(x,n) and I,(x,n).

Proposition 5.7.Let x and n be primitive characters mod p. Assume that x2 # 1.
Put e (x,n) = 1 or 0 according as x™n =1 or not.
(1) Assume that m is odd. Then

_1\ (m=D/2 s .
In(x,m) = em(x,m) <p> P2 (p— 1) Tt (x (p) 1)
(2) Assume that m is even. Then
—1 m/2 (m_2)/2 % *
In(X,m) = em(,m) | — p (= Dx(=DJ0 (= NIm-1(x | = | sn)-
p p p
Proof. By Proposition 5.4, we have
In(m) = I’ p(m=1/2 7(71)(7;_1)/2 if m is odd
X7n = m X _ m—
m p(m=2)/2 % J(x, (;;))) if m is even,
where
det Z Zmm m-l
L= Y xmmx(etZ) ( ) W + 11(Z1)) ( ) ~
e Py p p
Z1€Sm_1(Fp)*
Then we have
det Z mm )™
= X G z) (S ) gz (22)

2mm € Fp¢
Z1 €8y —1(Fp)X

Put Y = —2,,1 7. Then det Y7 = (—1)™~!z1~™ det Z;. Hence we have
71)m71
I;n:X -1 ot (( )
((=1)™) ’
det Y7
p

Y ) ) Y X(detY1)< )n(l—tr(Yl))-

Zmm €Fy Y1 €Sm_1(Fp)*
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We have
Z X(Zmm) " n(zmm) =p—1or 0
Zmm EF, ,,X
according as x"'n is trivial or not. This proves the assertion. O

Proposition 5.8. Let x and n be as in Proposition 5.7.
(1) Assume that m is odd. Then

_1)(m-1)/2
Jm(Xvn) = (()p> p(mil)/Q

*

)06 X™ M) Tm-1(x (p) o)+ (=1 Im-1(x (;) ;m}-

(2) Assume that m is even. Then

Tm (X, ) = <_1>m/2p(m2)/2J(x, <*>)

p p

x{J(x (;) X" (;) 1) m-1(x (;) ;1) + 0(=1)Im-1(x (;) )}

Proof. By Proposition 5.4, we have

Tn(on) = (7! Y plm=1/2 w if m is odd
m\X,7) = + X o
mt Im plm=2)/2 (D22 iy (;)) if m is even,
where
det Z Znm m—1

J = Z ( 1) < > X(Zmm)x(det Z1)n(1 — zmm — tr(Z1)),

Zmm € Fp,zmm #1 p p

Z1€Sy 1 (Fp)*
and

"o det21 e tr
m= Y (B e zn-uz)

Z1E€Sm—1(Fp)*

Then we have J)| = n(—=1)I,—1(x (;) , ). Moreover

m—1
J;n = Z X(me) <det Zl) <'Z7nm,> X(det Zl)

zmm €Fp,z2zmm#1 p p
Z1€8m—1(Fp)*

XN(1 = Zmm)n(1 — (1 = zmm)_ltr(Zl)).
Put Vi = (1 — 2zum) ' Z1. Then det Y7 = (1 — 2, ) "™ det Z;. Hence we have

’r Zmm met 1— zmm mel m—1
Jm - Z X(Z’rnm) - X(l - Zan) 77(1 - Z?nm)

ZmmEFp p p

<X () daerin - am),

Y1€Sm_1(Fp)* p
This proves the assertion. ([l
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Theorem 5.9. Let x be a primitive character mod p.
(1) Let m be odd, and assume that x> # 1.
(1.1) Assume that x™ # 1. Then

N _1\ (mm1)/2 o N N
Jm(x () X)) = (> P2 g (x () X™) -1 (x () ,X)-
P P P P

(1.2) Assume that x™ = 1. Then

0 (G) 0=t (3) 7 (5) (G () 0

(2) Let m be even.
i+l
(2.1) Assume that x™ (%) # 1. Then

r(5) 0= (5) () G () () e

i+l
(2.2) Assume that x™ (%) =1. Then

Tm (X <;) X)) = x(=1)p™ I (x <;) <;))Jm—2(x <;> ,X)-

Proof. Let m be odd. Then, by (1) of Proposition 5.8, we have

% (m—1)/2
* -1 _
T (X () LX) = () pm—1/2
p p

x{J(x (;) X" Im-1(x (;)M X)X (=D -1 (x <;>m X)}

Thus the assertion holds if x™ # 1. Assume that x™ = 1. Then by (2) of Proposition
5.8 and (2) of Proposition 5.7 we have

e (5) 0= ()7 e () - (5)
st (5) o (3 e (5) 0
Lm—1(x (;)m X) = (?)(mwz P2 (p = 1)x(-1) (_1)m

