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ACTA ARITHMETICA
* (201%)

Koecher—Maass series of a certain half-integral weight
modular form related to the Duke-Imamoglu—Ikeda lift

by

HIDENORI KATSURADA (Muroran) and HisA-AK1I KAWAMURA (Sapporo)

1. Introduction. Let [ be an integer or a half-integer, and let F' be
a modular form of weight [ for the congruence subgroup Fo(m)(N ) of the
symplectic group Spm,(Z). Then the Koecher-Maass series L(s, F') of F' is
defined as
cr(A)

Mo )= 2. e A

where A runs over a complete set of representatives for the SL,,(Z)-equiva-
lence classes of positive definite half-integral matrices of degree m, cp(A) is
the Ath Fourier coefficient of F, and e(A) denotes the order of the special
orthogonal group of A. We note that L(s, F') can also be obtained by the
Mellin transform of F, and thus its analytic properties are relatively known.
(For this, see Maass [19] and Arakawa [1-3].)

Now we are interested in an explicit form of the Koecher—Maass series for
a specific choice of F'. In particular, whenever F' is a certain lift of an elliptic
modular form h of either integral or half-integral weight, we may hope to
express L(s, F') in terms of certain Dirichlet series related to h. Indeed, this
is realized in the case where F' is a lift of h such that the weight [ is an
integer (cf. [8-10]). In this paper, we discuss a similar problem for lifts of
elliptic modular forms to half-integral weight Siegel modular forms.

Let us explain our main result briefly. Let k& and n be positive even
integers. For a cuspidal Hecke eigenform h in the Kohnen plus space of weight
k—n/2+1/2 for I'1(4), let f be the primitive form of weight 2k —n for S Lo (Z)
corresponding to h under the Shimura correspondence, and let I,,(h) be the
Duke-Imamoglu—Ikeda lift of h (or of f) to the space of cusp forms of weight
k for Sp,(Z). We note that I2(h) is nothing but the Saito—Kurokawa lift of h.
Let ¢, (n),1 be the first coefficient of the Fourier—Jacobi expansion of I,,(h),
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2 H. Katsurada and H. Kawamura

and Un71(¢1n(h),1) the cusp form in the generalized Kohnen plus space of

weight k& —1/2 for Fénil)(él) corresponding to ¢y, 5,1 under the Ibukiyama
isomorphism o,_1. (For the precise definitions of the Duke-Imamoglu-Ikeda
lift, the generalized Kohnen plus space and the Ibukiyama isomorphism, see
Section 2.) Then our main result expresses L(s,0n-1(¢r,(n),1)) in terms of
L(s,h) and L(s, f) (cf. Theorem 2.1).

To prove Theorem 2.1, for a fundamental discriminant dy and a prime
number p we define certain formal power series Prsi)l,p(do, e X, t) €
C[X, X Y[[t]] associated with some local Siegel series appearing in the
p-factor of the Fourier coefficient of oy,—1(¢7, (n),1). Here € is the Hasse in-
variant defined on the set of nondegenerate symmetric matrices with entries
in Q,. We then rewrite L(s,on-1(¢1,(n),1)) in terms of the Euler products

I, Pél_)Lp(do,51,5p,p*3+k/2+”/4*1/4) with [ = 0,1, where 3, is the Satake
p-parameter of f (cf. Theorem 3.2). By using a method similar to those

in |9 |10], in Section 4 we get an explicit formula for the formal power
series PV

n_Lp(do,gl,X,t) (cf. Theorem 4.4.1), which yields the desired for-
mula for L(s, 0y—1(¢1,(n),1)) immediately. The above result is very simple,
and the proof proceeds similarly to the one of [10], where we gave an ex-
plicit formula for the Koecher-Maass series of the Siegel-Eisenstein series
of integral weight. However, it is more elaborate than the preceding one.
For instance, we should be careful in dealing with the argument for p = 2,
which divides the level of 0,,—1(¢7,(n),1). We also note that the method of
this paper can be used to give an explicit formula for the Rankin—Selberg
series of o —1(¢7,(n),1), and as a consequence, we can prove a conjecture of
TIkeda [13] concerning the period of the Duke-Imamoglu-Tkeda lift; this will
be done in [15].

Notation. Let R be a commutative ring. We denote by R* and R* the
semigroup of nonzero elements of R and the unit group of R, respectively.
We also put S° = {a? | a € S} for a subset S of R. We denote by M,,;(R)
the set of m x | matrices with entries in R. In particular we write M,,(R) =
Mpym(R). We put GL,,(R) = {A € M, (R) |det A € R*}, and SL,,(R) =
{A € GL,,(R) |det A = 1}. For an m x [ matrix X and an m x m matrix
A, we write

A[X]='XAX,

where ! X denotes the transpose of X. Let S, (R) denote the set of symmetric
matrices of degree m with entries in R.

Furthermore, if R is an integral domain of characteristic different from 2,
let £,,(R) denote the set of half-integral matrices of degree m over R, that
is, L, (R) is the subset of symmetric matrices of degree m with entries in
the field of fractions of R, whose (i, j)th entry belongs to R or %R according
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as ¢ = j or not. In particular, we put L., = L,,(Z) and L,, , = L,(Z,) for
a prime number p.

For a subset S of M,,(R) we denote by S* the subset of S consisting
of all nondegenerate matrices. If S is a subset of S,,(R), we denote by S~
(resp. S>0) the subset of S consisting of positive definite (resp. semi-positive
definite) matrices. The group GL,,(R) acts on Sy, (R) as GL,(R) X Sy (R) 3
(9, A) = Alg] € Sm(R).

Let G be a subgroup of GL,,(R). For a G-stable subset B of S,,(R), we
denote by B/G the set of equivalence classes of B under the action of G. We
sometimes identify B/G with a complete set of representatives for B/G. We
abbreviate B/GL,,(R) as B/~ if there is no risk of confusion.

For a given ring R’, two symmetric matrices A and A’ with entries in R
are said to be equivalent over R/, written A ~g A’, if there is an element X
of GL,(R') such that A = A[X]. We also write A ~ A’ if there is no risk
of confusion. For square matrices X and Y we write X L Y = (g 10/)

For an integer D with D =0 or 1 mod 4, let 9p be the discriminant of
Q(vVD), and put fp = \/D/op. We call D a fundamental discriminant if it
is either 1 or the discriminant of some quadratic field extension of QQ. For
a fundamental discriminant D, let (%) be the character corresponding to
Q(vD)/Q. Here we make the convention that (g) =1if D=1

We put e(z) = exp(2miz) for z € C. For a prime number p we denote
by vp(x) the additive valuation of Q, normalized so that v,(p) = 1, and by
e,(*) the continuous additive character of Q, such that e,(x) = e(x) for
z € Q.

For a nonnegative integer r we define a polynomial ¢, (x) in by ¢,(z) =
[T—;(1 — 2%). Here we understand that ¢o(z) = 1.

2. Main result. Put J,, = ((1)7’: _017;”), where 1,, and O,, denote the
unit matrix and the zero matrix of degree m, respectively. Furthermore, put

F(m) = Spm(Z) = {M € GLZm(Z) | Jm[M] = Jm}

Let [ be an integer or a half-integer. For a congruence subgroup I" of I'™) | we
denote by 9% (") the space of holomorphic modular forms of weight [ for I'.
We denote by &,;(I") the subspace of 9t (I") consisting of all cusp forms. For

a positive integer IV, put Fém)(N) ={(&58) e rm ’ C = Oy, mod N}.

Let F'(Z) be an element of fml(FO(m) (N)). Then F(Z) has Fourier expan-
sion

F(Z)= ) cr(Ae(tr(A2)),

A€(Lm) g

where tr(X') denotes the trace of the matrix X. We then define the Koecher—
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Maass series L(s, F') of F as

cr(4)
L(s, F) = _
(s, F) 2 e(A)(det A)s
AE(Ln)oo/SLin(Z)
where e(A) = #{X € SL,,(Z) | A[X] = A}. We note that L(s, F') is nothing
but Hecke’s L-function of F' in the case where m = 1 and [ is an integer.
Now put

Lo={A€ L, | A= —'rr mod 4L,, for some r € Z™}.

For A € E;ﬂ, the integral vector » € Z™ in the above definition is uniquely
determined by A modulo 2Z™, and is denoted by r4. Moreover it is easily
shown that the matrix

(trj/Q (trArlA—/i—2A)/4) ’

which will be denoted by A, belongs to L,,41, and that its SL,1(Z)-
equivalence class is uniquely determined by A. Suppose that [ is a positive
even integer. We define the generalized Kohnen plus space of weight | — 1/2

for Fém) (4) as

Jr
Sml—l/z

and put & (13" (4)) = MF | (1§™ (4) NS, (1™ (4)). Then there
exists an isomorphism from the space of Jacobi forms of index 1 to the
generalized Kohnen plus space, due to Ibukiyama. To explain this, let F}m) =
'™ x H,,(Z) be the Jacobi group, where I'™ is identified with its image

inside "1 via the natural embedding

(F5™(4) = {F € My_1/o(I5™ (4)) | er(A) = 0 unless A € £,},

(e »)
}_)

C D

and

Ho(Z) =

0 |xk p A
0 1,|%u On 0 1, (A p)ezZmaz™,
1

0 1 0 Y/
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Let J;,1(I (m)) denote the space of Jacobi forms of weight [ and index 1 for
r } ™ and J (T (m)) the subspace of Ji (L ™)) consisting of all cusp forms.

Let ¢(Z,z) € Ji1(I" } )). Then we have the following Fourier expansion:
§Z,z)= Y. co(T,r)e(tr(TZ) +r'2).

TE€Lm, r€L™
AT —trr>0

We then define 0,,(¢) as
om(@) = Y co((A+"rara)/4,ra)e(tr(AZ)),

A€(L])>0

where 7 = r4 denotes an element of Z™ such that A + ‘rara € 4L,,. This
74 is uniquely determined modulo 2Z™, and c¢,((A+'rara)/4,74) does not
depend on the choice of the representative of r4 mod 2Z™. Ibukiyama [7]

showed that o, gives a C-linear isomorphism J; 1 (I'; rm )) ~ M /2( rim (4)),

and in particular, Jm(JlmllSp(F§ ))) S 1/2( rim )( 4)). We call o, the Ibu-
kiyama isomorphism.

Let p be a prime number. For a nonzero element a € Q, we put x,(a) =
1,—1, or 0 according as @p(al/Q) = Qp, Qp(al/z) is an unramified quadratic
extension of Q,, or Qp(al/ %) is a ramified quadratic extension of Qp. We
note that x,(D) = (%) if D is a fundamental discriminant.

For the rest of this section, let n be a positive even integer. For T' € L
put &(T) = xp((=1)"%detT). Let T € LY. Then (—1)"2det(2T) = 0
or 1 mod 4, and we define dp = 0(_1)n/2 det(27) and fr = f —1)n/2 det(2T)
For T € L}, there exists T € L) such that T ~z, T. We then put
ep(T) = up(fT) and [07] = 04 mod (Z*)EI These do not depend on the choice
of T. We note that (— )”/2 det(2T) can be expressed as (—1)™/2 det(2T) =
dp*»T) mod (Zy)° for any d € [or].

