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ACTA ARITHMETICA

* (201*)

Koecher–Maass series of a certain half-integral weight
modular form related to the Duke–Imamoḡlu–Ikeda lift

by

Hidenori Katsurada (Muroran) and Hisa-aki Kawamura (Sapporo)

1. Introduction. Let l be an integer or a half-integer, and let F be

a modular form of weight l for the congruence subgroup Γ
(m)
0 (N) of the

symplectic group Spm(Z). Then the Koecher–Maass series L(s, F ) of F is
defined as

L(s, F ) =
∑
A

cF (A)

e(A)(detA)s
,

where A runs over a complete set of representatives for the SLm(Z)-equiva-
lence classes of positive definite half-integral matrices of degree m, cF (A) is
the Ath Fourier coefficient of F, and e(A) denotes the order of the special
orthogonal group of A. We note that L(s, F ) can also be obtained by the
Mellin transform of F, and thus its analytic properties are relatively known.
(For this, see Maass [19] and Arakawa [1–3].)

Now we are interested in an explicit form of the Koecher–Maass series for
a specific choice of F . In particular, whenever F is a certain lift of an elliptic
modular form h of either integral or half-integral weight, we may hope to
express L(s, F ) in terms of certain Dirichlet series related to h. Indeed, this
is realized in the case where F is a lift of h such that the weight l is an
integer (cf. [8–10]). In this paper, we discuss a similar problem for lifts of
elliptic modular forms to half-integral weight Siegel modular forms.

Let us explain our main result briefly. Let k and n be positive even
integers. For a cuspidal Hecke eigenform h in the Kohnen plus space of weight
k−n/2+1/2 for Γ0(4), let f be the primitive form of weight 2k−n for SL2(Z)
corresponding to h under the Shimura correspondence, and let In(h) be the
Duke–Imamoḡlu–Ikeda lift of h (or of f) to the space of cusp forms of weight
k for Spn(Z). We note that I2(h) is nothing but the Saito–Kurokawa lift of h.
Let φIn(h),1 be the first coefficient of the Fourier–Jacobi expansion of In(h),
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and σn−1(φIn(h),1) the cusp form in the generalized Kohnen plus space of

weight k− 1/2 for Γ
(n−1)
0 (4) corresponding to φIn(h),1 under the Ibukiyama

isomorphism σn−1. (For the precise definitions of the Duke–Imamoḡlu–Ikeda
lift, the generalized Kohnen plus space and the Ibukiyama isomorphism, see
Section 2.) Then our main result expresses L(s, σn−1(φIn(h),1)) in terms of
L(s, h) and L(s, f) (cf. Theorem 2.1).

To prove Theorem 2.1, for a fundamental discriminant d0 and a prime

number p we define certain formal power series P
(1)
n−1,p(d0, ε

l, X, t) ∈
C[X,X−1][[t]] associated with some local Siegel series appearing in the
p-factor of the Fourier coefficient of σn−1(φIn(h),1). Here ε is the Hasse in-
variant defined on the set of nondegenerate symmetric matrices with entries
in Qp. We then rewrite L(s, σn−1(φIn(h),1)) in terms of the Euler products∏
p P

(1)
n−1,p(d0, ε

l, βp, p
−s+k/2+n/4−1/4) with l = 0, 1, where βp is the Satake

p-parameter of f (cf. Theorem 3.2). By using a method similar to those
in [9, 10], in Section 4 we get an explicit formula for the formal power

series P
(1)
n−1,p(d0, ε

l, X, t) (cf. Theorem 4.4.1), which yields the desired for-
mula for L(s, σn−1(φIn(h),1)) immediately. The above result is very simple,
and the proof proceeds similarly to the one of [10], where we gave an ex-
plicit formula for the Koecher–Maass series of the Siegel–Eisenstein series
of integral weight. However, it is more elaborate than the preceding one.
For instance, we should be careful in dealing with the argument for p = 2,
which divides the level of σn−1(φIn(h),1). We also note that the method of
this paper can be used to give an explicit formula for the Rankin–Selberg
series of σn−1(φIn(h),1), and as a consequence, we can prove a conjecture of
Ikeda [13] concerning the period of the Duke–Imamoḡlu–Ikeda lift; this will
be done in [15].

Notation. Let R be a commutative ring. We denote by R× and R∗ the
semigroup of nonzero elements of R and the unit group of R, respectively.
We also put S2 = {a2 | a ∈ S} for a subset S of R. We denote by Mml(R)
the set of m× l matrices with entries in R. In particular we write Mm(R) =
Mmm(R). We put GLm(R) = {A ∈ Mm(R) | detA ∈ R∗}, and SLm(R) =
{A ∈ GLm(R) |detA = 1}. For an m × l matrix X and an m ×m matrix
A, we write

A[X] = tXAX,

where tX denotes the transpose of X. Let Sm(R) denote the set of symmetric
matrices of degree m with entries in R.

Furthermore, if R is an integral domain of characteristic different from 2,
let Lm(R) denote the set of half-integral matrices of degree m over R, that
is, Lm(R) is the subset of symmetric matrices of degree m with entries in
the field of fractions of R, whose (i, j)th entry belongs to R or 1

2R according
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as i = j or not. In particular, we put Lm = Lm(Z) and Lm,p = Lm(Zp) for
a prime number p.

For a subset S of Mm(R) we denote by S× the subset of S consisting
of all nondegenerate matrices. If S is a subset of Sm(R), we denote by S>0

(resp. S≥0) the subset of S consisting of positive definite (resp. semi-positive
definite) matrices. The group GLm(R) acts on Sm(R) as GLm(R)×Sm(R) 3
(g,A) 7→ A[g] ∈ Sm(R).

Let G be a subgroup of GLm(R). For a G-stable subset B of Sm(R), we
denote by B/G the set of equivalence classes of B under the action of G. We
sometimes identify B/G with a complete set of representatives for B/G. We
abbreviate B/GLm(R) as B/∼ if there is no risk of confusion.

For a given ring R′, two symmetric matrices A and A′ with entries in R
are said to be equivalent over R′, written A ∼R′ A′, if there is an element X
of GLm(R′) such that A′ = A[X]. We also write A ∼ A′ if there is no risk
of confusion. For square matrices X and Y we write X ⊥ Y =

(
X O
O Y

)
.

For an integer D with D ≡ 0 or 1 mod 4, let dD be the discriminant of
Q(
√
D), and put fD =

√
D/dD. We call D a fundamental discriminant if it

is either 1 or the discriminant of some quadratic field extension of Q. For
a fundamental discriminant D, let

(
D
∗
)

be the character corresponding to

Q(
√
D)/Q. Here we make the convention that

(
D
∗
)

= 1 if D = 1.

We put e(x) = exp(2πix) for x ∈ C. For a prime number p we denote
by νp(∗) the additive valuation of Qp normalized so that νp(p) = 1, and by
ep(∗) the continuous additive character of Qp such that ep(x) = e(x) for
x ∈ Q.

For a nonnegative integer r we define a polynomial φr(x) in x by φr(x) =∏r
i=1(1− xi). Here we understand that φ0(x) = 1.

2. Main result. Put Jm =
(
Om −1m
1m Om

)
, where 1m and Om denote the

unit matrix and the zero matrix of degree m, respectively. Furthermore, put

Γ (m) = Spm(Z) = {M ∈ GL2m(Z) | Jm[M ] = Jm}.

Let l be an integer or a half-integer. For a congruence subgroup Γ of Γ (m), we
denote by Ml(Γ ) the space of holomorphic modular forms of weight l for Γ.
We denote by Sl(Γ ) the subspace of Ml(Γ ) consisting of all cusp forms. For

a positive integer N , put Γ
(m)
0 (N) =

{(
A B
C D

)
∈ Γ (m)

∣∣ C ≡ Om mod N
}

.

Let F (Z) be an element of Ml(Γ
(m)
0 (N)). Then F (Z) has Fourier expan-

sion

F (Z) =
∑

A∈(Lm)≥0

cF (A)e(tr(AZ)),

where tr(X) denotes the trace of the matrix X. We then define the Koecher–
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Maass series L(s, F ) of F as

L(s, F ) =
∑

A∈(Lm)>0/SLm(Z)

cF (A)

e(A)(detA)s
,

where e(A) = #{X ∈ SLm(Z) | A[X] = A}. We note that L(s, F ) is nothing
but Hecke’s L-function of F in the case where m = 1 and l is an integer.

Now put

L′m = {A ∈ Lm | A ≡ −trr mod 4Lm for some r ∈ Zm}.

For A ∈ L′m, the integral vector r ∈ Zm in the above definition is uniquely
determined by A modulo 2Zm, and is denoted by rA. Moreover it is easily
shown that the matrix (

1 rA/2
trA/2 (trArA +A)/4

)
,

which will be denoted by A(1), belongs to Lm+1, and that its SLm+1(Z)-
equivalence class is uniquely determined by A. Suppose that l is a positive
even integer. We define the generalized Kohnen plus space of weight l− 1/2

for Γ
(m)
0 (4) as

M+
l−1/2(Γ

(m)
0 (4)) = {F ∈Ml−1/2(Γ

(m)
0 (4)) | cF (A) = 0 unless A ∈ L′m},

and put S+
l−1/2(Γ

(m)
0 (4)) = M+

l−1/2(Γ
(m)
0 (4))∩Sl−1/2(Γ

(m)
0 (4)). Then there

exists an isomorphism from the space of Jacobi forms of index 1 to the

generalized Kohnen plus space, due to Ibukiyama. To explain this, let Γ
(m)
J =

Γ (m) n Hm(Z) be the Jacobi group, where Γ (m) is identified with its image
inside Γ (m+1) via the natural embedding

(
A B

C D

)
7→


1 0

A B

0 1

C D


and

Hm(Z) =


1 0 κ µ

0 1m
tµ Om

1 0

0 1m




1 λ

0 1m

1 0

−tλ 1m


∣∣∣∣∣∣∣∣∣∣

(λ, µ) ∈ Zm ⊕ Zm,

κ ∈ Z

 .
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Let Jl, 1(Γ
(m)
J ) denote the space of Jacobi forms of weight l and index 1 for

Γ
(m)
J , and Jcusp

l, 1 (Γ
(m)
J ) the subspace of Jl, 1(Γ

(m)
J ) consisting of all cusp forms.

Let φ(Z, z) ∈ Jl, 1(Γ
(m)
J ). Then we have the following Fourier expansion:

φ(Z, z) =
∑

T∈Lm, r∈Zm

4T−trr≥0

cφ(T, r)e(tr(TZ) + rtz).

We then define σm(φ) as

σm(φ) =
∑

A∈(L′m)≥0

cφ((A+ trArA)/4, rA)e(tr(AZ)),

where r = rA denotes an element of Zm such that A + trArA ∈ 4Lm. This
rA is uniquely determined modulo 2Zm, and cφ((A+ trArA)/4, rA) does not
depend on the choice of the representative of rA mod 2Zm. Ibukiyama [7]

showed that σm gives a C-linear isomorphism Jl,1(Γ
(m)
J ) 'M+

l−1/2(Γ
(m)
0 (4)),

and in particular, σm(J cusp
l, 1 (Γ

(m)
J )) = S+

l−1/2(Γ
(m)
0 (4)). We call σm the Ibu-

kiyama isomorphism.

Let p be a prime number. For a nonzero element a ∈ Qp we put χp(a) =
1,−1, or 0 according as Qp(a

1/2) = Qp,Qp(a
1/2) is an unramified quadratic

extension of Qp, or Qp(a
1/2) is a ramified quadratic extension of Qp. We

note that χp(D) =
(
D
p
)

if D is a fundamental discriminant.

For the rest of this section, let n be a positive even integer. For T ∈ L×n,p,
put ξp(T ) = χp((−1)n/2 detT ). Let T ∈ L×n . Then (−1)n/2 det(2T ) ≡ 0
or 1 mod 4, and we define dT = d(−1)n/2 det(2T ) and fT = f(−1)n/2 det(2T ).