S0 G () 0

We note that J(x (;)Z,Xm) =—-1,x(-1) =1 and

10 () et ()= (3) ()= (5) - (5)

This proves the assertion.

and
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Let m be even. Then, by (2) of Proposition 5.8, we have

mie(5)0=(3) ) ()

x{J(x (;) X" <;)i+1)Jm1(x (;)Hl X)) + X (=1 Im-1(x (;)m )}

i+1 i+1
Thus the assertion holds if x™ (;) # 1. Assume that x™ ( ) = 1. Then by

v
(1) of Proposition 5.7 and (1) of Proposition 5.8, we have

N _1\ (m-2)/2
Jm-1(x () ,X) = () pm=2/2
P P

xJ(x (;)M X m—2(x <;) 1 X);

o\ it _1\ (mm2)/2 23 W\
I?n— - 3 bl p me J’m— () P p— 1).
1(x (p) X) ( ’ ) 2(x , X)( )

and

We note that J(x (;)i,x"‘ (i>i+1) =-1, (%)Hl =1 and

J(x (p)+ ) = T(x (p)+ x (p)+> — (1) (‘pl)+ — x(-1).

This proves the assertion.

Corollary. Let x be a primitive character with an odd square free conductor N.
Assume that x? is primitive. Then the value J,,(x) is nonzero.

Proof. The assertion follows directly from the above theorem if N is an odd prime.
In general case, the assertion can also be proved by remarking that J,,(x) =

I~ Jom(xP)) and that X(p)z # 1 for any p|N. O

To compare our present result with the result in [11], we give the following:

Proposition 5.10. Let x be a primitive Dirichlet character mod p. Assume that
X2 # 1. Then we have

(o) ()= () o

Proof. The assertion follows from [[1], Theorems 2.3 and 2.4]. O

Remark. The above proof is due to the referee. We note that the asserion can
also be proved by using the same argument as in the proof of Theorem 5.5, and
Lemma 5.3.

By virtue of the above proposition, we see that Theorem 5.6 coincides with [11],
Proposition 3.7 in case m = 2.
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Now let

F(Z)= Y cr(Ae(tr(AZ))

Aeﬁnzo

be an element of My (Sp,(Z)) and let x be a Dirichlet character mod N. Assume
N # 2. Then by [[11], Proposition 3.1], we have

L(s,F,x) = Z

A€Ln>0/SLn(Z

cr(A)h(A, x)
€ A)(det A)s

Thus by Theorem 5.6 we easily obtain:

Theorem 5.11. Let N,p;,l;,uo; (i =1,---,7) and x be as in Theorem 5.6, and
let F' be an element of My (Spn(Z)).
(1). If X (ug ;) # 1 for some i. Then we have L(s, F,x) = 0.
(2). Assume that X(pi)(uoﬁi) =1 for any i. Fiz a character x such that X" = x.
(2.1) Let n be even. Then we have
L(s,F,x) = H(_l)(n—2)(p1:—1)/4%7pi
i=1

T=N/an ~ * = ~
x>0 eI, (5 ) Tet(GL* (5, F. ).
UEDN,H
(2.2) Let n be odd, and assume that x> # 1. Then we have

T

L(s, F,x) = [~ Deeb/g,

=1

x> (@) Ja (ML (s, F, Xn).

nE’DN,n

6. TWISTED KOECHER-MAASS SERIES OF THE FIRST KIND OF THE D-I-I LIFT

By Theorems 4.1 and 5.11, we obtain the following.

Theorem 6.1. Let k and n be positive even integers such thatn > 4, 2k —n > 12.
Let h(z) and E,/a11/2 be as in Section 4. Let N be a square free odd integer,
and N = p1---p. be the prime decomposition of N. For each i = 1,--- ,r let
l; = GCD(n,p; — 1) and u; € Z be a primitive l;-th root of unity mod p;.

(1) Assume xP?)(u;) # 1 for some i. Then L(s, I, (h),x) = 0.

(2) Assume x P (u;) =1 for alli. Then

Lis, In(h) ) =2 3 Xn(2")J (W, (5 ) Fuma ()

NE€EDN,n
n/2—1
X{Cn,NR(S7 ha En/2+1/27 @7) H L(2S - 2.73 S(h)7 (%77)2)
j=1
n/2

+dn ven(1) [T 225 = 25 +1,8(h), (x)*)},
j=1
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where ¢, N and d,, N are nonzero rational numbers depending only onn and N, and
X 18 a character such that X™ = .

Remark. In the case n = 2, an explicit formula for L(s,I2(h),x) was given by
Katsurada-Mizuno [11].