For each T' € L}, we define the local Siegel series by(T)s) by

bp(T,s) = > ey(tr(TR))p~rlr i),
RESn(Qp)/Sn(Zp)
where 1,(R) = [Z; + ZyR : Z;]. We remark that there exists a unique
polynomial F,(7, X) in X such that
(L= ) TR — )
bp(T’ 5) = FP(T7 ) . n/2—s
1= &(T)p

(cf. Kitaoka [16]). We then define a polynomial F,(T,X) in X and X! as

Fy(T, X) = XD (1, p~"+D/2x),
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We remark that E,(T,X_l) = ﬁp(T,X) (cf. [14]). Now, for a positive even
integer, let

h(z) = Z cn(m)e(mz)

m€Z>0
(—1)"/2m=0,1 mod 4

be a Hecke eigenform in the Kohnen plus space Gli—fn/2+l/2([‘0 (4)), and
o
F(2) =Y cr(m)e(mz)
m=1

the primitive form in So,_, (I'M) corresponding to h under the Shimura
correspondence (cf. Kohnen [18]). Let 3, € C* be such that 8, + 8, =

p_k+"/2+1/20f(p), which we call the Satake p-parameter of f. We define a
Fourier series I,,(h)(Z) on H,, by

L(h)(Z2) = Z cr,ny(T)e(tr(T2)),
Te(Ln)sg

where 21/
—n/2-1/2TT &
Cln(h)(T) = Ch(|DT|)fT " HFp(Tv ,Bp)-
P

Ikeda [12] showed that I,(h)(Z) is a Hecke eigenform in &;(I"™) whose
standard L-function coincides with ((s) [ L(s + k — i, f), where ((s)
is Riemann’s zeta function. The existence of such a Hecke eigenform was
conjectured by Duke and Imamoglu in an unpublished paper. We call I,,(h)
the Duke-Imamoglu-Ikeda lift of h (or of f), as in Section 1. Let ¢r, ()1 be
the first coefficient of the Fourier—Jacobi expansion of I,(h), that is,

n((1 7)) - Ni%wm De(Nw),

where Z € H,,_1, z € C" ! and w € H;. We easily see that ®1,,(h),1 belongs

to J,ggsfm(p},"*”) and

brma(Z )= 3 cln(h)<< ! NQ))e(tr(TZ)—I—rtz).

t
r/2 T
TELy_1,7€Z1 /
AT —trr>0

Moreover we have
on—1(¢ )(Z) = c (T(l))e(tr(TZ)).
n—1(®r1,(h),1 In(h)

Te(Ly_ 1),

Put T'c(s) = 2(2m)7°T'(s), and £(s) = I'c(s)((s). Then our main result in
this paper is stated as follows:
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THEOREM 2.1. Let h and f be as above. Then

(n—2)/2
L(s, 0n-1(¢1,(ny1)) = 22302 =(n=2)/ H £(2i)
(n72)/2
x {L(S_n/2+1,h) I[[ L@s-n+2i+1,f)
=1
(n—2)/2
F DSy T L(2s -0t 2, f)},

i=1
where 62, denotes Kronecker’s delta.

In the case of n = 2, the modular form oy,—1(¢r,(n),1) is h itself, and then
the above formula is trivial. We note that, unlike the cases of [8-10], there
does not appear any convolution product of modular forms in the above
theorem. However, the proof is not simple because the nature of Fourier
coefficients of the modular form oy,1(¢z,(n),1) is much more complicated
than in the papers cited above.

3. Reduction to local computations. It turns out that the Fourier
coefficient of oy,—1(¢y, (n),1) can be expressed in terms of a product of local
Siegel series taken over all prime numbers p, and therefore we can reduce
the problem to local computations. To explain this, we recall some termi-
nology and notation. For given a,b € Q, let (a,b), denote the Hilbert sym-
bol over Q. Following Kitaoka [17], we define the Hasse invariant e(A) of

A€ Sp(Qp)* b
e(4) = H (as, aj)p

1<i<j<m
if A is equivalent to a; L --- L a,, over Q, with some ay,...,an € Qg. We
note that this definition does not depend on the choice of a1, ..., ay,.
Now put
Ly ={A€Lpy| A= —"rr mod 4Ly, for some r € Z'}.
Furthermore we set Sp,(Zp)e = 2Ly and Sp(Zp)o = Sm(Zp) \ Sm(Zp)e.
We note that L, , = Lpnp = Sm(Z )1fp7é2 Let A € £;, ;, Then
there exists an element r € Zp~! such that ( /2 (A:t/ri)/4) € Lyp. Asis

easily shown, r is uniquely determined by A modulo 2Z;"~ 1 and is denoted

ra/2
tra/2 (A+trArA)/4)
is uniquely determined by A up to GL,,(Zp)-equivalence, and is denoted
by AD.

by r4. Moreover, as will be shown in the next lemma, (
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LEMMA 3.1. Let m be a positive integer.

(1) Let A and B be elements of L! Then

m—1,p°

<t’"j/2 (4 +ciﬁ,4)/4> - <tr;/2 (B +ﬁ§3)/4> yA~E

(2) Let ALl .

(2.1) Let p # 2. Then A ~ (39)-

(2.2) Letp=2.1If r4 =0mod 2, then A ~ 4B with B € Ly,—12, and
AWM ~ (3 %). In particular, vo(det B) > m or m+1 according
as m is even or odd. If r4 % 0 mod 2, then A ~ a 1 4B with
a=—1mod 4 and B € L,_22, and

1 1/2 0
AV~ 172 (a+1)/4 0
0 0 B

In particular, vo(det B) > m or m — 1 according as m is even
or odd.

Proof. The assertion can be easily proved. m

(1)

Now suppose that m is even. For T € (£;,_{)*, put 93’ = dpa) and
f(T = fra, and for T € (L}, )%, define [D(T)] and e(Tl) as [0p)] and

e, respectively. These do not depend on the choice of 7. We note that
(=1)™2detT = 2m*2f (L) QD(TU for T E (L],_1)*. We define a polynomial
F( )(T X)in X, and a polynomlal F (T X)in X and X1, by

F\O(T,X) = ( X),

F( (T, X)=X" pr )F(l)(T,pi(erl)/QX).
Let B be an element of (L], ; ,)*. Let p # 2. Then

FE\V(B,X) = Fy(1 L B, X).

Let p = 2. Then

FV (B, X)
- 1 1/2 ) . .
I 1B X if B=a 1l 4B’ with
_ 1/2 (a+1)/4
a=—-1mod4, B € Ly,_29,
Fy(11 B, X) if B=4B' with B’ € L, 1.

Now let m and [ be positive integers such that m > [. Then for nonde-
generate symmetric matrices A and B of degree m and [ respectively with
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entries in Z, we define the local density o,(A, B) and the primitive local
density Bp(A, B) representing B by A as

ap(A, B) = 270m QILH;Opa(*mm(lﬂ)/m#u‘la(fh B),
5}7(147 B) _ 276,”,1 aILHOIOpa(fml+l(l+l)/2)#BG(A’ B),

where

Aa(A, B) ={X € Mu(Zp)/p* Muu(Zyp) | A[X] — B € p"Si(Zp)e},

Bu(A, B) = {X € A4(A, B) | ranky, /.7 (X mod p) =1}
In particular we write ay(A) = (A4, A). Put

Fp ={do € Zp [ vp(do) < 1}
if p is an odd prime, and
Fo={dy € Zs|dg =1 mod 4, or dy/4 = —1mod 4, or v»(dy) = 3}.

Let m be a positive integer. For d € Z,' put

Sm(ZPa d)
={T € Sn(Zy) | (-=1){" V2 det T = p*d mod Z3° with some i € Z},
and Sy, (Zyp,d)y = Sm(Zy,d) N S (Zy)s for z = e or o. Set Lﬁg)p = Sm(Zp) ¢

€

and 5%);) = (L},,)". We also define L’g,jl)p(d) Sm(Zy,d) ﬁﬁ%)p for j =0,1.

Let ¢y, be the constant function on L, , taking the value 1, and &y,

the function on L, , assigning the Hasse invariant of A to A € L, . We

sometimes drop the suffix and write ¢y, etc. as ¢, or ¢ if there is no I‘lSk of
confusion.

From now on, we sometimes write w = &' with [ = 0 or 1 according as
Ww=1o0rc¢.

Let n be a positive even integer. For dy € F,, and w = &' (I = 0,1) we
define a formal power series P,(Ll,)l,p(do, w, X, t)in t by

P,El_)Lp(dOa w, Xa t)

VB, x)

_ H(do, n—1, l)—ltzig,p@—n) P ) w(B)tV(det B),
(12): ap(B)
Bec! | (do)
where
k(do,r —1,1) = kp(do,r — 1,1)

_ {( )lr r— 2)/82 (r—2)(r-1) /2}62p . ((_1>r/2’ (_1)r/2d0)§7 p—(r/Q—l)lu(do)
for a positive even integer r. This type of formal power series appears in an
explicit formula for the Koecher—-Maass series associated with the Siegel—
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Eisenstein series and the Duke-Imamoglu-Tkeda lift (cf. [9], |[10]). Therefore
we say that this formal power series is of Koecher—Maass type. An explicit

formula for P,(L )1 p

Let F denote the set of fundamental discriminants, and put

(do,w, X,t) will be given in the next section.

FEY = {dy e F| +dy > 0}.

Now let h be a Hecke eigenform in & n/2+1/2( 0(4)), and f, I,(h), 1, 1)1
and oy,—1(¢y,,(n),1) be as in Section 2.

THEOREM 3.2. Let the notation and assumptions be as above. Then for
Re(s) > 0, we have

L(S, O-nfl(gbln(h),l)) = K/nfl2_(n_2)8_(n_2)/2_62’”

8 { Z en(|dol)|do|/ A H/2H1/4

doeF(—1)"/?)
1 _ _
< TPt 20741
p

FDMIE ST ([ do])dg| R
doeF(-1)™/2)

H lp (doy €ps By, p—s+k/2+n/4—1/4)}’

where Kp_1 = HZ(»ZI2)/2 L (24).

Proof. Let T' € (L},_1)_,. It follows from Lemma 3.1 that the T'th
Fourier coefficient ¢5,, (4, )(T) of 04-1(¢1,(n),1) is uniquely determined

by the genus to which T belongs, and by definition, it can be expressed as

ons6n, o) (T) = 1,y (TV) = en (PP Y2712 T FO(T, B,).
p

C
We note that
(]cg}))kfn/2fl/2 _ |0(Tl)’—(k/27n/471/4) (det T)(k/an/471/4)27(n72)(k/27n/471/4)

for T' € (Ln-1)<(- We also note that

1 _ 3—n—b2n n/2 -1
Z T Kn—12 2n det T' Hap(T)
T'eG(T) p

for T € S,-1(Z2)

~0» Where G(T') denotes the set of SL,_1(Z)-equivalence
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classes belonging to the genus of 7' (cf. [17, Theorem 6.8.1]). Hence

Z CU”*1(¢17L(h)71)(T) _ "fn—l23_n_62’n_(n_2)(k/2_n/4_1/4)

e(T")

T'eG(T)

(1)
< der (2o A= i sz | FE T )
p ap(T)

Thus, by using the same method as in [11, Proposition 2.2], similarly to [8,
Theorem 3.3(1)], and [9, Theorem 3.2], we obtain

L(s,0n-1(¢1,(n)1))
— Hn_127(k/27n/471/4)(nf2)+2fn*52,n Z Ch(|d0|)|d0|n/47k/2+1/4

doeF((=1)"/?)
% {2(73+k/2+n/471/4)(n72) Hﬁp(dm n—1, O)P,?,)Lp(do? 1o B, pfs+k/2+n/471/4)
p

122 AN Tk (do, n—1, 1) P, (do, ey, By, p=*TH/2H7/4Y 4)}.
p

We note that Hp((—l)"/z, (—=1)"2dy),, = 1. Hence [1, rp(do,n —1,0) =
2—(n—2)(n—1)/27 and Hp /fp(d[), n—1, 1) — (_1)n(n—2)/8|d0|—n/2+12—(n—2)(n—1)/2‘
This proves the assertion. =

4. Formal power series associated to local Siegel series. Through-
out this section we fix a positive even integer n. We also simply write v, etc.
as v if the prime number p is clear from the context. In this section, we give
an explicit formula for Pr(Ll_)l(do, w, X, t) with w = ¢! (I =0, 1) to prove The-
orem 3.2 (cf. Theorem 4.4.1). The idea of the proof is to express the power
series in question as a sum of certain subseries (cf. Proposition 4.4.3). Hence-
forth, for a GL,,(Zy)-stable subset B of S,,(Qp), we simply write > g
instead of } 7c . if there is no risk of confusion.