For T ∈ L×n,p, there exists T̃ ∈ L×n such that T̃ ∼Zp T. We then put
ep(T ) = νp(fT̃ ) and [dT ] = d

T̃
mod (Z∗p)2. These do not depend on the choice

of T̃ . We note that (−1)n/2 det(2T ) can be expressed as (−1)n/2 det(2T ) =
dp2ep(T ) mod (Z∗p)2 for any d ∈ [dT ].

For each T ∈ L×n,p we define the local Siegel series bp(T, s) by

bp(T, s) =
∑

R∈Sn(Qp)/Sn(Zp)

ep(tr(TR))p−νp(µp(R))s,

where µp(R) = [Znp + ZnpR : Znp ]. We remark that there exists a unique
polynomial Fp(T,X) in X such that

bp(T, s) = Fp(T, p
−s)

(1− p−s)
∏n/2
i=1(1− p2i−2s)

1− ξp(T )pn/2−s

(cf. Kitaoka [16]). We then define a polynomial F̃p(T,X) in X and X−1 as

F̃p(T,X) = X−ep(T )Fp(T, p
−(n+1)/2X).
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We remark that F̃p(T,X
−1) = F̃p(T,X) (cf. [14]). Now, for a positive even

integer, let

h(z) =
∑

m∈Z>0

(−1)n/2m≡0,1 mod 4

ch(m)e(mz)

be a Hecke eigenform in the Kohnen plus space S+
k−n/2+1/2(Γ0(4)), and

f(z) =

∞∑
m=1

cf (m)e(mz)

the primitive form in S2k−n(Γ (1)) corresponding to h under the Shimura
correspondence (cf. Kohnen [18]). Let βp ∈ C× be such that βp + β−1

p =

p−k+n/2+1/2cf (p), which we call the Satake p-parameter of f . We define a
Fourier series In(h)(Z) on Hn by

In(h)(Z) =
∑

T∈(Ln)>0

cIn(h)(T )e(tr(TZ)),

where
cIn(h)(T ) = ch(|dT |)fk−n/2−1/2

T

∏
p

F̃p(T, βp).

Ikeda [12] showed that In(h)(Z) is a Hecke eigenform in Sk(Γ
(n)) whose

standard L-function coincides with ζ(s)
∏n
i=1 L(s + k − i, f), where ζ(s)

is Riemann’s zeta function. The existence of such a Hecke eigenform was
conjectured by Duke and Imamoḡlu in an unpublished paper. We call In(h)
the Duke–Imamoḡlu–Ikeda lift of h (or of f), as in Section 1. Let φIn(h),1 be
the first coefficient of the Fourier–Jacobi expansion of In(h), that is,

In(h)

((
w z
tz Z

))
=

∞∑
N=1

φIn(h),N (Z, z)e(Nw),

where Z ∈ Hn−1, z ∈ Cn−1 and w ∈ H1. We easily see that φIn(h),1 belongs

to Jcusp
k−1/2, 1(Γ

(n−1)
J ) and

φIn(h),1(Z, z) =
∑

T∈Ln−1, r∈Zn−1

4T−trr>0

cIn(h)

((
1 r/2

tr/2 T

))
e(tr(TZ) + rtz).

Moreover we have

σn−1(φIn(h),1)(Z) =
∑

T∈(L′n−1)
>0

cIn(h)(T
(1))e(tr(TZ)).

Put ΓC(s) = 2(2π)−sΓ(s), and ξ̃(s) = ΓC(s)ζ(s). Then our main result in
this paper is stated as follows:
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Theorem 2.1. Let h and f be as above. Then

L(s, σn−1(φIn(h),1)) = 2−δ2,n−s(n−2)−(n−2)/2

(n−2)/2∏
i=1

ξ̃(2i)

×
{
L(s− n/2 + 1, h)

(n−2)/2∏
i=1

L(2s− n+ 2i+ 1, f)

+ (−1)n(n−2)/8L(s, h)

(n−2)/2∏
i=1

L(2s− n+ 2i, f)
}
,

where δ2,n denotes Kronecker’s delta.

In the case of n = 2, the modular form σn−1(φIn(h),1) is h itself, and then
the above formula is trivial. We note that, unlike the cases of [8–10], there
does not appear any convolution product of modular forms in the above
theorem. However, the proof is not simple because the nature of Fourier
coefficients of the modular form σn−1(φIn(h),1) is much more complicated
than in the papers cited above.

3. Reduction to local computations. It turns out that the Fourier
coefficient of σn−1(φIn(h),1) can be expressed in terms of a product of local
Siegel series taken over all prime numbers p, and therefore we can reduce
the problem to local computations. To explain this, we recall some termi-
nology and notation. For given a, b ∈ Q×p let (a, b)p denote the Hilbert sym-
bol over Qp. Following Kitaoka [17], we define the Hasse invariant ε(A) of
A ∈ Sm(Qp)

× by

ε(A) =
∏

1≤i≤j≤m
(ai, aj)p

if A is equivalent to a1 ⊥ · · · ⊥ am over Qp with some a1, . . . , am ∈ Q×p . We
note that this definition does not depend on the choice of a1, . . . , am.

Now put

L′m,p = {A ∈ Lm,p | A ≡ − trr mod 4Lm,p for some r ∈ Zmp }.

Furthermore we set Sm(Zp)e = 2Lm,p and Sm(Zp)o = Sm(Zp) \ Sm(Zp)e.
We note that L′m,p = Lm,p = Sm(Zp) if p 6= 2. Let A ∈ L′m−1,p. Then

there exists an element r ∈ Zm−1
p such that

( 1 r/2
tr/2 (A+trr)/4

)
∈ Lm,p. As is

easily shown, r is uniquely determined by A modulo 2Zm−1
p , and is denoted

by rA. Moreover, as will be shown in the next lemma,
( 1 rA/2

trA/2 (A+trArA)/4

)
is uniquely determined by A up to GLm(Zp)-equivalence, and is denoted
by A(1).
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Lemma 3.1. Let m be a positive integer.

(1) Let A and B be elements of L′m−1,p. Then(
1 rA/2

trA/2 (A+ trArA)/4

)
∼
(

1 rB/2
trB/2 (B + trBrB)/4

)
if A ∼ B.

(2) Let A ∈ L′m−1,p.

(2.1) Let p 6= 2. Then A(1) ∼
(

1 0
0 A

)
.

(2.2) Let p = 2. If rA ≡ 0 mod 2, then A ∼ 4B with B ∈ Lm−1,2, and
A(1) ∼

(
1 0
0 B

)
. In particular, ν2(detB) ≥ m or m+ 1 according

as m is even or odd. If rA 6≡ 0 mod 2, then A ∼ a ⊥ 4B with
a ≡ −1 mod 4 and B ∈ Lm−2,2, and

A(1) ∼

 1 1/2 0

1/2 (a+ 1)/4 0

0 0 B

 .

In particular, ν2(detB) ≥ m or m− 1 according as m is even
or odd.

Proof. The assertion can be easily proved.

Now suppose that m is even. For T ∈ (L′m−1)×, put d
(1)
T = dT (1) and

f
(1)
T = fT (1) , and for T ∈ (L′m−1,p)

×, define [d
(1)
T ] and e

(1)
T as [dT (1) ] and

eT (1) , respectively. These do not depend on the choice of rT . We note that

(−1)m/2 detT = 2m−2f
(1)
T

2
d

(1)
T for T ∈ (L′m−1)×. We define a polynomial

F
(1)
p (T,X) in X, and a polynomial F̃

(1)
p (T,X) in X and X−1, by

F (1)
p (T,X) = Fp(T

(1), X),

F̃ (1)
p (T,X) = X−e

(1)
p (T )F (1)

p (T, p−(m+1)/2X).

Let B be an element of (L′m−1,p)
×. Let p 6= 2. Then

F̃ (1)
p (B,X) = F̃p(1⊥B,X).

Let p = 2. Then

F̃
(1)
2 (B,X)

=


F̃2

((
1 1/2

1/2 (a+ 1)/4

)
⊥B′, X

)
if B = a⊥ 4B′ with

a ≡ −1 mod 4, B′ ∈ Lm−2,2,

F̃2(1⊥B′, X) if B = 4B′ with B′ ∈ Lm−1,2.

Now let m and l be positive integers such that m ≥ l. Then for nonde-
generate symmetric matrices A and B of degree m and l respectively with
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entries in Zp we define the local density αp(A,B) and the primitive local
density βp(A,B) representing B by A as

αp(A,B) = 2−δm,l lim
a→∞

pa(−ml+l(l+1)/2)#Aa(A,B),

βp(A,B) = 2−δm,l lim
a→∞

pa(−ml+l(l+1)/2)#Ba(A,B),

where

Aa(A,B) = {X ∈Mml(Zp)/paMml(Zp) | A[X]−B ∈ paSl(Zp)e},
Ba(A,B) = {X ∈ Aa(A,B) | rankZp/pZp

(X mod p) = l}.
In particular we write αp(A) = αp(A,A). Put

Fp = {d0 ∈ Zp | νp(d0) ≤ 1}
if p is an odd prime, and

F2 = {d0 ∈ Z2 | d0 ≡ 1 mod 4, or d0/4 ≡ −1 mod 4, or ν2(d0) = 3}.
Let m be a positive integer. For d ∈ Z×p put

Sm(Zp, d)

= {T ∈ Sm(Zp) | (−1)[(m+1)/2] detT = p2id mod Z∗p
2 with some i ∈ Z},

and Sm(Zp, d)x = Sm(Zp, d) ∩ Sm(Zp)x for x = e or o. Set L(0)
m,p = Sm(Zp)×e

and L(1)
m,p = (L′m,p)×. We also define L(j)

m,p(d) = Sm(Zp, d)∩L(j)
m,p for j = 0, 1.

Let ιm,p be the constant function on L×m,p taking the value 1, and εm,p
the function on L×m,p assigning the Hasse invariant of A to A ∈ L×m,p. We
sometimes drop the suffix and write ιm,p etc. as ιp or ι if there is no risk of
confusion.

From now on, we sometimes write ω = εl with l = 0 or 1 according as
ω = ι or ε.

Let n be a positive even integer. For d0 ∈ Fp and ω = εl (l = 0, 1) we

define a formal power series P
(1)
n−1,p(d0, ω,X, t) in t by

P
(1)
n−1,p(d0, ω,X, t)

= κ(d0, n− 1, l)−1tδ2,p(2−n)
∑

B∈L(1)n−1,p(d0)

F̃
(1)
p (B,X)

αp(B)
ω(B)tν(detB),

where

κ(d0, r − 1, l) = κp(d0, r − 1, l)

= {(−1)lr(r−2)/82−(r−2)(r−1)/2}δ2,p · ((−1)r/2, (−1)r/2d0)lp p
−(r/2−1)lν(d0)

for a positive even integer r. This type of formal power series appears in an
explicit formula for the Koecher–Maass series associated with the Siegel–
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Eisenstein series and the Duke–Imamoḡlu–Ikeda lift (cf. [9], [10]). Therefore
we say that this formal power series is of Koecher–Maass type. An explicit

formula for P
(1)
n−1,p(d0, ω,X, t) will be given in the next section.

Let F denote the set of fundamental discriminants, and put

F (±1) = {d0 ∈ F | ± d0 > 0}.

Now let h be a Hecke eigenform in S+
k−n/2+1/2(Γ0(4)), and f, In(h), φIn(h),1

and σn−1(φIn(h),1) be as in Section 2.

Theorem 3.2. Let the notation and assumptions be as above. Then for
Re(s)� 0, we have

L(s, σn−1(φIn(h),1)) = κn−12−(n−2)s−(n−2)/2−δ2,n

×
{ ∑
d0∈F((−1)n/2)

ch(|d0|)|d0|n/4−k/2+1/4

×
∏
p

P
(1)
n−1,p(d0, ιp, βp, p

−s+k/2+n/4−1/4)

+ (−1)n(n−2)/8
∑

d0∈F((−1)n/2)

ch(|d0|)|d0|−n/4−k/2+5/4

×
∏
p

P
(1)
n−1,p(d0, εp, βp, p

−s+k/2+n/4−1/4)
}
,

where κn−1 =
∏(n−2)/2
i=1 ΓC(2i).