7. APPLICATIONS

Let hy and hy be modular forms of weight k1 + 1/2 and k2 + 1/2, respectively,
and x be a Dirichlet character . In Section 2, we reviewed on the algebraicity of
the values R(m,h1,ho,x) at half integers. We then naturally ask the following
question:

Question. What can one say about the algebraicity of l?z(m7 hi, ha, x) with m an
integer?

As an application of Theorem 6.1, we give a partial answer to this question. We
note that

R(Sv h17 h27 X) = (1 - 2_28+k1+k2_lx2(2))_lé(87 hla h27 X)

if the conductor of x is odd. Hence it suffices to consider the above question for
R(m, hy, ha, x) with integer m if ky + ko is even.

Let k and n be positive even integers such that n > 4, 2k —n > 12. Let h(z)
and F), /a41/2 be as in Section 4. For a Dirichlet character x of odd square free
conductor N = pq - - - p,., we define

*

RO (s.h Bupayage) = Y %20, (5 ) Fuma ()

WEDN,7L
n/2—1
XR(s, b, B pog1y2xn) [ L(2s = 24, S(h), (xn)?).
j=1
Theorem 7.1. There exists a finite dimensional Q-vector space W;,,7E"/2+1/2 in C
such that o0
R'x (m7 h>En/2+1/2)
€ Wh‘xEn/2+l/2

,n—mn
for any integer n/2+1 < m <k —n/2—1 and all characters x of odd square free
conductor such that x™ is primitive.

Proof. Put
MO (s, S() = Y- X2 (5 )Tt Oen)
NEDN,n
n/2
< [T L(2s — 25 + 1, S(R), (xn)?).
j=1

Then by Corollary to Proposition 3.1, we have

M(X)Erﬁvns(h)) e Q’LL, (S(h))n/2ﬂ'_n2/4.

By Theorem 6.1, we have
L(m,I,(h),x")

= 2nm{cn,NR(X) (m, h, En/2+1/2) + dn,NCh(l)M(X) (m,S(h))}.
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Hence by Theorem 2.2, we have
RO (m, b, Epja11)2)

ﬂ-mn

€ Qui ®q Vi + Qua

with some complex numbers u; and ug, where Vi () is the Q-vector space associ-

ated with I,(h) in Theorem 2.2. This proves the assertion. d
By the above theorem, we immediately obtain the following:
Theorem 7.2. Letd > dimg Wh g, 5, ,,- Let my,ma, - -+ ,mq be integers such that
n/24+1<my,mg, - ,mg <k—n/2—1 and x1, X2, - , Xa be Dirichlet characters
of odd square free conductors N1, Na,--- , Ng, respectively such that x7 is primitive
RO (my, h, E
for any i =1,2,---d. Then the values (mlﬁm’ln n/2+1/2) e
R(Xa) h.E —
(mi;m(’m n/241/2) are linearly dependent over Q.

Corollary. In addition to the notation and the assumption as above, assume that
n =2 mod 4. Then the values

{ R(mi, by By ya41)2, XiNij)

2m;

™ }1§i§d,w €DN;

are linearly dependent over Q.

Proof. Put Ly (s, S(h), (xini;)?) =TT} " L(2s — 21, S(h), (xini;)?)- Then by The-
2 J—

orem 1.1, the value L(mﬂi(’}i,(zﬂm) ) belongs to Qu+(S(h))"/zflw*”2/4+”/2, and

in particular if n = 2 mod 4, then it is nonzero for any x. Moreover, by Corollary

to Theorem 5.10, J(x:7ij, (7)) Jn—1(XiMi;) is non-zero and belongs to Q. Thus the

assertion holds. O

As another application of Theorem 6.1, we also have a functional equation for
RO (s, h, Ey /241/2). Namely, by Theorem 2.1 we obtain:
Theorem 7.3. Let h be as above. Let x be a primitive character of odd square
free conductor N. Assume that n = 2 mod 4, and that x" is primitive. Put

RO (8,h, Epjay1/2) = N>7(x™) ' (S)R(X) (8,h, By joy1/2)-

Then R(X)(s, h, Ey/2412) has an analytic continuation to the whole s-plane, and
has the following functional equation:

R(X)(k -5 ha En/2+1/2) - R(X)(& ha En/2+1/2)-

Remark. (1) As functions of s, the Dirichlet series
{R(s,h, By o412, Xmij)}lgigd,mjeDNi,n are linearly independent over C.

(2) In the case of n = 2, this type of result was given for R(m, h, E5/5) with E3/;
Zagier’s Eisenstein series of weight 3/2 by [11].

(3) The meromorphy of this type of series was derived in [19] by using so called
the Rankin-Selberg integral expression in more general setting, but we don’t know
whether the functional equation of the above type can be directly proved without
using the above method.
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