4.1. Local densities. Put

1,— O
Dpyi = GLm(Zp)<

GL,(Z,).
' pl) (Z,)

For S,T € S,,(Z,)* and a nonnegative integer i < m, we define
ap(S, Tyi) = 271 lim p=e(m=Um/2 4 (S T,i),
e— 00

where
Ac(S,T,i) = {X € A(S,T) | X € Dpni}
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LEMMA 4.1.1. Let S,T € Sy, (Zy)*.

(1) Let (S, T) = {W € My (Zy)* | SW] ~ T} and Q(S,T,i) =
Q(S,T) N Dyyi. Then

O[p(Sa T) _ #(Q(S, T)/GLm (Zp))pfm(y(det T)—v(det S))/Q’
ap(T)
Oép(S, T, 7!) _ #(Q(S, T, ,L-)/GLm(Zp))p—m(u(detT)—z/(det S))/Q.
ap(T)

(2) Let Q(S,T) = {W € Mp(Z,)* | S ~ T[W~']} and Q(S,T,i) =

Q(S,T) N Dy,i. Then

ap(S,T) _ (G L (Zy)\O(S, T))pvdet T)-videt )2,
ap(5)
ap(S,T,i) _ (G (Z,)\O(S, T, i))pv(det T)-v(det )2,
ap(S)

Proof. The assertion (1) follows from |4, Lemma 2.2]. Now by [14, Propo-
sition 2.2] we have
ap(8,T) = Y. BTy,
W EGLm (Zp)\Q(S,T)
Then B,(S, T[W~1]) = a,(S) or 0 according as S ~ T[W~!] or not. Thus
(2) holds. m

A nondegenerate m x m matrix D = (d;;) with entries in Z,, is said to
be reduced if it satisfies the following two conditions:

(a) For i = j, d;j; = p® with a nonnegative integer e;.
(b) For i # j, d;j is a nonnegative integer satisfying d;; < p~ —1if i < j
and dij =0if1 > 7.
It is well known that we can take the set of all reduced matrices as a complete
set of representatives for G Ly, (Zy)\My,(Z,)*. Let j = 0 or 1 according as

m is even or odd. For B € C,(%?p put

QU(B) = {W € M, (Z,)* | B(W 1] e L)

m?p :

Furthermore set ﬁ(j)(B, i) = ﬁ(j)(B) N Dy . Let ng < m, and p,,m be the
mapping from G Ly, (Qp) into GL,,(Qp) defined by ¢ m(D) = Ly—pn, L D.

LEMMA 4.1.2.
(1) Suppose p # 2. Let © € GLy,(Zp) N Spo(Zyp) and By € Syy—ny(Zyp)*.
(1.1) Let ng be even. Then m—nym induces a bijection

GLm—no (Zp)\ﬁ(j)(Bl) = GLm(Zp)\ﬁ(j)(@ 1 Bl)v
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where 3 =0 or 1 according as m is even or odd. In particular,
GLm—ng (Zp)\ﬁ(j)(pBl) = GLm(Zp)\ﬁ(j)(@ L pBy).
(1.2) Let ng be odd. Then Yp_nym induces a bijection
GLy—ng (Zp)\ﬁ(j,)(Bl) = GLm(Zp)\ﬁ(j)(@ 1 By),

where j = 0 or 1 according as m is even or odd, and j' =1 or
0 according as m is even or odd. In particular,

GLm—n, (Zp)\ﬁ(j’)(pBl) = GLm(Zp)\ﬁ(j)(@ L pBy).
(2) Suppose that p = 2. Let m be a positive integer, ng an even integer
not greater than m, and © € GLy,(Z2) N Spy(Z2)e-
(2.1) Let By € Sy—no(Z2)™. Then Vm—ng,m induces a bijection
GLu—ng (Z2)\QYV) (271 By) ~ QL (Z2)\QY) (270 L 271 By),

where j =0 or 1 according as m is even or odd.
(2.2) Suppose that m is even. Let a € Zy be such that a = —1 mod 4,
and By € Sp—ng—2(Z2)*. Then b —ny—1,m induces a bijection

GLy—ny—1(Z2)\QM (a L 4By)

~ 2 1
~ G Ly (Z2)\Q© <@ il ( > il 231>.
1 1+4a)/2
(2.3) Suppose that m is even, and let By € Spm—no—1(Z2)*. Then
there exists a bijection Vm—_ny—1,m

GLi—ny—1(Z2)\QM (4B)) ~ GL, (Z2)\QO (6 L2 L 2By).
(As will be seen, ?,Zm—no—l,m is not induced from VYm—no—1,m-)
(3) Assertions (1), (2) remain valid if one replaces QW) (B) by QW) (B, 7).

Proof. (1) Clearly the mapping 1 —nym induces an injection from the
set GLm—ny(Zp)\QW (By) to GLm(Z,)\Q9) (O L By), denoted by the same
symbol. To prove the surjectivity of 1,—pn, m, take a representative D of
an element of GLm(Zp)\ﬁ(j)(@ 1 Bj). Without loss of generality we may
suppose that D is a reduced matrix. Since (© L B1)[D7!] € S,,(Z,), we
have D = (180 131) with D; € QW (By). This proves (1.1); and (1.2) can be
proved in the same way.

(2) First we prove (2.1). As in (1), the mapping ¥, —n,m induces an in-
jection from GLuy,—ny(Zo)\QW (2711 B1) to GLy(Z)\QW (270 L 271 By),
denoted by the same symbol. Then the surjectivity of ¥,—nym in case
j = 0 can be proved in the same manner as (1). To prove the surjectiv-
ity of ¥y—ny,m in case j = 1, take a reduced matrix D = (%1 %122) with
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D e Mno (ZQ)X , Do € Mmfno (Zg) Dise Mno m—ng (ZQ) If (2@ J_4Bl) [D_l]
€ ES?Q, then there exists (r1,72) € Z5° x Zy'~ " such that

20[D; 1] = —'r1r1 mod 4L, 2,
—20[D7 D19 Dy = —trory mod 2Miyg g (Z2),
20[D; ' D19Dy |+ 4B1[Dy '] = ~'rorg mod 4L, p, o-

We have v(det(20[D;'])) > no and v(20) = ng. Hence D; = 1,, and
r1 = 0 mod 2. Therefore 431[ e £Y and D12D271 € My m—no(Za).

m—ng

Consequently, D = U( 180 Ds ) Wlth U € GLy,(Zp). Thus the surjectivity of

Ym—ng,m can be proved as above. The assertion (2.2) can be proved in the
same way.

To prove (2.3), we may suppose ng = 0 by (2.1). Let D € QM (4By).
Then

4B [D7Y = = trorg + 4B’
with o € Z5*~" and B’ € L,,—12. Then we can take r € ZJ'~! such that

gtp=titpyppTt = troro mod 4L, 1 2.

Furthermore, 2r D™1 is uniquely determined modulo 275"~ L by ro. Put D=

(3 7). Then D belongs to Q) (2 1. 2B;), and the mapping D — D induces
the bijection in question. =

(1)

me—1.p and

COROLLARY. Suppose that m is even. Let B € L

tTB/2 (B + tTBTB)/4
with rp € Zz%l as defined in Section 3. Then there exists a bijection
bt GLn1(Z,)\2(B) = GLn(Z,)\ OO (2% BO)

such that v(det (W) = v(det W) for any W € GLm_l(Zp)\ﬁ(l)(B). More-
over, ¢ induces a bijection

i+ GLn—1(Zp)\QW (B, i) = GLyn(Z,)\QO) (2727 BW i)
fori=0,...,m—1.

Proof. Let p # 2. Then we may suppose rg = 0, and the assertion
follows from (1.2). Let p = 2. If r5 = 0 mod 2 we may suppose that rg = 0,
and the assertion follows from (2.3). If rg # 0 mod 2, we may suppose that
B =a 1l 4By with B; € 52_272 and rg = (1,0,...,0). Then the assertion
follows from (2.2). =
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LEMMA 4.1.3. Suppose that p # 2.
(1) Let B € Sy (Zyp)*. Then
ap(pdB) = p" "D Ry, (B)

for any nonnegative integer r and d € Z,,.

(2) Let Uy € GLyy(Zp) N Spy(Zy) and By € Syy—ny(Zy)*. Then
ap(pBl 1L Ul) = 27”(710) ap(pBl)

no/2
H (1 —p 21 + x((=1)"/2det Uy)p"/>)~"if ng even,
=1
"\ (o-1)/2 |
I a-»% if no odd,
=1

for ng > 1, where r(ng) = 0 or 1 according as ng = m or not.

Proof. The assertion (1) follows from [17, Theorem 5.6.4(a)], while (2)
follows from [17, p. 110, line 4 from the bottom]|. =

LEMMA 4.1.4.
(1) Let B € Sy (Z2)*. Then
O[2(2TdB) _ 2rm(m+1)/2a2(3)

for any nonnegative integer r and d € Z5.
(2) Let ng be even and let Uy € GLy,(Z2) N Spy(Z2)e. Then for By €
Si—ng(Z2)™ we have

OéQ(Ul L 2B1) = QT(nO)OéQ(ZBl)

no/2
[T =272+ x((—1)"/2 det Uy)p~ /%)~
X =1 Zf Bl S Smfno (ZQ)e;
(no—1)/2 '
I a-2 if Bi € Si—ny(Z2)o,
i=1
and for ug € Z5 and By € Sp—no—1(Z2)* we have
no/2 A
ag(ug L 2U1 L 4By) = ap(2Bp)2™ M~ D/2 T (1 —27%).
i=1

(3) Let ug € Z% and By € Sp—1(Z2)*. Then
OéQ(U() 1 531) = O[Q(U() 1 Bl).

Proof. The assertion (1) follows from [17, Theorem 5.6.4(a)], and (2)
follows from [17, (4), p. 111]. For a nondegenerate half-integral matrix A,
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let W4 be the quadratic space over Z, associated with A, and n4 ;,qa,; and
E4 j be the quantities nj, ¢; and Ej, respectively, from [17, p. 109] defined
for W4. Then the transformation ug L B; — ug L 5B does not change these
quantities. This proves (3). =

Now let R be a commutative ring. Then the group GL,,(R) x R* acts
on S, (R) in a natural way. We write By ~p Bs if By ~p {B; with some
& € R*. Let m be a positive integer. Then for B € S, (Z),) let g’m,p(B) denote
the set of elements B’ € S,,(Z;) such that B’ ~z, B, and let S;,—1,(B)
denote the set of elements B’ € Sy,1(Z,) such that 1 L B’ =z, B.