Proof. Let T ∈ (L′n−1)
>0
. It follows from Lemma 3.1 that the T th

Fourier coefficient cσn−1(φIn(h),1)(T ) of σn−1(φIn(h),1) is uniquely determined
by the genus to which T belongs, and by definition, it can be expressed as

cσn−1(φIn(h),1)(T ) = cIn(h)(T
(1)) = ch(|d(1)

T |)(f
(1)
T )k−n/2−1/2

∏
p

F̃ (1)(T, βp).

We note that

(f
(1)
T )k−n/2−1/2 = |d(1)

T |
−(k/2−n/4−1/4)(detT )(k/2−n/4−1/4)2−(n−2)(k/2−n/4−1/4)

for T ∈ (Ln−1)>0. We also note that∑
T ′∈G(T )

1

e(T ′)
= κn−123−n−δ2,n detTn/2

∏
p

αp(T )−1

for T ∈ Sn−1(Z)>0, where G(T ) denotes the set of SLn−1(Z)-equivalence
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classes belonging to the genus of T (cf. [17, Theorem 6.8.1]). Hence

∑
T ′∈G(T )

cσn−1(φIn(h),1)(T )

e(T ′)
= κn−123−n−δ2,n−(n−2)(k/2−n/4−1/4)

× det(T k/2+n/4−1/4)|d(1)
T |
−k/2+n/4+1/4

∏
p

F̃
(1)
p (T, βp)

αp(T )
.

Thus, by using the same method as in [11, Proposition 2.2], similarly to [8,
Theorem 3.3(1)], and [9, Theorem 3.2], we obtain

L(s, σn−1(φIn(h),1))

= κn−12−(k/2−n/4−1/4)(n−2)+2−n−δ2,n
∑

d0∈F((−1)n/2)

ch(|d0|)|d0|n/4−k/2+1/4

×
{

2(−s+k/2+n/4−1/4)(n−2)
∏
p

κp(d0, n−1, 0)P
(1)
n−1,p(d0, ιp, βp, p

−s+k/2+n/4−1/4)

+2(−s+k/2+n/4−1/4)(n−2)
∏
p

κp(d0, n−1, 1)P
(1)
n−1,p(d0, εp, βp, p

−s+k/2+n/4−1/4)
}
.

We note that
∏
p((−1)n/2, (−1)n/2d0)p = 1. Hence

∏
p κp(d0, n− 1, 0) =

2−(n−2)(n−1)/2, and
∏
p κp(d0, n−1, 1)=(−1)n(n−2)/8|d0|−n/2+12−(n−2)(n−1)/2.

This proves the assertion.

4. Formal power series associated to local Siegel series. Through-
out this section we fix a positive even integer n. We also simply write νp etc.
as ν if the prime number p is clear from the context. In this section, we give

an explicit formula for P
(1)
n−1(d0, ω,X, t) with ω = εl (l = 0, 1) to prove The-

orem 3.2 (cf. Theorem 4.4.1). The idea of the proof is to express the power
series in question as a sum of certain subseries (cf. Proposition 4.4.3). Hence-
forth, for a GLm(Zp)-stable subset B of Sm(Qp), we simply write

∑
T∈B

instead of
∑

T∈B/∼ if there is no risk of confusion.

4.1. Local densities. Put

Dm,i = GLm(Zp)
(

1m−i 0

0 p1i

)
GLm(Zp).

For S, T ∈ Sm(Zp)× and a nonnegative integer i ≤ m, we define

αp(S, T, i) = 2−1 lim
e→∞

p−e(m−1)m/2Ae(S, T, i),

where

Ae(S, T, i) = {X ∈ Ae(S, T ) | X ∈ Dm,i}.
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Lemma 4.1.1. Let S, T ∈ Sm(Zp)×.

(1) Let Ω(S, T ) = {W ∈ Mm(Zp)× | S[W ] ∼ T} and Ω(S, T, i) =
Ω(S, T ) ∩ Dm,i. Then

αp(S, T )

αp(T )
= #(Ω(S, T )/GLm(Zp))p−m(ν(detT )−ν(detS))/2,

αp(S, T, i)

αp(T )
= #(Ω(S, T, i)/GLm(Zp))p−m(ν(detT )−ν(detS))/2.

(2) Let Ω̃(S, T ) = {W ∈ Mm(Zp)× | S ∼ T [W−1]} and Ω̃(S, T, i) =

Ω̃(S, T ) ∩ Dm,i. Then

αp(S, T )

αp(S)
= #(GLm(Zp)\Ω̃(S, T ))p(ν(detT )−ν(detS))/2,

αp(S, T, i)

αp(S)
= #(GLm(Zp)\Ω̃(S, T, i))p(ν(detT )−ν(detS))/2.

Proof. The assertion (1) follows from [4, Lemma 2.2]. Now by [14, Propo-
sition 2.2] we have

αp(S, T ) =
∑

W∈GLm(Zp)\Ω̃(S,T )

βp(S, T [W−1])pν(detW ).

Then βp(S, T [W−1]) = αp(S) or 0 according as S ∼ T [W−1] or not. Thus
(2) holds.

A nondegenerate m×m matrix D = (dij) with entries in Zp is said to
be reduced if it satisfies the following two conditions:

(a) For i = j, dii = pei with a nonnegative integer ei.
(b) For i 6= j, dij is a nonnegative integer satisfying dij ≤ pej − 1 if i < j

and dij = 0 if i > j.

It is well known that we can take the set of all reduced matrices as a complete
set of representatives for GLm(Zp)\Mm(Zp)×. Let j = 0 or 1 according as

m is even or odd. For B ∈ L(j)
m,p put

Ω̃(j)(B) = {W ∈Mm(Zp)× | B[W−1] ∈ L(j)
m,p}.

Furthermore set Ω̃(j)(B, i) = Ω̃(j)(B) ∩Dm,i. Let n0 ≤ m, and ψn0,m be the
mapping from GLn0(Qp) into GLm(Qp) defined by ψn0,m(D) = 1m−n0 ⊥D.

Lemma 4.1.2.

(1) Suppose p 6= 2. Let Θ ∈ GLn0(Zp) ∩ Sn0(Zp) and B1 ∈ Sm−n0(Zp)×.
(1.1) Let n0 be even. Then ψm−n0,m induces a bijection

GLm−n0(Zp)\Ω̃(j)(B1) ' GLm(Zp)\Ω̃(j)(Θ⊥B1),
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where j = 0 or 1 according as m is even or odd. In particular,

GLm−n0(Zp)\Ω̃(j)(pB1) ' GLm(Zp)\Ω̃(j)(Θ⊥ pB1).

(1.2) Let n0 be odd. Then ψm−n0,m induces a bijection

GLm−n0(Zp)\Ω̃(j′)(B1) ' GLm(Zp)\Ω̃(j)(Θ⊥B1),

where j = 0 or 1 according as m is even or odd, and j′ = 1 or
0 according as m is even or odd. In particular,

GLm−n0(Zp)\Ω̃(j′)(pB1) ' GLm(Zp)\Ω̃(j)(Θ⊥ pB1).

(2) Suppose that p = 2. Let m be a positive integer, n0 an even integer
not greater than m, and Θ ∈ GLn0(Z2) ∩ Sn0(Z2)e.

(2.1) Let B1 ∈ Sm−n0(Z2)×. Then ψm−n0,m induces a bijection

GLm−n0(Z2)\Ω̃(j)(2j+1B1) ' GLm(Z2)\Ω̃(j)(2jΘ⊥ 2j+1B1),

where j = 0 or 1 according as m is even or odd.
(2.2) Suppose that m is even. Let a ∈ Z2 be such that a ≡ −1 mod 4,

and B1 ∈ Sm−n0−2(Z2)×. Then ψm−n0−1,m induces a bijection

GLm−n0−1(Z2)\Ω̃(1)(a⊥ 4B1)

' GLm(Z2)\Ω̃(0)

(
Θ⊥

(
2 1

1 (1 + a)/2

)
⊥ 2B1

)
.

(2.3) Suppose that m is even, and let B1 ∈ Sm−n0−1(Z2)×. Then

there exists a bijection ψ̃m−n0−1,m

GLm−n0−1(Z2)\Ω̃(1)(4B1) ' GLm(Z2)\Ω̃(0)(Θ⊥ 2⊥ 2B1).

(As will be seen, ψ̃m−n0−1,m is not induced from ψm−n0−1,m.)

(3) Assertions (1), (2) remain valid if one replaces Ω̃(j)(B) by Ω̃(j)(B, i).

Proof. (1) Clearly the mapping ψm−n0,m induces an injection from the

set GLm−n0(Zp)\Ω̃(j)(B1) to GLm(Zp)\Ω̃(j)(Θ⊥B1), denoted by the same
symbol. To prove the surjectivity of ψm−n0,m, take a representative D of

an element of GLm(Zp)\Ω̃(j)(Θ ⊥ B1). Without loss of generality we may
suppose that D is a reduced matrix. Since (Θ ⊥ B1)[D−1] ∈ Sm(Zp), we

have D =
( 1n0 0

0 D1

)
with D1 ∈ Ω̃(j)(B1). This proves (1.1); and (1.2) can be

proved in the same way.
(2) First we prove (2.1). As in (1), the mapping ψm−n0,m induces an in-

jection from GLm−n0(Z2)\Ω̃(j)(2j+1B1) to GLm(Z2)\Ω̃(j)(2jΘ ⊥ 2j+1B1),
denoted by the same symbol. Then the surjectivity of ψm−n0,m in case
j = 0 can be proved in the same manner as (1). To prove the surjectiv-
ity of ψm−n0,m in case j = 1, take a reduced matrix D =

(
D1 D12
0 D2

)
with
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D1∈Mn0(Z2)×, D2∈Mm−n0(Z2)×, D12∈Mn0,m−n0(Z2). If (2Θ⊥4B1)[D−1]

∈ L(1)
m,2, then there exists (r1, r2) ∈ Zn0

2 × Zm−n0
2 such that

2Θ[D−1
1 ] ≡ −tr1r1 mod 4Ln0,2,

−2Θ[D−1
1 ]D12D

−1
2 ≡ −tr2r1 mod 2Mn0,m−n0(Z2),

2Θ[D−1
1 D12D

−1
2 ] + 4B1[D−1

2 ] ≡ −tr2r2 mod 4Lm−n0,2.

We have ν(det(2Θ[D−1
1 ])) ≥ n0 and ν(2Θ) = n0. Hence D1 = 1n0 and

r1 ≡ 0 mod 2. Therefore 4B1[D−1
2 ] ∈ L(1)

m−n0
and D12D

−1
2 ∈ Mn0,m−n0(Z2).

Consequently, D = U
( 1n0 0

0 D2

)
with U ∈ GLm(Zp). Thus the surjectivity of

ψm−n0,m can be proved as above. The assertion (2.2) can be proved in the
same way.

To prove (2.3), we may suppose n0 = 0 by (2.1). Let D ∈ Ω̃(1)(4B1).
Then

4B1[D−1] = − tr0r0 + 4B′

with r0 ∈ Zm−1
2 and B′ ∈ Lm−1,2. Then we can take r ∈ Zm−1

2 such that

4 tD−1 trrD−1 ≡ tr0r0 mod 4Lm−1,2.

Furthermore, 2rD−1 is uniquely determined modulo 2Zm−1
2 by r0. Put D̃ =(

1 r
0 D

)
. Then D̃ belongs to Ω̃(0)(2⊥ 2B1), and the mapping D 7→ D̃ induces

the bijection in question.

Corollary. Suppose that m is even. Let B ∈ L(1)
m−1,p, and

B(1) =

(
1 rB/2

trB/2 (B + trBrB)/4

)
with rB ∈ Zm−1

p as defined in Section 3. Then there exists a bijection

ψ : GLm−1(Zp)\Ω̃(1)(B) ' GLm(Zp)\Ω̃(0)(2δ2,pB(1))

such that ν(detψ(W )) = ν(detW ) for any W ∈ GLm−1(Zp)\Ω̃(1)(B). More-
over, ψ induces a bijection

ψi : GLm−1(Zp)\Ω̃(1)(B, i)→ GLm(Zp)\Ω̃(0)(2δ2,pB(1), i)

for i = 0, . . . ,m− 1.

Proof. Let p 6= 2. Then we may suppose rB = 0, and the assertion
follows from (1.2). Let p = 2. If rB ≡ 0 mod 2 we may suppose that rB = 0,
and the assertion follows from (2.3). If rB 6≡ 0 mod 2, we may suppose that
B = a ⊥ 4B1 with B1 ∈ L×m−2,2 and rB = (1, 0, . . . , 0). Then the assertion
follows from (2.2).
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Lemma 4.1.3. Suppose that p 6= 2.

(1) Let B ∈ Sm(Zp)×. Then

αp(p
rdB) = prm(m+1)/2αp(B)

for any nonnegative integer r and d ∈ Z∗p.
(2) Let U1 ∈ GLn0(Zp) ∩ Sn0(Zp) and B1 ∈ Sm−n0(Zp)×. Then

αp(pB1 ⊥ U1) = 2r(n0) αp(pB1)

×



n0/2∏
i=1

(1− p−2i)(1 + χ((−1)n0/2 detU1)p−n0/2)−1 if n0 even,

(n0−1)/2∏
i=1

(1− p−2i) if n0 odd,

for n0 ≥ 1, where r(n0) = 0 or 1 according as n0 = m or not.

Proof. The assertion (1) follows from [17, Theorem 5.6.4(a)], while (2)
follows from [17, p. 110, line 4 from the bottom].

Lemma 4.1.4.

(1) Let B ∈ Sm(Z2)×. Then

α2(2rdB) = 2rm(m+1)/2α2(B)

for any nonnegative integer r and d ∈ Z∗2.
(2) Let n0 be even and let U1 ∈ GLn0(Z2) ∩ Sn0(Z2)e. Then for B1 ∈

Sm−n0(Z2)× we have

α2(U1 ⊥ 2B1) = 2r(n0)α2(2B1)

×



n0/2∏
i=1

(1− 2−2i)(1 + χ((−1)n0/2 detU1)p−n0/2)−1

if B1 ∈ Sm−n0(Z2)e,

(n0−1)/2∏
i=1

(1− 2−2i) if B1 ∈ Sm−n0(Z2)o,

and for u0 ∈ Z∗2 and B2 ∈ Sm−n0−1(Z2)× we have

α2(u0 ⊥ 2U1 ⊥ 4B2) = α2(2B2)2m(m−1)/2+1

n0/2∏
i=1

(1− 2−2i).

(3) Let u0 ∈ Z∗2 and B1 ∈ Sm−1(Z2)×. Then

α2(u0 ⊥ 5B1) = α2(u0 ⊥B1).

Proof. The assertion (1) follows from [17, Theorem 5.6.4(a)], and (2)
follows from [17, (4), p. 111]. For a nondegenerate half-integral matrix A,



16 H. Katsurada and H. Kawamura

let WA be the quadratic space over Zp associated with A, and nA,j , qA,j and
EA,j be the quantities nj , qj and Ej , respectively, from [17, p. 109] defined
for WA. Then the transformation u0⊥B1 7→ u0⊥5B1 does not change these
quantities. This proves (3).

Now let R be a commutative ring. Then the group GLm(R) × R∗ acts
on Sm(R) in a natural way. We write B1 ≈R B2 if B2 ∼R ξB1 with some

ξ ∈ R∗. Let m be a positive integer. Then for B ∈ Sm(Zp) let S̃m,p(B) denote
the set of elements B′ ∈ Sm(Zp) such that B′ ≈Zp B, and let Sm−1,p(B)
denote the set of elements B′ ∈ Sm−1(Zp) such that 1⊥B′ ≈Zp B.

Lemma 4.1.5. Let m be a positive even integer. Let B ∈ Sm(Z2)×o . Then∑
B′∈Sm−1,2(B)/∼

1

α2(B′)
=

#(S̃m,2(B)/∼)

2α2(B)
.

Proof. For a positive integer l let l = l1 + · · · + lr be the partition of l
by positive integers, and {si}ri=1 the set of nonnegative integers such that

0 ≤ s1 < · · · < sr. Then for a positive integer e let S
(0)
l (Z2/2

eZ2, {li}, {si})
be the subset of Sl(Z2/2

eZ2) consisting of all symmetric matrices of the form
2s1U1 ⊥ · · · ⊥ 2srUr with Ui ∈ Sli(Z2/2

eZ2) unimodular. Let B ∈ Sm(Z2)o
and detB = (−1)m/2d. Then B is equivalent, over Z2, to a matrix of the
form

2t1W1 ⊥ · · · ⊥ 2trWr,

where 0 = t1 < · · · < tr and W1, . . . ,Wr are unimodular matrices of degree
n1, . . . , nr, respectively, and in particular, W1 is odd unimodular. Then by
[11, Lemma 3.2], similarly to [11, (3.5)], for a sufficiently large integer e, we
have

#(S̃m,2(B)/∼)

α2(B)
=

∑
B̃∈S̃m,2(B)/∼

1

α2(B̃)

= 2m−12−ν(d)+
∑r

i=1 ni(ni−1)e/2−(r−1)(e−1)−
∑

1≤j<i≤r ninjtj

×
r∏
i=1

#(SLni(Z2/2
eZ2))−1#S̃(0)

m (Z2/2
eZ2, {ni}, {ti}, B),

where S̃
(0)
m (Z2/2

eZ2, {ni}, {ti}, B) is the subset of S
(0)
m (Z2/2

eZ2, {ni}, {ti})
consisting of all matrices A such that A ≈Z2/2eZ2

B. We note that our local

density α2(B̃) is 2−m times that in [11] for B̃ ∈ Sm(Z2). If n1 ≥ 2, put
r′ = r, n′1 = n1 − 1, n′2 = n2, . . . , n

′
r = nr, and t′i = ti for i = 1, . . . , r′,

and if n1 = 1, put r′ = r − 1, n′i = ni+1 and t′i = ti+1 for i = 1, . . . , r′.

Let S
(0)
m−1(Z2/2

eZ2, {n′i}, {t′i}, B) be the subset of S
(0)
m−1(Z2/2

eZ2, {n′i}, {t′i})
consisting of all matrices B′ ∈ Sm−1(Z2/2

eZ2) such that 1⊥B′ ≈Z2/2eZ2
B.
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Then, similarly, we obtain∑
B′∈Sm−1,2(B)/∼

1

α2(B′)

= 2m−22−ν(d)+
∑r′

i=1 n
′
i(n
′
i−1)e/2−(r′−1)(e−1)−

∑
1≤j<i≤r′ n

′
in
′
jt
′
j

×
r′∏
i=1

#(SLn′i(Z2/2
eZ2))−1#S

(0)
m−1(Z2/2

eZ2, {n′i}, {t′i}, B).

Take A ∈ S̃(0)
m (Z2/2

eZ2, {ni}, {ti}, B). Then

A = 2t1U1 ⊥ · · · ⊥ 2trUr

with Ui ∈ Sni(Z2/2
eZ2) unimodular. Put U1 = (uλµ). Then by the assump-

tion there exists an integer 1 ≤ λ ≤ n1 such that uλλ ∈ Z∗2. Let λ0 be the
least such integer, and V1 be the matrix obtained from U1 by interchanging
the first and λ0th rows and the first and λ0th columns. Write

V1 =

(
v1 v1

tv1 V ′

)
with v1 ∈ Z∗2, v1 ∈ Zn1−1

2 and V ′ ∈ Sn1−1(Z2). Here we understand that
V ′ − tv1v1 is the empty matrix if n1 = 1. Then

V1 ∼
(
v1 0

0 V ′ − v−1
1 [v1]

)
.

Then the map A 7→ v−1
1 (2t1(V ′ − v−1

1 [v1]) ⊥ 2t2U2 ⊥ · · · ⊥ 2trUr) induces

a map Υ from S̃
(0)
m (Z2/2

eZ2, {ni}, {ti}, B) to S
(0)
m−1(Z2/2

eZ2, {n′i}, {t′i}, B).
By a simple calculation, we obtain

#Υ−1(B′) = 2(e−1)n1(2n1 − 1)

for any B′ ∈ S(0)
m−1(Z2/2

eZ2, {n′i}, {t′i}, B). We also note that

#SLn1(Z2/2
eZ2) = 2(e−1)(2n1−1)2n1−1(2n1 − 1)#(SLn1−1(Z2/2

eZ2)) or 1

according as n1 ≥ 2 or n1 = 1, and

r∑
i=1

ni(ni − 1)e/2− (r − 1)(e− 1)−
∑

1≤j<i≤r
ninjtj

= en1 +
r′∑
i=1

n′i(n
′
i − 1)e/2− (r′ − 1)(e− 1) +

∑
1≤j<i≤r′

n′in
′
jt
′
j ,

where en1 = (n1 − 1)e or en1 = 1− e according as n1 ≥ 2 or n1 = 1. Hence
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2m−12−ν(d)+
∑r

i=1 ni(ni−1)e/2−(r−1)(e−1)−
∑

1≤j<i≤r ninjtj

×
r∏
i=1

#(SLni(Z2/2
eZ2))−1#S̃(0)

m (Z2/2
eZ2, {ni}, {ti}, B)

= 2 · 2m−22−ν(d)+
∑r′

i=1 n
′
i(n
′
i−1)e/2−(r′−1)(e−1)−

∑
1≤j≤i≤r′ n

′
in
′
jt
′
j

×
r′∏
i=1

#(SLn′i(Z2/2
eZ2))−1#S

(0)
m−1(Z2/2

eZ2, {n′i}, {t′i}, B).

This proves the assertion.

4.2. Siegel series. For a half-integral matrix B of degree m over Zp,
let (W, q) denote the quadratic space over Zp/pZp defined by the quadratic
form q(x) = B[x] mod p, and define the radical R(W ) of W by

R(W ) = {x ∈W | B(x,y) = 0 for any y ∈W},
where B denotes the symmetric bilinear form associated to q. We then put
lp(B) = rankZp/pZp

R(W )⊥, where R(W )⊥ is the orthogonal complement

of R(W )⊥ in W. Furthermore, in case lp(B) is even, set ξp(B) = 1 or −1

according as R(W )⊥ is hyperbolic or not. In case lp(B) is odd, we put
ξp(B) = 0. Here we make the convention that ξp(B) = 1 if lp(B) = 0.

We note that ξp(B) is different from ξp(B) in general, but they coincide if

B ∈ Lm,p ∩ 1
2GLm(Zp).

Let n be a positive even integer. For B ∈ L(1)
n−1,p put

B(1) =

(
1 r/2

tr/2 (B + trr)/4

)
,

where r ∈ Zn−1
p is such that B+trr ∈ 4Ln−1,p. Then we set ξ(1)(B) = ξ(B(1))

and ξ
(1)

(B) = ξ(B(1)). These do not depend on the choice of r, and we have
ξ(1)(B) = χ((−1)n/2 detB).

Let p 6= 2. Let j = 0 or 1. Then an element B of L(j)
n−j,p is equivalent, over

Zp, to Θ⊥ pB1 with Θ ∈ GLn−n1−j(Zp)∩ Sn−n1−j(Zp) and B1 ∈ Sn1(Zp)×.
Thus ξ

(j)
(B) = 0 if n1 is odd, and ξ

(1)
(B) = χ((−1)(n−n1)/2 det Θ) if n1 is

even.