LEMMA 4.1.5. Let m be a positive even integer. Let B € Sy,(Z2)). Then

1 #(Sna(B)/~)
Z OdQ(B/)_ 2a2(B) )

B'€Sm—1,2(B)/~

Proof. For a positive integer [ let [ = I; + --- + [, be the partition of [
by positive integers, and {s;};_; the set of nonnegative integers such that
0 <s; <--- < s, Then for a positive integer e let SZ(O) (Zo)2°72, {l;},{si})
be the subset of S;(Za/2¢Z) consisting of all symmetric matrices of the form
2510y L -+ L 297U, with U; € S,(Z/2°Zy) unimodular. Let B € Sp,(Z2),
and det B = (—1)"/2d. Then B is equivalent, over Zs, to a matrix of the
form

QU Lo L2 W,
where 0 =t < --- < t, and W1,..., W, are unimodular matrices of degree
ni,...,ny, respectively, and in particular, Wy is odd unimodular. Then by

|11, Lemma 3.2], similarly to [11}, (3.5)], for a sufficiently large integer e, we
have

#(Sma(B)/~) 1
az(B) = 2

BESm 2(B)/~ az(B)
_ om—ly (A STy nini—1e/2— (1) (e=1)~ <) iy minsty

x [ #(SLn, (Z2/2°Z0)) " #8022/ 2° T, {ni}, {t:}, B),

i=1
where S (Za)2°7a,{n;},{ti}, B) is the subset of S (Z2/2°Za, {n;}, {t:})
consisting of all matrices A such that A ~gz, /57, B. We note that our local
density ozz(é) is 27™ times that in [11] for B e Sm(Zz). If ny > 2, put

r=r,nf =n —1,n=mng,...,n, =n,,and t, =t; fori = 1,...,7,

and if ny = 1, put v = r — 1, n, = n;yq and t, = ¢;4; for i = 1,...,7".
Let S\ | (Zy/2°Z, {n}}, {t,}, B) be the subset of S\ | (Z/2°Z,, {n!}, {t}})
consisting of all matrices B’ € Sy,—1(Z2/2°Zz) such that 1 L B" ~g, /57, B.
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Then, similarly, we obtain
Y
/
B/E€Sm_12(B)/~ aa(B')

_ om—29—u(d)+ 1Ly nf(ni—1)e/2— ('~ 1)(e—1) =5y < iy mi )

5 [T #(S L (Zo/2°22)) 48 1 (202520, {1}}, {1}, B).

=1
Take A € S (Z2/2¢%s, {n;}, {t:}, B). Then
A=2U; L --- 1270,

with U; € Sy, (Z2/2°Zs) unimodular. Put U; = (uy,). Then by the assump-
tion there exists an integer 1 < A < ny such that uyy € Z3. Let Ao be the
least such integer, and V; be the matrix obtained from U; by interchanging
the first and Agth rows and the first and Agth columns. Write

vV
V= ( 1 1>
tVl V/
with vy € Z3, v1 € Zglfl and V' € S,,,_1(Z2). Here we understand that
V' — tvivy is the empty matrix if ny = 1. Then

v 0
Vi~ ( SR >
0 V'—wvy [vq]

Then the map A '—> v 28 (V! — vt va]) L 22Uy L -+ 1 20U,) induces
amap Y from S (ZQ/QEZQ,{nZ} {ti}, B) to 55311(22/2622, {n;},{t:}, B).
By a simple calculation, we obtain

#Tfl( /) _ 2(efl)n1 (2n1 _ 1)
for any B’ € S(O 1(Zy 2%, {n}, {t;}, B). We also note that
H#S Ly, (L) 2°7) = 26~ VCEm=Vom=Yom _ 1) (S[,, | (Zy/2°7s)) or 1

according as n1; > 2 or n; = 1, and

an n;—1)e/2—(r—1)(e—1) Z ninjt;
1<5<i<r

,,,l

=en, + Zn;(n; —1e/2—(r"—1)(e—1)+ Z ngnjt’,

i=1 1<j<i<r!

where e, = (n1 — 1)e or e,, = 1 — e according as ny > 2 or n; = 1. Hence
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2m—12*’/(d)+22:1 ni(ni—1)e/2—(r—1)(e—1)=3 < jci<, Minjt;

x | [ #(S L, (Z2/2°)) " #8022/ 2° 2, {ni}, {t:}, B)

=1
/
—9. 2m722—u(d)+2§:1 ni(nj—1)e/2—(r' 1) (e=1)=3, < j<; < MyN5L)

x ] #(S Ly (22/222)) ' #51,) 1(22/2° 2, {3}, {113, B).
i=1
This proves the assertion. m

4.2. Siegel series. For a half-integral matrix B of degree m over Zj,
let (W,q) denote the quadratic space over Zj/pZ, defined by the quadratic
form g(x) = B[x]| mod p, and define the radical R(W) of W by

R(W) ={xe W | B(x,y) =0 for any y € W},
where B denotes the symmetric bilinear form associated to g. We then put
I,(B) = ranky sz R(W)*, where R(W)* is the orthogonal complement
of R(W)* in W. Furthermore, in case I,(B) is even, set {,(B) = 1 or —1
according as R(W)1 is hyperbolic or not. In case l,(B) is odd, we put
§,(B) = 0. Here we make the convention that {,(B) = 1 if [,(B) = 0.

We note that &,(B) is different from &,(B) in general, but they coincide if
B € Ly N AGLy(Zy).

Let n be a positive even integer. For B € M

n—1,p

B = (trl/z (B :{ir)/Zl)’

where r € ngl is such that B+trr € 4£,,_1 . Then we set £(V(B) = ¢(BW)
and g(l)(B) = &(BW). These do not depend on the choice of r, and we have
£M(B) = x((=1)"/? det B).

Let p # 2. Let j = 0 or 1. Then an element B of Egl jp s equivalent, over

Zp, t0 © LpBy with © € GLy—n,—j(Zy) N Snn,—j(Zy) and By € Sy, (Z,)*.
Thus g(])(B) = 0 if n is odd, and E(l)(B) = x((—=1)"=")/2 det ©) if n; is
even.

Let p = 2. Then an element B € Eg_)m is equivalent, over Zs, to a
matrix of the form 20 L By, where © € GL;,—p,—2(Z2) N Sp—n,—2(Z2). and
By is one of the following types:

(I) By =a L 4By with a = —1 mod 4, and Bs € Sy, (Z2)};
(H) B € 4Sn1+]_(ZQ)X;
(III) By = a L 4By with a = —1 mod 4, and By € Sy, (Z2),.

put
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Thus €(B) = 0 if By is of type (II) or (IIL). If By is of type (I), then
(=1)(»=71)/24 det © mod (Z5)° is uniquely determined by B, and we have

E(l)(B) = x((=1)(»="1)/2g det ©). Moreover, an element B € Egg is equiva-
lent, over Zo, to a matrix of the form © 1 2B;, where © € GLan_g(Zg) N
Snfnlfz(ZQ)e and B € Snl(ZQ)X.

Suppose that p # 2, and let & = U, be a complete set of representatives
for Z/(Z;)". Then, for each positive integer I and d € U, there exists a
unique, up to Zy-equivalence, element of S;(Z,)NGL;(Z;,) whose determinant
is (—1)[+D/2q, which will be denoted by ©; 4.

Suppose that p = 2, and put Y = Uy = {1,5}. Then for each positive even
integer [ and d € Uy there exists a unique, up to Zs-equivalence, element of
S)(Z2)eNGLi(Zs) whose determinant is (—1)"/2d, which will also be denoted
by @l,d-

In particular, if p is any prime number and [ is even, we put ©; = ©; ;.
We make the convention that ©, 4 is the empty matrix if [ = 0. For d € U
we use the same symbol d to denote the coset d mod (Z;)".

For B € E;l_)lyp, let ES”(B, X) be the polynomial in X and X ~! defined

in Section 3. We also define a polynomial GZ(,I)(B, X) in X by

=S Ry S EOBD LX),
i=0 DEGLn—1(Zp)\Dr-1,i
LEMMA 4.2.1. Let n be a positive even integer. Let B € E;l_)l’p, and put

& = x((~1)"/2det B).

(1) Let p # 2, and suppose that B = ©y,_p,, 14 L pBy with d € U and
By € Sy, (Zy)*. Then

1
GV(B, X)
1 gpri2x W |
Sop — H (1 _p21+nX2) if my is even,
1 —p"1/2+”/2§( )(B)X i=1
B (n1—1)/2
(1- fﬂpn/QX) H (1—p**mx?) if n1 1s odd.
\ =1

(2) Let p = 2. Suppose that ny is even and that B = 20 1 By with
O c Sn_nl_g(Zg)e N GLn_nl_Q(ZQ) and By € Sn1+1(Z2)X. Then
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G5 (B, X)
1—&27/2X e 2 2
-1 H (1 — 2%y ) if By is of type (I);
_ ) 1—2om/rmi2e (B X 5
- ni/2
(1—&2?X) [ (1 - 2*#"X?) if By is of type (II) or (III).
=1

Proof. By the Corollary to Lemma 4.1.2 and by definition we have
Gﬁ,l)(B, X)=G,(BW, X). Thus the assertion follows from [16, Lemma 9].

REMARK. In the above lemma, we have E(l)(B) = &(B) if ny = 0. Hence
G;,I)(B,X) = 1 in this case.

LEMMA 4.2.2. Let B € £(1)

notp- Lhen

~ g ap(B',B)
EM(B,X) = > X~ (B)Zp(iB’)
BreL) /GLn 1(Zy)

% G]gl) (B/,p(_n_l)/2X>(p_1X)(V(det B)—v(det B’))/Q‘
Proof. We have
FV(B,X)
— Z X_e(l)(B)Gél) (B[W_l],p(_n_l)/2X)X2V(dCt W)
WEGLy—1(Zp)\QM (B)
= Z Z X—€(1>(B)
BreL),  /GLn 1(Zy) WEGLn—1(Z)\QB',B)
« Gz()l) (B/, p(—n—l)/QX)X2l/(det W)
_ Z Xfe(l)(B’)#(GLn_l(Zp)\Q(B/7B))p(u(detB)fz/(detB’))/Z
Ble[:illll,p/GLn_l(Zp)
> G;gl) (B,, p(fnfl)/2X)(p71X)(u(det B)—v(det B’))/2'

Thus the assertion follows from Lemma 4.1.1(2). =

4.3. Certain reduction formulas. To give an explicit formula for the
power series Py(ll_)l(do, w, X, t), we give certain reduction formulas, by means
of which we can express Prgi)l (do,w, X, t) in terms of the power series defined

in [11]. First we review the notion of canonical forms of quadratic forms over
Zs in the sense of Watson [20].
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Let B € 5272. Then B is equivalent, over Zo, to a matrix of the form
r .
'J_o 2Y(V; L U),
1=

where V; = J_;?izl cij with 0 < k; <2, ¢;5 € Z5 and Uy = %Gmi,d with 0 < m;,
d € U. The degrees k; and m; of the matrices are uniquely determined by B.
Furthermore we can choose the matrix L, 2¢(V; L U;) uniquely so that it
satisfies the following conditions:

(C.l) Ci1 = +1 or £3 if kil = 1, and (Cil,cig) = (1,i1), (1, :|:3), (—1, —1),

or (—1,3) if k; = 2;
]{ZH_Q =k; =0if Ujyo = @m1+2 5 with mH_Q > 0;

—detV; =1mod 4 if k; =2 and U341 = @mHrl 5 with m;1q1 > 0;
(—D)ki=1det V; = 1 mod 4 if k;, ki1 > 0;
Vi # (_01 c?2) if k;—1 > 0;
6) Vi=0,(x1),(§2), or (F9) if kipo > 0.
The matrix satisfying the conditions (c.1)—(c.6) is called the canonical form
of B, and denoted by C(B). Now for V = J.é“ 1¢j with 1 < k < 2, put
V= 5cy or V= 5c1 L co according as V =cj; or V =c¢; L co.

LEMMA 4.3.1. For B € Sy, (Z2)}, let C(B) = Vo L Li_(U; LV;) be the

canonical form of B stated as above. Let | = lp be the smallest integer such
that kojyo = 0. Then

~ r 20—1 ~ T
C(oL L(WiLVi)=VoL L (Ui LVy) LUy LO(WVa) L L (Ui LVi).

i=2
Proof. We note that 5a; L 4as ~ a1 L 4 - 5ay for ay,as € Z5. Hence
~ l -1 ~
Vo L ‘J_l Voi ~Vpy L 'J_l Voi L Vo
1= 1=
This proves the assertion. m

COROLLARY. For B,B’ € Sopm+1(do)o, let C(B) = Vo L LI_(U; L V)
and C(B') = V{ L Li_, (U] LV}) with Vo = L%, c; and Vj = L2, ¢..
Put

k r
B = iQCOj L L(ULV) and Bj= J_ by L J_(U’ 1LV)).
j= i=

Then B ~ B’ if and only if co1 L 5By ~ ¢fy L 5Bi.

Proof. We note that ¢y L 5By ~ ¢}y L 5B if and only if 5¢o; L By ~
5¢y; L Bj. Hence the assertion follows from the lemma. m

The following lemma follows from [17, Theorem 3.4.2].
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LEMMA 4.3.2. Let m and r be integers such that 0<r<m, and dy EZ;.
(1) Let p# 2 and T € Sy(Zyp,do). Then for any d € U we have
EOmra L T) = (=) "+D/214,dg) (1),

Furthermore
d T ]
omy [P
(p, (=1) )pe(T) if r odd,

and £(aT) = (a, do);He(T) for any a € Z;,
(2) Let p=2 and T € Sy(Za,dp). Suppose that m — r is even, and let
deU. Then for © =20, 4 0r 20,,_r_o L (—d), we have

(O LT) = (1) 28 ()02, () 2ldy (1)
and
€(Om—rqa L T)
= (=1)m=nm=r+2)/89 )5 ((=1)/2q, (—1)I+D/2A g )oe(T).
Furthermore, £(2T) = (2,do)5 ™ e(T),
ela LT) = (a, (—1)+D/2H1g0),e(T)
for any a € Z3, and

e(aT) = {

for any a € Z5.

(a,dp)2e(T) if T even,
(a, (=1)FD/2)5e(T) i r odd

Henceforth, we sometimes abbreviate S,(Z,) and S,(Zp,d) as S, , and
Srp(d), respectively. Furthermore we abbreviate S,(Z3), and S,(Zs2,d), as
Sr.2.¢ and Sy 2(d),, respectively, for x = e, 0.

Let R be a commutative ring. A function H defined on a subset S of
Sm(Qp) with values in R is said to be GLy,(Zp)-invariant if H(A[U]) =

H(A) for any U € GL,,(Zp) and A € S.
Let p # 2. Let {H{, . | j € {0,1}, 1—j <r <nj2—j, €= +1}
be a set of G Loy ;(Zy)-invariant functions on Sp,4;(Zy,)* with values in R

satisfying the following conditions for any positive even integer m < n:

(H-p-0) H\(Oma) =1and H | (On-14) =1 for d € U;

(H-p-1) HYe(Om-ara L pB) = Hy).  (pB) for any r <m/2—1, € = +1,
deU and B € Sy (Zy)™;

(H-p-2) Hﬁh,g(@m—zwz,d L pB) = Héizrl,g
E==1,delU and B € Sy 41(Zp)*;

(pdB) for any r < m/2 — 2,
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(H-p-3) Hy(r?’)g(gmf%fl,d L pB) = H2(712i-1,£

f =+1and B € SQT_H(ZP)X;
(H-p-4) Hfi)_l,g(gmfwfl,d L pB) = Hég)gx(d)
E==1,dec U and B € So,(Zy)™;
(H-p-5) Hég?g(dB) = HZ(S?g(B) for any » < m/2, £ = £1, d € Z; and
B e SQT(ZP)X.

(—pdB) for any r < m/2 — 2,

(pB) for any r < m/2 — 2,

Let dy € Fp, and m be a positive even integer such that m < n. Then
for each 0 <r <m/2 —1 we put
QW (do, H\Y | ¢ 2r +1,¢.) = k(do,m — 1,1)
1
% Z Z Hﬁn),l,g(@m*Q’l"*Q,d J_ pB)E(@m*2T72,d J— pB)l

ap(Op_2p—24 L pB
d€U Bep=18,41 p(dod)NS2041. p(Om-2r—24 L pB)
> tl/(det(pB))‘

Let d € U. Then we put

QW(do,d, HYY | ., 2r,€ 1) = K(do,m —1,1)7"
HY (Om—2r—1,d L pB)e(Op_2r—1,4 L pB)"

—-1,¢
D
BESar,p(dod) p(Om—2r—1,4 L pB)

((det(pB))

for each 1 <r <m/2 —1, and

QO (do, d, HY,, 2r,¢l )
H(O) (@m—Zr,d uE pB)E(@m—QT,d 1 pB)l

- x>
B€Sarp(dod) ap(@m—2r,d 1 pB)

751/(det(pB))

for each 1 <7 < m/2. Here we make the convention that

HY(pB)e(pB)!
ap(pB)

Q) (do, 1, Hﬁffg, m, e t) = Z v(det(pB))
BGSm,p(dQ)

We also define

QW(do,d, HY . ..0,¢,t) = QO (dy,d, H.,0,¢,t) = 5(d., do),

m_]wé-’ mv{’

where 6(d, dy) = 1 or 0 according as d = dy or not. Furthermore put
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Q(O) (d07 H/)S’??E? 2r+1, Elv t)

5 > HY (~Om-3r-1.4 L pB)e(~Op-2r-1,4 L pB)!
B ap(_@m—Qr—l,d 1 pB)

deld Bep=1Sar41,p(dod)NS2r11,p

o p(det(pB))

for each 0 <r <m/2 — 1.

Let {HY\ . |j€{0,1},1—j <r <n/2—j¢==+1} be aset of
G Loy (Zy)-invariant functions on So,4j(Z2)* with values in R satisfying
the following conditions for any positive even integer m < n:

(H-2-0) H\(Oma) = HY | ((—d 120, _) =1 for d € U;
(H-2-1) H (O 2ra L2B) = HY), ., (2B) for any r <m/2 -1, £ = +1,

d €U and B € So.(Za)™;

1
(H-22) HY | (200,24 L 4B) = HY, .

f +1,d €U and B € 527-+1(ZQ)X;

(H-2-3) H\ (210 0,2 12B) = HY), | (4B) for any r < m/2-2, € = £1
and B € SQT+1(ZQ)X;

(H-24) HY | (~a 120, o > 14B) = HY)

2r.6x(a)
E==1,a €l and B € Sy-(Z2)™;
(H-2-5) Hég’)g(dB) = HQ(S,)g(B> for any r < m/2, £ = +1, d € Z} and
B e SQT(ZQ)X;
(H-2-6) Hy),, ((4(uo L B)) = HY\| (4(ug L 5B)) for any r < m/2 — 1,
§ +1 and ug € Z;, B e SQT<Z2)X.

(4dB) for any r < m/2 — 2,

(2B) for any r < m/2—2,

Let dy € F2, and m be a positive even integer such that m < n. Then for
each 0 <r <m/2 —1, we put
QU (do, HY | (2 +1,€,t) = K(do,m — 1,1) 7137 x

HY | (201,994 L AB)e (20, 5,24 L 4B)

m—1,¢ )
Z Z 042(2@,,1,27“,275[ 1 4B)

deU BESar41,2(dod)e

% tm—2r—2+l/(det(4B))

Q(lz)(do, Hr(i) Le 2r + 1,5l,t) = k(dg,m — 1 l)_th_m X

H' )_175(29171 or—2 L 4B)e! (20, _or_3 L 4B)

>
B652T+1,2(d0)0 a2(2®m 2r—2 J—Z-‘:B)

$m— 2r—2+v(det(4B))
)
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and

Q(B)(dOa H,(,P_Lg,

= K(do,m — 1,07 ST HY | (-1 120554 L 4B)
BeSar42,2(do)o
% 5l(_1 1 20m—9r—4 L 4B) tm—2r—4+u(det(4B))
012(—1 1 2@m72r74 1 4B) '

2r+1,5l,t)

Moreover put

QW (do, HY | c.2r +1,¢',t) = QU (do, H | . 2r +1,€',1)

+ QU (do, HY | ¢ 2r + 1,6, 1) + QU (do, HY ¢ 27 +1,€1,1).
We note that

Q(l)(de?(nl),l,g,

- —m (4B ! v
= K,(d(], m — 1’ l) 1t2 Z HS)17£(4B)06((432).[: (det(4B)).
BESm_1,2(do) 2

m—1,é,t)

Let d € U. Then we put

Q(l) (d07 d7 Hy(i)_l,@ 27’, 617 t)

= w(do,m — 1,072 ™ N HY | (~d 120,55 1 4B)
BeSar 2(dod)e

o (= L20m 25 LAB) 1\ o oiyaen(an))
ag(—d L 2®m—2r—2 L 4B)

for each 1 <r <m/2—1, and

Q) (do, d, Hf??)g, or, e, t)
(0) .
—k(dom, )Y H,pe(Om-ara L 2B)e(Om-nra L2B)' |\ 00
BeESar,2(dod)e a2(@m72r,d 1 QB)

for each 1 < r < m/2, where r(dg,m,1) = {(=1)"™"+2)/8((=1)™/22, dy),}.
Here we make the convention that
0
aY,.(2B)e(2B)"
az(2B)

(det(2B))

QO (do, 1, HYe,m, ) = k(do,m, )™ Y
Besmyz(do)e

We also define
QW(do,d, H | ,0,¢,t) = QO (do,d, H)

m—l,ﬁ’ m757

0,€,t) = 6(d,dp).
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Furthermore put

Q) (do. H,,

m?&’

or +1,€,t)

(0)
H
= k(do, m,l)_1 g mé

BeSar12,2(do)o

!
(Om—2r—2 L 2B)e(Om—2,—2 L 2B) ((det(2B))
a2(Om—2r—2 L 2B)

for 0 <r < m/2 — 1. Henceforth, for dy € F, and nonnegative integers m, r
such that » < m, set U(m,r,do) = {1}, U N {dp}, or U according as r = 0,
r=m2>1l,orl<r<m-—1.