Let p = 2. Then an element B ∈ L(1)
n−1,2 is equivalent, over Z2, to a

matrix of the form 2Θ⊥B1, where Θ ∈ GLn−n1−2(Z2) ∩ Sn−n1−2(Z2)e and
B1 is one of the following types:

(I) B1 = a⊥ 4B2 with a ≡ −1 mod 4, and B2 ∈ Sn1(Z2)×e ;

(II) B1 ∈ 4Sn1+1(Z2)×;

(III) B1 = a⊥ 4B2 with a ≡ −1 mod 4, and B2 ∈ Sn1(Z2)o.
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Thus ξ
(1)

(B) = 0 if B1 is of type (II) or (III). If B1 is of type (I), then
(−1)(n−n1)/2a det Θ mod (Z∗2)2 is uniquely determined by B, and we have

ξ
(1)

(B) = χ((−1)(n−n1)/2adet Θ). Moreover, an element B ∈ L(0)
n,2 is equiva-

lent, over Z2, to a matrix of the form Θ⊥ 2B1, where Θ ∈ GLn−n1−2(Z2)∩
Sn−n1−2(Z2)e and B1 ∈ Sn1(Z2)×.

Suppose that p 6= 2, and let U = Up be a complete set of representatives
for Z∗p/(Z∗p)2. Then, for each positive integer l and d ∈ Up, there exists a
unique, up to Zp-equivalence, element of Sl(Zp)∩GLl(Zp) whose determinant
is (−1)[(l+1)/2]d, which will be denoted by Θl,d.

Suppose that p = 2, and put U = U2 = {1, 5}. Then for each positive even
integer l and d ∈ U2 there exists a unique, up to Z2-equivalence, element of
Sl(Z2)e∩GLl(Z2) whose determinant is (−1)l/2d, which will also be denoted
by Θl,d.

In particular, if p is any prime number and l is even, we put Θl = Θl,1.
We make the convention that Θl,d is the empty matrix if l = 0. For d ∈ U
we use the same symbol d to denote the coset d mod (Z∗p)2.

For B ∈ L(1)
n−1,p, let F̃

(1)
p (B,X) be the polynomial in X and X−1 defined

in Section 3. We also define a polynomial G
(1)
p (B,X) in X by

G(1)
p (B,X)

=
n−1∑
i=0

(−1)ipi(i−1)/2(X2pn)i
∑

D∈GLn−1(Zp)\Dn−1,i

F (1)
p (B[D−1], X).

Lemma 4.2.1. Let n be a positive even integer. Let B ∈ L(1)
n−1,p, and put

ξ0 = χ((−1)n/2 detB).

(1) Let p 6= 2, and suppose that B = Θn−n1−1,d ⊥ pB1 with d ∈ U and
B1 ∈ Sn1(Zp)×. Then

G(1)
p (B,X)

=



1− ξ0p
n/2X

1− pn1/2+n/2ξ
(1)

(B)X

n1/2∏
i=1

(1− p2i+nX2) if n1 is even,

(1− ξ0p
n/2X)

(n1−1)/2∏
i=1

(1− p2i+nX2) if n1 is odd.

(2) Let p = 2. Suppose that n1 is even and that B = 2Θ ⊥ B1 with
Θ ∈ Sn−n1−2(Z2)e ∩GLn−n1−2(Z2) and B1 ∈ Sn1+1(Z2)×. Then
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G
(1)
2 (B,X)

=


1− ξ02n/2X

1− 2n1/2+n/2ξ
(1)

(B)X

n1/2∏
i=1

(1− 22i+nX2) if B1 is of type (I),

(1− ξ02n/2X)

n1/2∏
i=1

(1− 22i+nX2) if B1 is of type (II) or (III).

Proof. By the Corollary to Lemma 4.1.2 and by definition we have

G
(1)
p (B,X)=Gp(B

(1), X). Thus the assertion follows from [16, Lemma 9].

Remark. In the above lemma, we have ξ
(1)

(B) = ξ0(B) if n1 = 0. Hence

G
(1)
p (B,X) = 1 in this case.

Lemma 4.2.2. Let B ∈ L(1)
n−1,p. Then

F̃ (1)
p (B,X) =

∑
B′∈L(1)n−1,p/GLn−1(Zp)

X−e
(1)(B′)αp(B

′, B)

αp(B′)

×G(1)
p (B′, p(−n−1)/2X)(p−1X)(ν(detB)−ν(detB′))/2.

Proof. We have

F̃ (1)
p (B,X)

=
∑

W∈GLn−1(Zp)\Ω̃(1)(B)

X−e
(1)(B)G(1)

p (B[W−1], p(−n−1)/2X)X2ν(detW )

=
∑

B′∈L(1)n−1,p/GLn−1(Zp)

∑
W∈GLn−1(Zp)\Ω̃(B′,B)

X−e
(1)(B)

×G(1)
p (B′, p(−n−1)/2X)X2ν(detW )

=
∑

B′∈L(1)n−1,p/GLn−1(Zp)

X−e
(1)(B′)#(GLn−1(Zp)\Ω̃(B′, B))p(ν(detB)−ν(detB′))/2

×G(1)
p (B′, p(−n−1)/2X)(p−1X)(ν(detB)−ν(detB′))/2.

Thus the assertion follows from Lemma 4.1.1(2).

4.3. Certain reduction formulas. To give an explicit formula for the

power series P
(1)
n−1(d0, ω,X, t), we give certain reduction formulas, by means

of which we can express P
(1)
n−1(d0, ω,X, t) in terms of the power series defined

in [11]. First we review the notion of canonical forms of quadratic forms over
Z2 in the sense of Watson [20].
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Let B ∈ L×m,2. Then B is equivalent, over Z2, to a matrix of the form

r
⊥
i=0

2i(Vi ⊥ Ui),

where Vi = ⊥ki
j=1 cij with 0 ≤ ki ≤ 2, cij ∈ Z∗2 and Ui = 1

2Θmi,d with 0 ≤ mi,
d ∈ U . The degrees ki and mi of the matrices are uniquely determined by B.
Furthermore we can choose the matrix ⊥r

i=0 2i(Vi ⊥ Ui) uniquely so that it
satisfies the following conditions:

(c.1) ci1 = ±1 or ±3 if ki = 1, and (ci1, ci2) = (1,±1), (1,±3), (−1,−1),
or (−1, 3) if ki = 2;

(c.2) ki+2 = ki = 0 if Ui+2 = 1
2Θmi+2,5 with mi+2 > 0;

(c.3) −detVi ≡ 1 mod 4 if ki = 2 and Ui+1 = 1
2Θmi+1,5 with mi+1 > 0;

(c.4) (−1)ki−1 detVi ≡ 1 mod 4 if ki, ki+1 > 0;

(c.5) Vi 6=
(−1 0

0 ci2

)
if ki−1 > 0;

(c.6) Vi = φ, (±1),
(

1 0
0 ±1

)
, or

(−1 0
0 −1

)
if ki+2 > 0.

The matrix satisfying the conditions (c.1)–(c.6) is called the canonical form
of B, and denoted by C(B). Now for V = ⊥k

j=1 cj with 1 ≤ k ≤ 2, put

Ṽ = 5c1 or Ṽ = 5c1 ⊥ c2 according as V = c1 or V = c1 ⊥ c2.

Lemma 4.3.1. For B ∈ Sm(Z2)×o , let C(B) = V0 ⊥⊥r
i=1(Ui ⊥ Vi) be the

canonical form of B stated as above. Let l = lB be the smallest integer such
that k2l+2 = 0. Then

C(Ṽ0 ⊥
r
⊥
i=1

(Ui ⊥ Vi)) = V0 ⊥
2l−1
⊥
i=1

(Ui ⊥ Vi)⊥ U2l ⊥ C(Ṽ2l)⊥
r
⊥

i=2l+1
(Ui ⊥ Vi).

Proof. We note that 5a1 ⊥ 4a2 ∼ a1 ⊥ 4 · 5a2 for a1, a2 ∈ Z∗2. Hence

Ṽ0 ⊥
l
⊥
i=1

V2i ∼ V0 ⊥
l−1
⊥
i=1

V2i ⊥ Ṽ2l.

This proves the assertion.

Corollary. For B,B′ ∈ S2m+1(d0)o, let C(B) = V0 ⊥⊥r
i=1(Ui ⊥ Vi)

and C(B′) = V ′0 ⊥⊥r′
i=1(U ′i ⊥ V ′i ) with V0 = ⊥k0

j=1 c0j and V ′0 = ⊥k0
j=1 c

′
0j .

Put

B1 =
k0
⊥
j=2

c0j ⊥
r
⊥
i=1

(Ui ⊥ Vi) and B′1 =
k′0
⊥
j=2

c′0j ⊥
r′

⊥
i=1

(U ′i ⊥ V ′i ).

Then B ∼ B′ if and only if c01 ⊥ 5B1 ∼ c′01 ⊥ 5B′1.

Proof. We note that c01 ⊥ 5B1 ∼ c′01 ⊥ 5B′1 if and only if 5c01 ⊥ B1 ∼
5c′01 ⊥B′1. Hence the assertion follows from the lemma.

The following lemma follows from [17, Theorem 3.4.2].
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Lemma 4.3.2. Let m and r be integers such that 0≤r≤m, and d0∈Z×p .

(1) Let p 6= 2 and T ∈ Sr(Zp, d0). Then for any d ∈ U we have

ε(Θm−r,d ⊥ T ) = ((−1)[(m−r+1)/2]d, d0)pε(T ).

Furthermore

ε(pT ) =

{
(p, d0)pε(T ) if r even,

(p, (−1)(r+1)/2)pε(T ) if r odd,

and ε(aT ) = (a, d0)r+1
p ε(T ) for any a ∈ Z∗p.

(2) Let p = 2 and T ∈ Sr(Z2, d0). Suppose that m − r is even, and let
d ∈ U . Then for Θ = 2Θm−r,d or 2Θm−r−2 ⊥ (−d), we have

ε(Θ⊥ T ) = (−1)(m−r)(m−r+2)/8((−1)(m−r)/2d, (−1)[(r+1)/2]d0)2ε(T )

and

ε(Θm−r,d ⊥ T )

= (−1)(m−r)(m−r+2)/8(2, d)2((−1)(m−r)/2d, (−1)[(r+1)/2]d0)2ε(T ).

Furthermore, ε(2T ) = (2, d0)r+1
2 ε(T ),

ε(a⊥ T ) = (a, (−1)[(r+1)/2]+1d0)2ε(T )

for any a ∈ Z∗2, and

ε(aT ) =

{
(a, d0)2ε(T ) if r even,

(a, (−1)(r+1)/2)2ε(T ) if r odd

for any a ∈ Z∗2.

Henceforth, we sometimes abbreviate Sr(Zp) and Sr(Zp, d) as Sr,p and
Sr,p(d), respectively. Furthermore we abbreviate Sr(Z2)x and Sr(Z2, d)x as
Sr,2;x and Sr,2(d)x, respectively, for x = e, o.

Let R be a commutative ring. A function H defined on a subset S of
Sm(Qp) with values in R is said to be GLm(Zp)-invariant if H(A[U ]) =
H(A) for any U ∈ GLm(Zp) and A ∈ S.

Let p 6= 2. Let {H(j)
2r+j,ξ | j ∈ {0, 1}, 1 − j ≤ r ≤ n/2 − j, ξ = ±1}

be a set of GL2r+j(Zp)-invariant functions on S2r+j(Zp)× with values in R
satisfying the following conditions for any positive even integer m ≤ n:

(H-p-0) H
(0)
m,ξ(Θm,d) = 1 and H

(1)
m−1,ξ(Θm−1,d) = 1 for d ∈ U ;

(H-p-1) H
(0)
m,ξ(Θm−2r,d ⊥ pB) = H

(0)
2r,ξχ(d)(pB) for any r ≤ m/2− 1, ξ = ±1,

d ∈ U and B ∈ S2r(Zp)×;

(H-p-2) H
(1)
m−1,ξ(Θm−2r−2,d ⊥ pB) = H

(1)
2r+1,ξ(pdB) for any r ≤ m/2 − 2,

ξ = ±1, d ∈ U and B ∈ S2r+1(Zp)×;
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(H-p-3) H
(0)
m,ξ(Θm−2r−1,d ⊥ pB) = H

(1)
2r+1,ξ(−pdB) for any r ≤ m/2 − 2,

ξ = ±1 and B ∈ S2r+1(Zp)×;

(H-p-4) H
(1)
m−1,ξ(Θm−2r−1,d ⊥ pB) = H

(0)
2r,ξχ(d)(pB) for any r ≤ m/2 − 2,

ξ = ±1, d ∈ U and B ∈ S2r(Zp)×;

(H-p-5) H
(0)
2r,ξ(dB) = H

(0)
2r,ξ(B) for any r ≤ m/2, ξ = ±1, d ∈ Z∗p and

B ∈ S2r(Zp)×.