PROPOSITION 4.3.3. Let the notation be as above.
(1) For 0 <r < (m—2)/2, we have

QW (do, Hy, | ¢, 2r +1,¢\1)

Q(O) d ,H(O) or + 1, t) =
(do ) D(m—2r—2)/2(p72)

m’g ’

if lw(dp) =0, and
QO (do, HY,,2r +1,6,8) =0

if l/(do) > 0.
(2) For1<r<m/2 andd e U(m,m —2r,dy), we have
QO (do,d, HY,, 2r,¢' 1)

(1 +p7(mf2r)/2x(d))Q(O) (d()d, 1’ H(O)

oréx(d)’ 2r, el t)
20(m—2r)/2(P™%)

if lw(dp) =0, and
Q(do, d, HY)

m7£,

2r,e,t) =0
if v(do) > 0.
Proof. First suppose that p # 2. We note that
(=Om—2r-1,4) L pB ~d(=Op_2,-1) L pB =~ (=O,_2,_1) L dpB
for d € U and B € p~1 5941 ,(dod) and the mapping
p 1 S911,p(dod) N S2r1p > B dB € pSori1(do) N Sari1p

is a bijection. By Lemma 4.3.2, e((—=O,—2,-1,4) L pB) = (d, dp)pe(pB) and
e(dpB) = e(pB) for B € p~1S9.41 (dod). Thus (1) follows from (H-p-3),
(H-p-5) and Lemma 4.1.3.
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By (H-p-2) and Lemmas 4.1.3 and 4.3.2, we have
—(m—2r m—2r l
(1+p~ "2 (d)) (1) *1/%d, dy ),
2¢(m—27‘)/2(p_2)

% QO (dyd, 1, Hggfgx( 22 t).

QO (dy, d, H, 2r, &' 1) =

Thus (2) follows immediately in case lv(dy) = 0.

Now suppose that [ = 1 and v(dp) = 1. Take a € Z; such that (a,p),
= —1. Then the mapping S2,(Zy,) > B — aB € S2,(Z,) induces a bijection
from Sar,(ddp) to itself, and e(apB) = —e(pB) and a,(apB) = ap,(pB) for
B € Sy, p(ddp). Furthermore by (H-p-5) we have

(0)
H (apB)e(apB)
réx(d)
QO(dod, 1, HY), (p.2r e )= Y
X BESs,(ddo) a(apB)
0
- _Q(O) <d0d7 17 Hér?gx(d)7 27'7 817 t)

Hence Q) (dod, 1, Hég)gx(d)v 2r, ¢l t) = 0. This proves (2) in this case.
Next suppose that p = 2. First suppose that [ = 0, or Il = 1 and dy =
1 mod 4. Fix a complete set B of representatives for (Sg,422(do)o)/~. For

B € B, let Syp412(B) and §2r+2,2(B) be those defined in Subsection 4.1.
Then, by (H-2-1) and (H-2-5) we have

Q) (do, Hye, 2 + 1,1,1)

(0)
HY., (2B) _
— ) #(52r+2,2(B)/N)ty(dEt(QB)).
BZG% Pm—2r—2)/2(272)20 D3 ay(B)
We have Sorq12(do) = UpepSer+12(B), and 1 L B' = B for any B’ €
Sori12(B). Hence v(det(2B)) = v(det(4B')) — 2r and H"., (2B) =

2r+2,£
Hégl-zg@ 12B) = H2(714L7§(4B’). Thus by Lemma 4.1.5 we have

Q) (do. H,y,

me2r + 1, el t)
/
2r+1,§ (4B ) 751/(det(4B’))721"

=2
B'eSz%:l,z(do) 2R3 G 0,9y /9(272)a(B)

(1)
_ 2(2r+1)rt72r Z H2r+1,§(4B,)

-2 !
B/€2-1 55,4 1.2(do)NS2rs 1.2 ¢(m72r72)/2(2 )042(4.8 )

This proves (1) for I = 0. Now let dy = 1 mod 4, and put & = (2,dp)2. Then

v(det(4B))
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by Lemma 4.3.2 we have

5(@771—27"—2 n 2B) _ (_1)m(m+2)/8+r(r+1)/2+(r+1)2éoE(B).
Furthermore for any a € Z3 we have e(aB)! = £(B)" and as(aB) = az(B).
Thus, by using the same argument as above we obtain

QO (do, H\Y,.2r +1,¢,1)

(0)
_ (_1)m(m+2)/8£0 Z H2T+25

beB P(m—2r—2)2(272)20 D+ 0y (B)
X #(Sarp2,2(B)/~ )t EB),
We note that e(1 L B') = ¢(4B’) for B’ € Syr112. Therefore, again by
Lemma 4.1.5, we have

QU (do, Hiyy, 2r +1,¢!8) = (=) T HD/2((—1)r 1, (—1)r+1)p2@rirg =2

1
S HYY. | (4B')e(B)
2—2 /
B/ESar11.2(do) ¢(m72r72)/2( )042(43 )
This proves (1) for [ = 1 and dy = 1 mod 4.
Next suppose that { = 1 and 4 'dy = —1 mod 4, or ] = 1 and 87 'dj € 7.
Then there exists a € Z3 such that (a,dp)2 = —1. Then the map 2B — 2aB

induces a bijection of 259,42 2(dp), to itself. Furthermore H2(TZF2 5(2@3) =

HéT)HE@B) £(2aB) = —€(2B), and a2(2aB) = a2(2B). Thus (1) can be
proved by using the same argument as in the proof of (2) for p # 2. The
assertion (2) for p = 2 can be proved by using (H-2-1), Lemmas 4.1.4 and

4.3.2 similarly to (2) for p # 2. =
PROPOSITION 4.3.4. Let the notation be as above.
(1) For0<r < (m—2)/2 we have

(2B) (_1)m(m+2)/8+r(r+1)/2+(r+1)2£0€(B)

v(det(4B)) )

QW (do, Hy, 1 ¢, 2r +1,¢l,1)
¢(m72r72)/2( _2)

(2) For1<r<(m-—2)/2 andd € U(m —1,m —2r —1,dy) we have

Q(O) (d0d7 17 HéT)&X( ) 2T7 El? t)
2¢(m—2r—2)/2( 2)

QW(do, HY | 2r + 1,6l ,t) =

QW (do,d, HY | ¢ 2r,el 1) =

if w(dy) =0, and
QW (do,d, HY | (. 2r,el 1) =0
otherwise.

Proof. We may suppose that r < (m—2)/2. First suppose that p # 2. As
in the proof of Proposition 4.3.3(1), we have a bijection p~1Ss,41 ,(dod) N
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Sort1p D B — dB € p~1S941,(do) N Sar4+1,. We also note that e(dB) =
e(B) and «a,(dB) = a,(B). Hence, by (H-p-2), Lemmas 4.1.3 and 4.3.2,
similarly to Proposition 4.3.3(2), we have

QW(do, H),

m7§’

2r 41, !, 1) = plm AT DR (1) 2dy, (—1)2),

(1) !
X Z Hori1,£(PB)(pB) v(det(pB))
2¢(m—2r—2)/2 (p_Q)Oép(pB)

Bep=182,41,p(do)NS2r+1,p
% Z(l +pf(mf2r72)/2x(d))((_1)(m72r72)/2d7 (—1)r+1d0d)é).
deu
Thus (1) clearly holds if lv(dy) = 0. Suppose that [ = 1 and v(dp) = 1. Then

((—1)("1—27"—2)/2(1’ (—1)T+1d0d)p
D) (1 o)y (—1)2, (-1 dy),,
and therefore
Z(l _|_p_(m—Qr—Q)/QX(d))((_1)(m—2r—2)/2d’ (_1)7"+1d0)p

deu
— 2p7(m72r72)/2((_1)r+1’ (_1)r+1d0d)p((_1)m/2’ (_1)m/2d0)p‘

This completes the proof of (1).
By (H-p-4) and by Lemmas 4.1.3 and 4.3.2, we have

Q(l) (d07 d7 H7S117£7 2T7 El? t)

= Q(O) (dOd’ L Hég,)fx(d)’ 2r, gl, t) (_1)(m—2r)/2d dO)l
20 (m—2r—2)/2(P72) o
Thus (2) follows immediately if iv(dp) = 0; and for [ = 1 and v(dyg) =1 it
follows from Proposition 4.3.3(2).
Next suppose that p = 2. We have
£(20 3r2,4 L AB) = (—1)mm=2/8(_ 1y D/2((_ymi2, (_1ymig),
x (=1, (=1)"dod)2(do, d)2 £(4B)

for d € U and B € So,11,2(ddp). Thus, similarly to (1) for p # 2, we obtain

Q(H)(do, H?S"P 0+ 1,8l,t) _ (_1)r(r+1)l/2t—2r((_1)r+1’ (_1)r+1d0)12

_1,&’
r(2r+1 (1) l
x om/2-Divtdn) 3 2"CrtUH, L ((AB)e(4B) p(det(4B))
2. 2m_2r_2¢(m72r72)/2(2_2)a2(4B)

BeSar41,2(do)e

x Y (14272223 (d))(d, do)
deut
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QU (do, Hyy, | ¢, 2r +1,€1,1)

Q1H(m—2r=2)(1-Ww(do)/2)

=Y (1427 22(d))(d, do)y
deu
In the same manner as above, we obtain

Q(12)(d0, an) ” 20 + 1,€l,t) _ (_1)r(7“+1)l/2t—2r((_1)r+1’ (_1)r+1d0)l2
2r(2r+1)H( ) (4B)€(4B)l

(m/2—1)lv(do) 2r+1,¢
X2 Z 2m72r72¢(m—2’r—2)/2(272)042(43)

CQU(do, Hy,y ¢ 2 + 1,6 1)

= 2(m_2r—2)(1—lV(do)/2)¢(m,2r72)/2(2_2) '

(m—2r—2)/2(272)

tu(det (4B))

BeSar41,2(do)o

Furthermore we have
e(—=1 L 20, _9p_4 L AB) = (—=1)"m=2/8(_1)r(r+0/2((_1)m/2 (—1)™/24y),
x (=1, (=1)"do)2(2, do)2e(2B)
for d € U and B € Say422(ddp),. Hence
Q13 (4 (do 7(n) Lo 2r 1, gl ) = (- 1)r(r+1)l/2t72r72((_1)T+17 (_1)r+1d0)12
7Y | (2B)e(4B)!

X (2,al0)l2 9(m/2—1)lv(do) Z 22,6 i
BESar42,2(do)o P(m—2r—1)/2(27%)a2(2B)

T 7” T l m 14
= (((-1) 192 dg)a(~1 +1)(r+2) /2) o(m/2=1)Iv(do)

(v(det(4B))

H§8+25< B)e(2B)'
. Z ) (b(m 2r— 4/2(2 2)a2( )

BeSar12,2(do)o

v(det(2B))

7O !
B Q) (do, Hy,,y ¢, 2r +1,¢ ,t)2(m/2_1)lu(do).

P(m—2r—1)/2(272)

First suppose that [ = 0 or v(dp) is even. Then (d,dp), = 1. Hence

QU (do, HY | .2 + 1,1, 8) + QU (do, HYY | 27 +1,€',1)
Q( )(d07H2(7'2|—1§’2T+ 1’€l’t)

T 9(m—2r-2)(1— y(do)l/2)¢

(m—2r—2)/2(27%)
Furthermore by Proposition 4.3.3(2), we have

Q1 )(dg, érll & 2r + 1,6\, t)

¢! )d H()
@ ( ¢(m72r74)/2(2_2)

or+1,elt) =

“1e
if lv(dy) =0, and

Q(l?’ (do, H g4 )1£’2T+1’€’t) =0
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if 4~ 1dy = —1 mod 4. Thus summing up these two quantities, we prove (1)
in this case.

Next suppose that [ =1 and v(dyp) = 3. Then

Q( )(d H( )

e 15,27‘4—1,5,7&) =0.

We prove

Q(12)(do, érllg, 2r 4+ 1,e,t) = 0.

If » = 0, then clearly So,412(do), is empty. Suppose r > 1. Then for
B € 459,41, take a canonical form 4cg; L 4By with co1 € Z3, By € So;.2,
and put B’ = 4cg; L 4 - 5B;. Then, by Corollary to Lemma 4.3.1, the
mapping B — B’ induces a bijection from 455,11 2(dp)o/~ to itself, and
e(B’) = —&(B). Then, by (H-2-6), and Lemma 4.1.4(3), we can prove the
above equality in the same way as in the proof of (1) for p # 2. We also note
that 3 e (1 + 2772 =2/2(d))(d, dy)2 = 21~(M~27=2)/2_ This proves (1).

The assertion (2) for p = 2 can be proved in the same manner as (2) for

pF2. um

4.4. Proof of the main result. In this section, we prove our main
result. First we give an explicit formula for the power series of Koecher—
Maass type.

THEOREM 4.4.1. Let dy € Fp, and put § = x(do). Then we have the
following formulas:
(p~ ')\ (1 — &t*p~5/?)
Pn—2)/2(p~?)(1 = ?p72X)(1 — t2p—2X 1)
1

1) PY (do,1, X,t) =

H(n D2 —g2p2i-1X)(1 — 2p- 21X 1)

(0”1”1~ gotp 12

1)
2) P (dy,e, X, t) =
@) P do ) ¢(n_2)/2(1?*2)

1
x .
H(Z;z)/Z(l _ tQp_Qi_lX)(l _ t2p—2i—1X—1)

)

To prove the above theorem, we define another formal power series.
Namely, for I = 0,1 we set

K (do, &', X, 1) = r(do,n — 1,1) " %2027

G}(?l)(Bl’p—(n-‘rl)/?X)s(B,)lX,e(l)(B’)ty(det B')

- ap(B’)

Brec't | (do)
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PROPOSITION 4.4.2. Let dy be as above. Then

n—1
P\ (do,w, X, 1) = [T~ 2xp" " YKV, (do,w, X, 1).
i=1
Proof. We note that B’ belongs to E;l_)l’p(do) if B belongs to 5511217p(d0)

and a,(B’, B) # 0. Hence by Lemma 4.2.2 for w = ¢! with [ = 0,1 we have
P1(1£)1 (Clo, w, X: t) = Ii(do, n—1, l)flt‘s?,p@*n)

D D Gy (B, p~ 2 X~ B)ay (B, B)w(B')
(1) Oép(B) B’ ap(B/)
BEEn_l’p(do)

« (p—lX)(u(det B)—v(det B’))/Qtu(det B)

Gy (B, p~ D2 X )w(B)

X—e<1>(B')
ap(B’)

= r(dg,n—1,1)"1%2»(2=) Z
Bec?, (do)
< Y (B, B) (p=L X ) (¢ (det B)—v(det ) /2y(det B).
Berh, (do) ap(B)

Hence by [4, Theorem 5], and by Lemma 4.1.1(1), we have

3 ap(B', B) (p=1 X)(¥(det B)=v(det )/2yp(det B)

ap(B)
B
_ Z (tQXp—lp—n—i-l)z/(det W)tu(det B’)
WeMn—1(Zp)* /GLn-1(Zp)
n—1
_ H (1 . t2Xpi_n_1)_1tV(detB/).
=1

Thus the assertion holds. =

For a variable X we introduce the symbol X1/2 so that (X/2)? = X,
and for an integer a we write X%? = (X%/2)® Under this convention,
we can write X—e(l)(T)tV(detT) as X52«P("_2)/2X”(d°)/2(X_l/zt)”(detT) if

T € L;,_1,(do), and hence we can write Kfll_)l(dg,al,X, t) as

KW (do, €', X, 1) = k(do,n — 1,1) 1 (£X ~1/2)02p(2-n) xv(do) /2

1 _
y Z Gé )(B’,p (n+1)/2X)€(B/)l (tX—l/Q)u(det B,
ap(B’)
BrectY  (do)
n—1,p
In order to prove Theorem 4.4.1, we introduce some power series. Let m be
an integer and [ = 0 or 1. Then for dy € Z,; put
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1 . 2 : g(T)l v(det T)
Cm(dOag 7u) - ap(T)u )
T€Sm,p(do)/~

and for dy € Z5 put

* l _ 5(T)l v(det T)
o= Dy
Esm,2(d0)e/N

We make the convention that (o(do, !, u) = ¢, (do, €', u) = 1 or 0 according
as do € Z,, or not. Now for d € Z;, let Zm(u,el,d) and Z% (u, €', d) be the
formal power series in Theorems 5.1, 5.2, and 5.3 of [11], which are given by

_ - T)! .

A l -9 02,pm § : § : 5( I (m+1)/2, Vi

m(u7 € ) d) P ‘ . Oép(T) (nmp u) ?
i=0 T€S 0 (7, pid) )~

T d) 2™ ) (1 otmen 2y
el d =2y Y (1 w)'
i=0 T€Sm (Z3,2¢d)e/~

where S, (Zp,a) = {T € Sn(Z,) | detT = a mod Z;D}, S (Zy,a)e =
Si(Zp, @) NS (Zy)e, and 1y, = ((—1)"FD/2 ), or 1 according as m is odd
or even. Here we recall that the local density for T € S,,(Z,) in our paper
is 27922™ times that in [11]. Put

Zme(u,el,d) = 3(Zim(u e, d) + Zm(—u, €', d)),

Zmo(u,el,d) = 3(Zm(u, el d) — Zm(—u, e, d)).

We also define Zy, . (u, el,d) and Z o, e!,d) in the same way. Furthermore
put z(i) = e or o according as i is even or odd. Let dy € Fp. Let p # 2. Then

<m(d07 €l7 u)
= Zom a(v(do)) (p—(m+1)/2((_1)(m+1)/2’p)pu’ 5l7p—y(do)(_1)(m+1)/2d0)
or
G (do, €',1) = Zin oo o)y (0~ "D 20, 8, p 0 (— 1) [m /2 gy )

according as m is odd and [ = 1, or not. Let p = 2 and suppose m is odd.
Then

G (doy €' 1) = 27 Zpy 1)) (27" 20, €, 2710 (1) D2 )
Let p = 2 and suppose m is even. Then
C:n(d(), €l, U) = QmZ:n,x(U(do)) (27(WL+1)/2U7 €l, (—l)m/iny(dO)dO).

PROPOSITION 4.4.3. Let dy € F,. For a positive even integer r and d € U
put
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r/2—1
e(r.do,d, X) = (1= x(do)p~**X) J] (1 =p* X3 (1 + x(a)p' 712 X),
i=1
and put ¢(0,dy,d, X) = 1. Furthermore, for a positive odd integer r put

(r—1)/2
ofr.do, X) = (1= x(do)p /2x) J[ (1-p%1X2).
=1

(1) Suppose that p # 2.
(1.1) Letl =0 orv(dy) =0. Then
KT(lel(dO)El7X7t)

(n—2)/2 —r(2r+1) (¢ X —1/2\2r o(9p d . d. X
_Xu<do)/2{ T > e 5( )2 c(2r, do, d, X)

r=0 deU(n—1,n—2r—1,do) 2 O7T¢("*2T*2)/2(p_2)

% (p, dod)}, Cor (dod, ', X 1/2)

(=22 (1) (@) (£ 1/2)2r (9 4 1. do. X
D ( ) C( r 4+ 7d0; )C2r+1(p*d075l,tX1/2)},

+
~ Pn—2r—2)/2(p72)

where p*dy = pdy or p~tdy according as v(dy) =0 or v(dy) = 1.
(1.2) Let v(dp) =1. Then

KW (do,e, X, t)

_ evtdo)s2 (nfj)/2 p_(r+1)(2r+1)—r(tX—1/2)2T+IC(27, +1,do, X)
—~ P(n—2r—2)/2(p72)
X Cory1(p~ o, e, X ?).
(2) Suppose that p = 2.
(2.1) Letl =0 ordyp =1 mod 4. Then
K'Y (do, ', X, 1) = x¥(d0)/2

(n—2)/2
- _ c(2r, dy,d, X)
X{ Z Z (tX 1)2r2 r(2r+1) — —
r=0 deU(n—1,n—2r—1,do) 2 0’r¢(n—2r—2)/2(2 )
x (=) HD772(2, dod)s)' ¢ (dod, e, tX 12

(n—2)/2
_ _ 2r+1,dp, X)
+ £ X —1/2)2r+1g—(r+1)(2r+1) o » 40,
; ( ) ¢(n—2r—2)/2(2_2)

X ((—1)(T+1)r/2((—1)r+1,(—1)T+1d0)2)lC2r+1(d0,El,tX_l/z)}-
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2.2) Suppose that 4 'dy = —1 mod 4 or 8 'dy € Z5. Then
2

KW (do, e, X, )

(n—2)/2
_ yv(do)/2 Z (£ X 1/2)2r 1 g=(r 1) (2r 1) —r(do) c(2r +1,do, X)
r—0 ¢(n 2r— 2)/2( )

X (=121 (<1)F  do)aCars1 (do, e, tXTH3).

Proof. Put HY) . (B)=1for j€{0,1},1—j <r <m/2—j, € = =1,
2r+7,€

and B € Sar4p. Then clearly the set {H. i+]§ |je{0,1},1—j <r<n/2—
J, & = £1} satisfies the conditions (H-p-0)—(H-p-5) in Subsection 4.3 for any
positive even integer m < n. Hence by Lemma 4.2.1 and Proposition 4.3.4,

and by using the same argument as in |10, Lemma 3.1(1)], we have

KW (do, ¢!, X, 1)

(n—2)/2
_ v(do)/2 c(2r,do, d, X)
_PYl,doX Z Z 13, —
r=0 deU(n—1,n—2r—1,do) 217000 G2y —2)/2(P72)
!
X %(tX—l/Q)V(det(pB))
BESarp(dod) ap(pB)

(n—2)/2
+Xy(d0)/2 Z C(27“+ 1,d0,d,X)

= Pn—2r—2)/2(p77)
y Z ((_1)(r+1)/2, (_1)(r+1)/2d0>ép7lu(do)a(pB)l

a,(pB
Bep=182,41,p(do)NS2r+1,p p(p )
% (t )(—1/2)V(det(pB)) ’

where 7,4, = 1 or 0 according as v(dp)l = 0 or 1. Thus (1.1) follows
from Lemmas 4.1.3 and 4.3.2 by noting that p_ngr+17p(d0) N Soyryip =
Sor41(p*dp). Similarly (1.2) can be proved by observing that ¢(pB) =
(—=1)"*, p)e(B) for B € p~1S941,(do) N S2y+1,p. The assertion for p = 2
can be proved in the same manner. =

REMARK. As seen above, to prove Proposition 4.4.3, we have only to
prove Propositions 4.3.2 and 4.3.3 for the simplest case where {H,. + ; 5} are

constant functions. However a similar statement for more general {Hy, + J, g}
will be necessary to give an explicit formula for the Rankin—Selberg series of
on-1(¢r1,(n),1) (cf. [15]). Indeed, the proofs are essentially the same as those
for the simplest case. This is why we formulate and prove those propositions
in more general settings.
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Proof of Theorem 4.4.1 in case p # 2. (1) First let dy € Z;. Then
by Proposition 4.4.3(1.1), we have