Let d0 ∈ Fp, and m be a positive even integer such that m ≤ n. Then
for each 0 ≤ r ≤ m/2− 1 we put

Q(1)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m− 1, l)−1

×
∑
d∈U

∑
B∈p−1S2r+1,p(d0d)∩S2r+1,p

H
(1)
m−1,ξ(Θm−2r−2,d ⊥ pB)ε(Θm−2r−2,d ⊥ pB)l

αp(Θm−2r−2,d ⊥ pB)

× tν(det(pB)).

Let d ∈ U . Then we put

Q(1)(d0, d,H
(1)
m−1,ξ, 2r, ε

l, t) = κ(d0,m− 1, l)−1

×
∑

B∈S2r,p(d0d)

H
(1)
m−1,ξ(Θm−2r−1,d ⊥ pB)ε(Θm−2r−1,d ⊥ pB)l

αp(Θm−2r−1,d ⊥ pB)
tν(det(pB))

for each 1 ≤ r ≤ m/2− 1, and

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t)

=
∑

B∈S2r,p(d0d)

H
(0)
m,ξ(Θm−2r,d ⊥ pB)ε(Θm−2r,d ⊥ pB)l

αp(Θm−2r,d ⊥ pB)
tν(det(pB))

for each 1 ≤ r ≤ m/2. Here we make the convention that

Q(0)(d0, 1, H
(0)
m,ξ,m, ε

l, t) =
∑

B∈Sm,p(d0)

H
(0)
m,ξ(pB)ε(pB)l

αp(pB)
tν(det(pB)).

We also define

Q(1)(d0, d,H
(1)
m−1,ξ, 0, ε

l, t) = Q(0)(d0, d,H
(0)
m,ξ, 0, ε

l, t) = δ(d, d0),

where δ(d, d0) = 1 or 0 according as d = d0 or not. Furthermore put
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Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t)

=
∑
d∈U

∑
B∈p−1S2r+1,p(d0d)∩S2r+1,p

H
(0)
m,ξ(−Θm−2r−1,d ⊥ pB)ε(−Θm−2r−1,d ⊥ pB)l

αp(−Θm−2r−1,d ⊥ pB)

× tν(det(pB))

for each 0 ≤ r ≤ m/2− 1.

Let {H(j)
2r+j,ξ | j ∈ {0, 1}, 1 − j ≤ r ≤ n/2 − j, ξ = ±1} be a set of

GL2r+j(Z2)-invariant functions on S2r+j(Z2)× with values in R satisfying
the following conditions for any positive even integer m ≤ n:

(H-2-0) H
(0)
m,ξ(Θm,d) = H

(1)
m−1,ξ(−d⊥ 2Θm−2) = 1 for d ∈ U ;

(H-2-1) H
(0)
m,ξ(Θm−2r,d ⊥ 2B) = H

(0)
2r,ξχ(d)(2B) for any r ≤ m/2− 1, ξ = ±1,

d ∈ U and B ∈ S2r(Z2)×;

(H-2-2) H
(1)
m−1,ξ(2Θm−2r−2,d ⊥ 4B) = H

(1)
2r+1,ξ(4dB) for any r ≤ m/2 − 2,

ξ = ±1, d ∈ U and B ∈ S2r+1(Z2)×;

(H-2-3) H
(0)
m,ξ(2⊥Θm−2r−2⊥2B) = H

(1)
2r+1,ξ(4B) for any r ≤ m/2−2, ξ = ±1

and B ∈ S2r+1(Z2)×;

(H-2-4) H
(1)
m−1,ξ(−a⊥2Θm−2r−2⊥4B) = H

(0)
2r,ξχ(a)(2B) for any r ≤ m/2−2,

ξ = ±1, a ∈ U and B ∈ S2r(Z2)×;

(H-2-5) H
(0)
2r,ξ(dB) = H

(0)
2r,ξ(B) for any r ≤ m/2, ξ = ±1, d ∈ Z∗2 and

B ∈ S2r(Z2)×;

(H-2-6) H
(1)
2r+1,ξ(4(u0 ⊥ B)) = H

(1)
2r+1,ξ(4(u0 ⊥ 5B)) for any r ≤ m/2 − 1,

ξ = ±1 and u0 ∈ Z∗2, B ∈ S2r(Z2)×.

Let d0 ∈ F2, and m be a positive even integer such that m ≤ n. Then for
each 0 ≤ r ≤ m/2− 1, we put

Q(11)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m− 1, l)−1t2−m ×∑

d∈U

∑
B∈S2r+1,2(d0d)e

H
(1)
m−1,ξ(2Θm−2r−2,d ⊥ 4B)εl(2Θm−2r−2,d ⊥ 4B)

α2(2Θm−2r−2,d ⊥ 4B)

× tm−2r−2+ν(det(4B)),

Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m− 1, l)−1t2−m ×∑

B∈S2r+1,2(d0)o

H
(1)
m−1,ξ(2Θm−2r−2 ⊥ 4B)εl(2Θm−2r−2 ⊥ 4B)

α2(2Θm−2r−2 ⊥ 4B)
tm−2r−2+ν(det(4B)),
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and

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t)

= κ(d0,m− 1, l)−1t2−m
∑

B∈S2r+2,2(d0)o

H
(1)
m−1,ξ(−1⊥ 2Θm−2r−4 ⊥ 4B)

× εl(−1⊥ 2Θm−2r−4 ⊥ 4B)

α2(−1⊥ 2Θm−2r−4 ⊥ 4B)
tm−2r−4+ν(det(4B)).

Moreover put

Q(1)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = Q(11)(d0, H

(1)
m−1,ξ, 2r + 1, εl, t)

+Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) +Q(13)(d0, H

(1)
m−1,ξ, 2r + 1, εl, t).

We note that

Q(1)(d0, H
(1)
m−1,ξ,m− 1, εl, t)

= κ(d0,m− 1, l)−1t2−m
∑

B∈Sm−1,2(d0)

H
(1)
m−1,ξ(4B)

ε(4B)l

α2(4B)
tν(det(4B)).

Let d ∈ U . Then we put

Q(1)(d0, d,H
(1)
m−1,ξ, 2r, ε

l, t)

= κ(d0,m− 1, l)−1t2−m
∑

B∈S2r,2(d0d)e

H
(1)
m−1,ξ(−d⊥ 2Θm−2r−2 ⊥ 4B)

× ε(−d⊥ 2Θm−2r−2 ⊥ 4B)l

α2(−d⊥ 2Θm−2r−2 ⊥ 4B)
tm−2r−2+ν(det(4B))

for each 1 ≤ r ≤ m/2− 1, and

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t)

= κ(d0,m, l)
−1

∑
B∈S2r,2(d0d)e

H
(0)
m,ξ(Θm−2r,d ⊥ 2B)ε(Θm−2r,d ⊥ 2B)l

α2(Θm−2r,d ⊥ 2B)
tν(det(2B))

for each 1 ≤ r ≤ m/2, where κ(d0,m, l) = {(−1)m(m+2)/8((−1)m/22, d0)2}l.
Here we make the convention that

Q(0)(d0, 1, H
(0)
m,ξ,m, ε

l) = κ(d0,m, l)
−1

∑
B∈Sm,2(d0)e

H
(0)
m,ξ(2B)ε(2B)l

α2(2B)
tν(det(2B)).

We also define

Q(1)(d0, d,H
(1)
m−1,ξ, 0, ε

l, t) = Q(0)(d0, d,H
(0)
m,ξ, 0, ε

l, t) = δ(d, d0).
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Furthermore put

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t)

= κ(d0,m, l)
−1

∑
B∈S2r+2,2(d0)o

H
(0)
m,ξ(Θm−2r−2 ⊥ 2B)ε(Θm−2r−2 ⊥ 2B)l

α2(Θm−2r−2 ⊥ 2B)
tν(det(2B))

for 0 ≤ r ≤ m/2− 1. Henceforth, for d0 ∈ Fp and nonnegative integers m, r
such that r ≤ m, set U(m, r, d0) = {1}, U ∩ {d0}, or U according as r = 0,
r = m ≥ 1, or 1 ≤ r ≤ m− 1.

Proposition 4.3.3. Let the notation be as above.

(1) For 0 ≤ r ≤ (m− 2)/2, we have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t) =

Q(1)(d0, H
(1)
2r+1,ξ, 2r + 1, εl, t)

φ(m−2r−2)/2(p−2)

if lν(d0) = 0, and

Q(0)(d0, H
(0)
m,ξ, 2r + 1, ε, t) = 0

if ν(d0) > 0.
(2) For 1 ≤ r ≤ m/2 and d ∈ U(m,m− 2r, d0), we have

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t)

=
(1 + p−(m−2r)/2χ(d))Q(0)(d0d, 1, H

(0)
2r,ξχ(d), 2r, ε

l, t)

2φ(m−2r)/2(p−2)

if lν(d0) = 0, and

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε, t) = 0

if ν(d0) > 0.

Proof. First suppose that p 6= 2. We note that

(−Θm−2r−1,d)⊥ pB ∼ d(−Θm−2r−1)⊥ pB ≈ (−Θm−2r−1)⊥ dpB

for d ∈ U and B ∈ p−1S2r+1,p(d0d) and the mapping

p−1S2r+1,p(d0d) ∩ S2r+1,p 3 B 7→ dB ∈ p−1S2r+1,p(d0) ∩ S2r+1,p

is a bijection. By Lemma 4.3.2, ε((−Θm−2r−1,d)⊥ pB) = (d, d0)pε(pB) and
ε(dpB) = ε(pB) for B ∈ p−1S2r+1,p(d0d). Thus (1) follows from (H-p-3),
(H-p-5) and Lemma 4.1.3.
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By (H-p-2) and Lemmas 4.1.3 and 4.3.2, we have

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t) =
(1 + p−(m−2r)/2χ(d))((−1)(m−2r)/2d, d0)lp

2φ(m−2r)/2(p−2)

×Q(0)(d0d, 1, H
(0)
2r,ξχ(d), 2r, ε

l, t).

Thus (2) follows immediately in case lν(d0) = 0.

Now suppose that l = 1 and ν(d0) = 1. Take a ∈ Z∗p such that (a, p)p
= −1. Then the mapping S2r(Zp) 3 B 7→ aB ∈ S2r(Zp) induces a bijection
from S2r,p(dd0) to itself, and ε(apB) = −ε(pB) and αp(apB) = αp(pB) for
B ∈ S2r,p(dd0). Furthermore by (H-p-5) we have

Q(0)(d0d, 1, H
(0)
2r,ξχ(d), 2r, ε

l, t) =
∑

B∈S2r(dd0)

H
(0)
2r,ξχ(d)(apB)ε(apB)

αp(apB)

= −Q(0)(d0d, 1, H
(0)
2r,ξχ(d), 2r, ε

l, t).

Hence Q(0)(d0d, 1, H
(0)
2r,ξχ(d), 2r, ε

l, t) = 0. This proves (2) in this case.