1
KD (oo Xt) = —
1o ) D(n—2)/2(P?)
(n=2)/2 —r@e) (2 X1 ol (1 - pP X2
+ i=
; C;/ 20 (n—2r—2)/2(p72)

x (1= p 26X) (1 + nap" V2 X) Gor (dod, o, tX V)
(n—2)/2 » (2r+1)(r+1)(t2X )r+1/2 [T, (1 — p?1X2)

+
—0 ¢(n—2r—2)/2 (piz)

X (1 —p 20 X)Cors1(pdo, 1, tX 12).
Here we put ny = x(d) for d € Y. By |11, Theorem 5.1], we have

—lyx—1/2
—1/2y = p X
Cor+1(pdo, 1, tX ) dr(p~2)(1 — p= 202X 1) [ (1 — p2i3-2rg2X -1
Cor(dod, 1, tX 71/?) = (14 &onap™")(1 — Eonap™ " 22X 1)

O p X I (L P X
Hence the assertion for n = 2 can be proved by a direct calculation. Suppose
that n > 4. Then Kfll_)l(do, t, X,t) can be expressed as
K.Y, (do, 1, X, 1)
S(do,t, X, t)
n 2 ; ’
Pn—2)/2(p72)(1 —p~2t2 X~ )H( 12)/ (1 —p2i—n-lg2X-1)
where S(do, ¢, X,t) is a polynomlal in ¢ of degree n. We have
271 (1 —p 26 X) D> (14 ppn AR (1 4 gonpm ()
=+1
n x (1 — éonp_(”_2)/2_2t2X_1)
— (1 o 50])71/2)()(1 4 §0p71/2X o €0p75/2t2 o pfntQXfl).

Hence
(n—2)/2—-1
9—1 Zp(n—l)(—n+2)/2(t2X—1)(n—2)/2 H (1 _ p2i—1X2)
deU =1
x (1 —p 2 X) (1 + nap" D22 X) 0 (dod, 1, tX H?)
(n—2)/2
+ p—(n—l)n/2(tQX—l)(n—Q)/Q—I—l/Q H (1 . p2i—1X2)(p—2)—1
=1

x (1= p~%€X)Co1(pdo, 0, tX 7Y?)



Koecher—Maass series of a half-integral weight form 37

(pf(nfl)Xfth)(an)/2< — &op 5/2752) H(noz)/z 1(1 — p?i-1X?2)
¢(n72)/2(p_2)(1 ~p22x -1 )HEZI 2)/2( — pRimn-lg2 X1

and therefore S(do, ¢, X, t) can be expressed as

(A) S(d07['7X7 t)
(n—2)/2—1
— (p—(n—l)X—th)(n—Q)/Q H (1 _ p2z—1X2)(1 _ p_5/2£0t2)
i=0
+ 1= pTPXTHUX, 1),
where U(X,t) is a polynomial in X, X! and ¢. Now by Proposition 4.4.2,
we have

Pygl_)l(d()v Ly X? t) =
S(d07 2 Xa t)
Sn2)2(0~2) (1 — p=22X O T[22 (1 = p2in—1p2 X ) [[151(1 — pin-1 Xe2)

Hence the power series PT(Ll_)l(dO,L,X ,t) is a rational function in X and ¢.
Since ﬁél)(T,X_l) = }?Zgl)(T,X) for any T € Efl)lp, it follows that
PT(ll_)1 (do,t, X1 t) = Pr(Ll_)l(do, t, X,t). This implies that the reduced denom-

inator of the rational function Pél_)l(do, t,X,t) in t is at most

(n—2)/2
(l—p_QtQX_l)( —2t X H { 22 n— 1t X- )( in_n_lth)}.
Hence we have
(n—2)/2 .
(B) S(do, e, X,t) = [] 1 =p* " *X)(ao(X)+ a1 (X)t?)
i=1

with some polynomials ag(X), a1(X) in X + X 1. We easily see ap(X) = 1.
By substituting p®»~1/2X"/2 for t in (A) and (B), and comparing them we
see that a1(X) = —p~9/2&. This proves the assertion.

Next let dy € pZ;. Then by Proposition 4.4.3(1.1), we have

Kr(ll_)l(d& L, X> t)
(n—2)/2

:X1/2{2— S Z e EX ) L (- X

= = P(n—2r—2)/2(p72)

% (14 nap" 2 X) Car (dod, 1, tX /)
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) (n—2)/2 p=CrED+1) (12 x —1yr+1/2 -, (- p?-1x?)

P(n—2r—2)/2(p72)

r=0
X C2T+1(p_1d07 Ly tX_l/Q)}'

By [11, Theorem 5.1], we have
1
o (p2)(1 — p 22X 1) [[I_,(1 — p¥3-2r2X 1)’
—1py—1/2
Crllod. X ™%) = e X [T (T T
Thus the assertion can be proved in the same manner as above.
(2) First let do € Zy. Then by Proposition 4.4.3(1.1), we have

1
D(n—-2)/2(P?)
(n—2)/2 —r(2r+1) (t2X71)7' HT—1(1 _ QileQ)
n Z Z p i=1 p
il 20(n—2r—2)/2(p72)

C27"+1 (p_ld()a Ly tX_1/2) =

KW (do,e, X, t) =

cu
x (1—p~2X) (1 + nap" Y2 X)&onaler (dod, £, t X ~/?)

. (n—2)/2 p=Crel)r+1) (2 x —1)r+1/2 [T, (1 —p*1x2)

—~ Pn—2r—2)/2(p72)
x (1= p 120 X)Cors1(pdo, e, X /2.
By [11, Theorem 5.2],

1+ &onap™"

&r(p2) Iy (1 — p~ 22X 1)
prltx 12
DI )

(do,e,X,t) can be expressed as
T(do, e, X, t)
2202 [T1 (1 — p=2i2X 1)

where T'(do, ¢, X,t) is a polynomial in ¢ of degree n, expressed as

Cor(dod, e, tX1/%) =

C2T+1(pd07 &, tX71/2) -

Hence K(l)

n—1

Kflljl(dana X, t) =

(n—2)/2
(C)  T(dy, e, X,t) = (p~ "X 12)"2(1 — &op~ V2 X) H (1— p¥~lx?)

=1
+ (1 -p "X THV(X, 1),
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with a polynomial V(X,¢) in X, X! and ¢. On the other hand, by using
the same argument as in (1), we can show that

(n=2)/2
(D) T(do,e, X,t) = ] (1—p 2 "X)(1 4 bi(X)t)

=1

with b1(X) a polynomial in X + X 1. Thus, by substituting p"/2X /2 for ¢
in (C) and (D), and comparing them, we prove the assertion.
Next let dy € pZ;. Then by Proposition 4.4.3(1.2), we have

K, (do, e, X, 1)
(n=2)/2 r r —r —1\r T i—
_ X1/2 Z D (2r+1)(r+1) (t2X 1) +1/2 Hi:l(l _p2 1X2)

—~ P(n—2r—2)/2(p7?)
X C2T+1(p_1d07 g, tX_l/z)'

By [11, Theorem 5.2],

1
or(p™2) [[i=, (1 —p~ 242X 1)

<—2r+1(p_1d07 &, tX_l/Q) -

Hence
( ) o (n—2)/2 —(2r+1)r(p—2t2X—l)T T (1— p21X2)
1(do, &, X, 1) t Z P(n—2r—2)/2(P72)
1
X

¢r(p~2) [Timy (1 —p~282X 1)

Thus the assertion can be proved in the same way as above. n

Proof of Theorem 4.4.1 in case p = 2. The assertion can also be proved
by using Proposition 4.4.3(2) as above. =

PROPOSITION 4.4.4. Let k and n be positive even integers. Given a Hecke
eigenform h € &, n/2+1/2( 0(4)), let f € Gop_n(I'V) be the primitive form
as in Section 2. Then

d —1
L(s,h) = L(2s, f) Z Ch(’d0’)|do|_sL<28—k—i—n/2—|—1, <:>> 7
doe F((=1)"/?)

where L(s, (do)) is Dirichlet’s L-function for the character (do).

* *
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Proof. The assertion can be proved immediately by noting that

>~ anlaf? > = eutfdoDi (20— /21, (2)) s

m=1
for dy € f((_l)n/z). L]
Proof of Theorem 2.1. By Theorem 4.4.1, we have

1 —s n/4— —s n/4—
HP,S_)Lp(do,Lp,Ozp,p +k/2+n/4 1/4) = |do| +k/2+n/4-5/4
p

x (nﬁ)/Q §(2i)L<25 —k—n/2+3, <do>>_1 (nﬁw L(2s —n+2i+1,f)
i1 * -1
and
H Pr(zl—)l,p(d(Jv Eps O, p HHZARIATLAY (g | R 20 A5/
’ (n—2)/2 d _1(n=2)/2
< 11 ((21’)L<2s—k+n/2+1, (f)) [T Z@s—n+2i7).
i=1 i=1

Thus the assertion follows from Theorem 3.2 and Proposition 4.4.4. =

REMARK. Let m be a nonnegative integer, and let k be a positive integer

such that k > m + 2. Let E,(cmﬂ) be the Siegel-Eisenstein series of weight &
and of degree m + 1. (For the definition of the latter, see, for example, [6].)

Suppose that m > 0, and let e,(ﬁﬂ) be the first Fourier-Jacobi coefficient

of El(€m+1). Then el(ﬁﬂ) belongs to Jj 1 (I }m)). In [6], Hayashida defined
the generalized Cohen—Eisenstein series E,(ﬁi Jo 8S E,(zi jo = Jm(egﬂ)),
where o, is the Ibukiyama isomorphism. It turns out that E,(::q /2 be-
longs to mt;_l/Z(Fém)(Zl)), and in particular, E,gljl/z coincides with the
Cohen—FEisenstein series defined in [5]. Let k£ and n be positive even in-
tegers such that & > n 4+ 1. Then Eéi)_ ,, is the Hecke eigenform corre-
sponding to E,(gl_)n /241/2 under the Shimura correspondence, and E,gn) can
be regarded as a noncuspidal version of the Duke-Imamoglu-lkeda lift of

E,gl_)n/zﬂ/? Therefore, by using the same method as in the proof of The-
E(nfl)

orem 2.1, we can express the Koecher-Maass series of £, /2 explicitly in

terms of L(s, Eliljn/2+1/2) and L(SvEéi)—n)'
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Abstract (will appear on the journal’s web site only)

Let k and n be positive even integers. For a cuspidal Hecke eigenform
h in the Kohnen plus space of weight k — n/2 4+ 1/2 for I(4), let f be
the corresponding primitive form of weight 2k — n for SL2(Z) under the
Shimura correspondence, and I,,(h) the Duke-Imamoglu-Tkeda lift of A to
the space of cusp forms of weight k for Sp,(Z). Moreover, let ¢ I.(h),1 be the
first Fourier—Jacobi coefficient of I,,(h), and ¢,—1(¢1,(n),1) be the cusp form
in the generalized Kohnen plus space of weight k& — 1/2 corresponding to
®1,,(h),1 under the Ibukiyama isomorphism. We give an explicit formula for
the Koecher-Maass series L(s,0n—1(¢r,(),1)) of 0n—1(¢r,(n),1) expressed in
terms of the usual L-functions of h and f.