Next suppose that p = 2. First suppose that l = 0, or l = 1 and d0 ≡
1 mod 4. Fix a complete set B of representatives for (S2r+2,2(d0)o)/≈. For

B ∈ B, let S2r+1,2(B) and S̃2r+2,2(B) be those defined in Subsection 4.1.
Then, by (H-2-1) and (H-2-5) we have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, ι, t)

=
∑
B∈B

H
(0)
2r+2,ξ(2B)

φ(m−2r−2)/2(2−2)2(r+1)(2r+3)α2(B)
#(S̃2r+2,2(B)/∼)tν(det(2B)).

We have S2r+1,2(d0) =
⋃
B∈B S2r+1,2(B), and 1 ⊥ B′ ≈ B for any B′ ∈

S2r+1,2(B). Hence ν(det(2B)) = ν(det(4B′)) − 2r and H
(0)
2r+2,ξ(2B) =

H
(0)
2r+2,ξ(2⊥ 2B′) = H

(1)
2r+1,ξ(4B

′). Thus by Lemma 4.1.5 we have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t)

= 2
∑

B′∈S2r+1,2(d0)

H
(1)
2r+1,ξ(4B

′)

2(r+1)(2r+3)φ(m−2r−2)/2(2−2)α2(B′)
tν(det(4B′))−2r

= 2(2r+1)rt−2r
∑

B′∈2−1S2r+1,2(d0)∩S2r+1,2

H
(1)
2r+1,ξ(4B

′)

φ(m−2r−2)/2(2−2)α2(4B′)
tν(det(4B′)).

This proves (1) for l = 0. Now let d0 ≡ 1 mod 4, and put ξ0 = (2, d0)2. Then
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by Lemma 4.3.2 we have

ε(Θm−2r−2 ⊥ 2B) = (−1)m(m+2)/8+r(r+1)/2+(r+1)2ξ0ε(B).

Furthermore for any a ∈ Z∗2 we have ε(aB)l = ε(B)l and α2(aB) = α2(B).
Thus, by using the same argument as above we obtain

Q(0)(d0, H
(0)
m,ξ, 2r + 1, ε, t)

= (−1)m(m+2)/8ξ0

∑
B∈B

H
(0)
2r+2,ξ(2B)(−1)m(m+2)/8+r(r+1)/2+(r+1)2ξ0ε(B)

φ(m−2r−2)/2(2−2)2(r+1)(2r+3)α2(B)

×#(S̃2r+2,2(B)/∼)tν(det(2B)).

We note that ε(1 ⊥ B′) = ε(4B′) for B′ ∈ S2r+1,2. Therefore, again by
Lemma 4.1.5, we have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t) = (−1)r(r+1)/2((−1)r+1, (−1)r+1)22(2r+1)rt−2r

×
∑

B′∈S2r+1,2(d0)

H
(1)
2r+1,ξ(4B

′)ε(B)

φ(m−2r−2)/2(2−2)α2(4B′)
tν(det(4B′)).

This proves (1) for l = 1 and d0 ≡ 1 mod 4.
Next suppose that l = 1 and 4−1d0 ≡ −1 mod 4, or l = 1 and 8−1d0 ∈ Z∗2.

Then there exists a ∈ Z∗2 such that (a, d0)2 = −1. Then the map 2B 7→ 2aB

induces a bijection of 2S2r+2,2(d0)o to itself. Furthermore H
(0)
2r+2,ξ(2aB) =

H
(0)
2r+2,ξ(2B), ε(2aB) = −ε(2B), and α2(2aB) = α2(2B). Thus (1) can be

proved by using the same argument as in the proof of (2) for p 6= 2. The
assertion (2) for p = 2 can be proved by using (H-2-1), Lemmas 4.1.4 and
4.3.2 similarly to (2) for p 6= 2.

Proposition 4.3.4. Let the notation be as above.

(1) For 0 ≤ r ≤ (m− 2)/2 we have

Q(1)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) =

Q(1)(d0, H
(1)
2r+1,ξ, 2r + 1, εl, t)

φ(m−2r−2)/2(p−2)
.

(2) For 1 ≤ r ≤ (m− 2)/2 and d ∈ U(m− 1,m− 2r − 1, d0) we have

Q(1)(d0, d,H
(0)
m−1,ξ, 2r, ε

l, t) =
Q(0)(d0d, 1, H

(0)
2r,ξχ(d), 2r, ε

l, t)

2φ(m−2r−2)/2(p−2)

if lν(d0) = 0, and

Q(1)(d0, d,H
(0)
m−1,ξ, 2r, ε

l, t) = 0

otherwise.

Proof. We may suppose that r < (m−2)/2. First suppose that p 6= 2. As
in the proof of Proposition 4.3.3(1), we have a bijection p−1S2r+1,p(d0d) ∩



Koecher–Maass series of a half-integral weight form 29

S2r+1,p 3 B 7→ dB ∈ p−1S2r+1,p(d0) ∩ S2r+1,p. We also note that ε(dB) =
ε(B) and αp(dB) = αp(B). Hence, by (H-p-2), Lemmas 4.1.3 and 4.3.2,
similarly to Proposition 4.3.3(2), we have

Q(1)(d0, H
(1)
m,ξ, 2r + 1, εl, t) = p(m/2−1)lν(d0)((−1)m/2d0, (−1)lm/2)p

×
∑

B∈p−1S2r+1,p(d0)∩S2r+1,p

H
(1)
2r+1,ξ(pB)ε(pB)l

2φ(m−2r−2)/2(p−2)αp(pB)
tν(det(pB))

×
∑
d∈U

(1 + p−(m−2r−2)/2χ(d))((−1)(m−2r−2)/2d, (−1)r+1d0d)lp.

Thus (1) clearly holds if lν(d0) = 0. Suppose that l = 1 and ν(d0) = 1. Then

((−1)(m−2r−2)/2d, (−1)r+1d0d)p

= χ(d)((−1)r+1, (−1)r+1d0d)p((−1)m/2, (−1)m/2d0)p,

and therefore∑
d∈U

(1 + p−(m−2r−2)/2χ(d))((−1)(m−2r−2)/2d, (−1)r+1d0)p

= 2p−(m−2r−2)/2((−1)r+1, (−1)r+1d0d)p((−1)m/2, (−1)m/2d0)p.

This completes the proof of (1).
By (H-p-4) and by Lemmas 4.1.3 and 4.3.2, we have

Q(1)(d0, d,H
(1)
m−1,ξ, 2r, ε

l, t)

=
Q(0)(d0d, 1, H

(0)
2r,ξχ(d), 2r, ε

l, t)

2φ(m−2r−2)/2(p−2)
((−1)(m−2r)/2d, d0)lp.

Thus (2) follows immediately if lν(d0) = 0; and for l = 1 and ν(d0) = 1 it
follows from Proposition 4.3.3(2).

Next suppose that p = 2. We have

ε(2Θm−2r−2,d ⊥ 4B) = (−1)m(m−2)/8(−1)r(r+1)/2((−1)m/2, (−1)m/2d0)2

× ((−1)r+1, (−1)r+1d0d)2(d0, d)2 ε(4B)

for d ∈ U and B ∈ S2r+1,2(dd0). Thus, similarly to (1) for p 6= 2, we obtain

Q(11)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = (−1)r(r+1)l/2t−2r((−1)r+1, (−1)r+1d0)l2

× 2(m/2−1)lν(d0)
∑

B∈S2r+1,2(d0)e

2r(2r+1)H
(1)
2r+1,ξ(4B)ε(4B)l

2 · 2m−2r−2φ(m−2r−2)/2(2−2)α2(4B)
tν(det(4B))

×
∑
d∈U

(1 + 2−(m−2r−2)/2χ(d))(d, d0)l2
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=
∑
d∈U

(1+2−(m−2r−2)/2χ(d))(d, d0)l2
Q(11)(d0, H

(1)
2r+1,ξ, 2r + 1, εl, t)

21+(m−2r−2)(1−lν(d0)/2)φ(m−2r−2)/2(2−2)
.

In the same manner as above, we obtain

Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = (−1)r(r+1)l/2t−2r((−1)r+1, (−1)r+1d0)l2

× 2(m/2−1)lν(d0)
∑

B∈S2r+1,2(d0)o

2r(2r+1)H
(1)
2r+1,ξ(4B)ε(4B)l

2m−2r−2φ(m−2r−2)/2(2−2)α2(4B)
tν(det(4B))

=
Q(11)(d0, H

(1)
2r+1,ξ, 2r + 1, εl, t)

2(m−2r−2)(1−lν(d0)/2)φ(m−2r−2)/2(2−2)
.

Furthermore we have

ε(−1⊥ 2Θm−2r−4 ⊥ 4B) = (−1)m(m−2)/8(−1)r(r+1)/2((−1)m/2, (−1)m/2d0)2

× ((−1)r+1, (−1)r+1d0)2(2, d0)2ε(2B)

for d ∈ U and B ∈ S2r+2,2(dd0)o. Hence

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = (−1)r(r+1)l/2t−2r−2((−1)r+1, (−1)r+1d0)l2

× (2, d0)l2 2(m/2−1)lν(d0)
∑

B∈S2r+2,2(d0)o

H
(0)
2r+2,ξ(2B)ε(4B)l

φ(m−2r−4)/2(2−2)α2(2B)
tν(det(4B))

=
(
((−1)r+12, d0)2(−1)(r+1)(r+2)/2

)l
2(m/2−1)lν(d0)

×
∑

B∈S2r+2,2(d0)o

H
(0)
2r+2,ξ(2B)ε(2B)l

φ(m−2r−4)/2(2−2)α2(2B)
tν(det(2B))

=
Q(0)(d0, H

(0)
2r+2,ξ, 2r + 1, εl, t)

φ(m−2r−4)/2(2−2)
2(m/2−1)lν(d0).

First suppose that l = 0 or ν(d0) is even. Then (d, d0)l2 = 1. Hence

Q(11)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) +Q(12)(d0, H

(1)
m−1,ξ, 2r + 1, εl, t)

=
Q(1)(d0, H

(1)
2r+1,ξ, 2r + 1, εl, t)

2(m−2r−2)(1−ν(d0)l/2)φ(m−2r−2)/2(2−2)
.

Furthermore by Proposition 4.3.3(2), we have

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) =

Q(1)(d0, H
(1)
2r+1,ξ, 2r + 1, εl, t)

φ(m−2r−4)/2(2−2)

if lν(d0) = 0, and

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, ε, t) = 0
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if 4−1d0 ≡ −1 mod 4. Thus summing up these two quantities, we prove (1)
in this case.

Next suppose that l = 1 and ν(d0) = 3. Then

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, ε, t) = 0.

We prove

Q(12)(d0, H
(1)
2r+1,ξ, 2r + 1, ε, t) = 0.

If r = 0, then clearly S2r+1,2(d0)o is empty. Suppose r ≥ 1. Then for
B ∈ 4S2r+1,2;o take a canonical form 4c01 ⊥ 4B1 with c01 ∈ Z∗2, B1 ∈ S2r,2,
and put B′ = 4c01 ⊥ 4 · 5B1. Then, by Corollary to Lemma 4.3.1, the
mapping B 7→ B′ induces a bijection from 4S2r+1,2(d0)o/∼ to itself, and
ε(B′) = −ε(B). Then, by (H-2-6), and Lemma 4.1.4(3), we can prove the
above equality in the same way as in the proof of (1) for p 6= 2. We also note
that

∑
d∈U (1 + 2−(m−2r−2)/2χ(d))(d, d0)2 = 21−(m−2r−2)/2. This proves (1).

The assertion (2) for p = 2 can be proved in the same manner as (2) for
p 6= 2.

4.4. Proof of the main result. In this section, we prove our main
result. First we give an explicit formula for the power series of Koecher–
Maass type.

Theorem 4.4.1. Let d0 ∈ Fp, and put ξ0 = χ(d0). Then we have the
following formulas:

(1) P
(1)
n−1(d0, ι,X, t) =

(p−1t)ν(d0)(1− ξ0t
2p−5/2)

φ(n−2)/2(p−2)(1− t2p−2X)(1− t2p−2X−1)

× 1∏(n−2)/2
i=1 (1− t2p−2i−1X)(1− t2p−2i−1X−1)

.

(2) P
(1)
n−1(d0, ε,X, t) =

(p−1t)ν(d0)(1− ξ0t
2p−1/2−n)

φ(n−2)/2(p−2)

× 1∏(n−2)/2
i=1 (1− t2p−2i−1X)(1− t2p−2i−1X−1)

.

To prove the above theorem, we define another formal power series.
Namely, for l = 0, 1 we set

K
(1)
n−1(d0, ε

l, X, t) = κ(d0, n− 1, l)−1tδ2,p(2−n)

×
∑

B′∈L(1)n−1,p(d0)

G
(1)
p (B′, p−(n+1)/2X)ε(B′)l

αp(B′)
X−e

(1)(B′)tν(detB′).
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Proposition 4.4.2. Let d0 be as above. Then

P
(1)
n−1(d0, ω,X, t) =

n−1∏
i=1

(1− t2Xpi−n−1)−1K
(1)
n−1(d0, ω,X, t).

Proof. We note that B′ belongs to L(1)
n−1,p(d0) if B belongs to L(1)

n−1,p(d0)

and αp(B
′, B) 6= 0. Hence by Lemma 4.2.2 for ω = εl with l = 0, 1 we have

P
(1)
n−1(d0, ω,X, t) = κ(d0, n− 1, l)−1tδ2,p(2−n)

×
∑

B∈L(1)n−1,p(d0)

1

αp(B)

∑
B′

G
(1)
p (B′, p−(n+1)/2X)X−e

(1)(B′)αp(B
′, B)ω(B′)

αp(B′)

× (p−1X)(ν(detB)−ν(detB′))/2tν(detB)

= κ(d0, n−1, l)−1tδ2,p(2−n)
∑

B′∈L(1)n−1,p(d0)

G
(1)
p (B′, p−(n+1)/2X)ω(B′)

αp(B′)
X−e

(1)(B′)

×
∑

B∈L(1)n−1,p(d0)

αp(B
′, B)

αp(B)
(p−1X)(ν(detB)−ν(detB′))/2tν(detB).

Hence by [4, Theorem 5], and by Lemma 4.1.1(1), we have∑
B

αp(B
′, B)

αp(B)
(p−1X)(ν(detB)−ν(detB′))/2tν(detB)

=
∑

W∈Mn−1(Zp)×/GLn−1(Zp)

(t2Xp−1p−n+1)ν(detW )tν(detB′)

=

n−1∏
i=1

(1− t2Xpi−n−1)−1tν(detB′).

Thus the assertion holds.

For a variable X we introduce the symbol X1/2 so that (X1/2)2 = X,
and for an integer a we write Xa/2 = (X1/2)a. Under this convention,

we can write X−e
(1)(T )tν(detT ) as Xδ2,p(n−2)/2Xν(d0)/2(X−1/2t)ν(detT ) if

T ∈ L′n−1,p(d0), and hence we can write K
(1)
n−1(d0, ε

l, X, t) as

K
(1)
n−1(d0, ε

l, X, t) = κ(d0, n− 1, l)−1(tX−1/2)δ2,p(2−n)Xν(d0)/2

×
∑

B′∈L(1)n−1,p(d0)

G
(1)
p (B′, p−(n+1)/2X)ε(B′)l

αp(B′)
(tX−1/2)ν(detB′).

In order to prove Theorem 4.4.1, we introduce some power series. Let m be
an integer and l = 0 or 1. Then for d0 ∈ Z×p put
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ζm(d0, ε
l, u) =

∑
T∈Sm,p(d0)/∼

ε(T )l

αp(T )
uν(detT ),

and for d0 ∈ Z×2 put

ζ∗m(d0, ε
l, u) =

∑
T∈Sm,2(d0)e/∼

ε(T )l

α2(T )
uν(detT ).

We make the convention that ζ0(d0, ε
l, u) = ζ∗m(d0, ε

l, u) = 1 or 0 according
as d0 ∈ Z∗p or not. Now for d ∈ Z×p , let Zm(u, εl, d) and Z∗m(u, εl, d) be the
formal power series in Theorems 5.1, 5.2, and 5.3 of [11], which are given by

Zm(u, εl, d) = 2−δ2,pm
∞∑
i=0

∑
T∈Sm(Zp,pid)/∼

ε(T )l

αp(T )
(ηlmp

(m+1)/2u)i,

Z∗m(u, εl, d) = 2−m
∞∑
i=0

∑
T∈Sm(Z2,2id)e/∼

ε(T )l

α2(T )
(ηlm2(m+1)/2u)i,

where Sm(Zp, a) = {T ∈ Sm(Zp) | detT = a mod Z∗p2}, Sm(Zp, a)e =

Sm(Zp, a)∩Sm(Zp)e, and ηm = ((−1)(m+1)/2, p)p or 1 according as m is odd
or even. Here we recall that the local density for T ∈ Sm(Zp) in our paper
is 2−δ2,pm times that in [11]. Put

Zm,e(u, ε
l, d) = 1

2(Zm(u, εl, d) + Zm(−u, εl, d)),

Zm,o(u, ε
l, d) = 1

2(Zm(u, εl, d)− Zm(−u, εl, d)).

We also define Z∗m,e(u, ε
l, d) and Z∗m,o(u, ε

l, d) in the same way. Furthermore
put x(i) = e or o according as i is even or odd. Let d0 ∈ Fp. Let p 6= 2. Then

ζm(d0, ε
l, u)

= Zm,x(ν(d0))

(
p−(m+1)/2((−1)(m+1)/2, p)pu, ε

l, p−ν(d0)(−1)(m+1)/2d0

)
or

ζm(d0, ε
l, u) = Zm,x(ν(d0))(p

−(m+1)/2u, εl, p−ν(d0)(−1)[(m+1)/2]d0)

according as m is odd and l = 1, or not. Let p = 2 and suppose m is odd.
Then

ζm(d0, ε
l, u) = 2mZm,x(ν(d0))(2

−(m+1)/2u, εl, 2−ν(d0)(−1)(m+1)/2d0).

Let p = 2 and suppose m is even. Then

ζ∗m(d0, ε
l, u) = 2mZ∗m,x(ν(d0))(2

−(m+1)/2u, εl, (−1)m/22−ν(d0)d0).

Proposition 4.4.3. Let d0 ∈ Fp. For a positive even integer r and d ∈ U
put
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c(r, d0, d,X) = (1− χ(d0)p−1/2X)

r/2−1∏
i=1

(1− p2i−1X2)(1 + χ(d)pr/2−1/2X),

and put c(0, d0, d,X) = 1. Furthermore, for a positive odd integer r put

c(r, d0, X) = (1− χ(d0)p−1/2X)

(r−1)/2∏
i=1

(1− p2i−1X2).

(1) Suppose that p 6= 2.

(1.1) Let l = 0 or ν(d0) = 0. Then

K
(1)
n−1(d0, ε

l, X, t)

= Xν(d0)/2

{(n−2)/2∑
r=0

∑
d∈U(n−1,n−2r−1,d0)

p−r(2r+1)(tX−1/2)2rc(2r, d0, d,X)

21−δ0,rφ(n−2r−2)/2(p−2)

× (p, d0d)lp ζ2r(d0d, ε
l, tX−1/2)

+

(n−2)/2∑
r=0

p−(r+1)(2r+1)(tX−1/2)2r+1c(2r + 1, d0, X)

φ(n−2r−2)/2(p−2)
ζ2r+1(p∗d0, ε

l, tX−1/2)

}
,

where p∗d0 = pd0 or p−1d0 according as ν(d0) = 0 or ν(d0) = 1.
(1.2) Let ν(d0) = 1. Then

K
(1)
n−1(d0, ε,X, t)

= Xν(d0)/2

(n−2)/2∑
r=0

p−(r+1)(2r+1)−r(tX−1/2)2r+1c(2r + 1, d0, X)

φ(n−2r−2)/2(p−2)

× ζ2r+1(p−1d0, ε, tX
−1/2).

(2) Suppose that p = 2.

(2.1) Let l = 0 or d0 ≡ 1 mod 4. Then

K
(1)
n−1(d0, ε

l, X, t) = Xν(d0)/2

×
{(n−2)/2∑

r=0

∑
d∈U(n−1,n−2r−1,d0)

(tX−1)2r2−r(2r+1) c(2r, d0, d,X)

21−δ0,rφ(n−2r−2)/2(2−2)

×
(
(−1)(r+1)r/2(2, d0d)2

)l
ζ∗2r(d0d, ε, tX

−1/2)

+

(n−2)/2∑
r=0

(tX−1/2)2r+12−(r+1)(2r+1) c(2r + 1, d0, X)

φ(n−2r−2)/2(2−2)

×
(
(−1)(r+1)r/2((−1)r+1, (−1)r+1d0)2

)l
ζ2r+1(d0, ε

l, tX−1/2)

}
.
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(2.2) Suppose that 4−1d0 ≡ −1 mod 4 or 8−1d0 ∈ Z∗2. Then

K
(1)
n−1(d0, ε,X, t)

= Xν(d0)/2

(n−2)/2∑
r=0

(tX−1/2)2r+12−(r+1)(2r+1)−rν(d0) c(2r + 1, d0, X)

φ(n−2r−2)/2(2−2)

× (−1)(r+1)r/2((−1)r+1, (−1)r+1d0)2ζ2r+1(d0, ε, tX
−1/2).

Proof. Put H
(j)
2r+j,ξ(B) = 1 for j ∈ {0, 1}, 1− j ≤ r ≤ m/2− j, ξ = ±1,

and B ∈ S2r+j,p. Then clearly the set {H(j)
2r+j,ξ | j ∈ {0, 1}, 1−j ≤ r ≤ n/2−

j, ξ = ±1} satisfies the conditions (H-p-0)–(H-p-5) in Subsection 4.3 for any
positive even integer m ≤ n. Hence by Lemma 4.2.1 and Proposition 4.3.4,
and by using the same argument as in [10, Lemma 3.1(1)], we have

K
(1)
n−1(d0, ε

l, X, t)

= γl,d0X
ν(d0)/2

(n−2)/2∑
r=0

∑
d∈U(n−1,n−2r−1,d0)

c(2r, d0, d,X)

21−δ0,rφ(n−2r−2)/2(p−2)

×
∑

B∈S2r,p(d0d)

ε(pB)l

αp(pB)
(tX−1/2)ν(det(pB))

+Xν(d0)/2

(n−2)/2∑
r=0

c(2r + 1, d0, d,X)

φ(n−2r−2)/2(p−2)

×
∑

B∈p−1S2r+1,p(d0)∩S2r+1,p

((−1)(r+1)/2, (−1)(r+1)/2d0)lpp
−lν(d0)ε(pB)l

αp(pB)

× (tX−1/2)ν(det(pB)),

where γl,d0 = 1 or 0 according as ν(d0)l = 0 or 1. Thus (1.1) follows
from Lemmas 4.1.3 and 4.3.2 by noting that p−1S2r+1,p(d0) ∩ S2r+1,p =
S2r+1(p∗d0). Similarly (1.2) can be proved by observing that ε(pB) =
((−1)r+1, p)ε(B) for B ∈ p−1S2r+1,p(d0) ∩ S2r+1,p. The assertion for p = 2
can be proved in the same manner.

Remark. As seen above, to prove Proposition 4.4.3, we have only to

prove Propositions 4.3.2 and 4.3.3 for the simplest case where {H(j)
2r+j,ξ} are

constant functions. However a similar statement for more general {H(j)
2r+j,ξ}

will be necessary to give an explicit formula for the Rankin–Selberg series of
σn−1(φIn(h),1) (cf. [15]). Indeed, the proofs are essentially the same as those
for the simplest case. This is why we formulate and prove those propositions
in more general settings.
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Proof of Theorem 4.4.1 in case p 6= 2. (1) First let d0 ∈ Z∗p. Then
by Proposition 4.4.3(1.1), we have

K
(1)
n−1(d0, ι,X, t) =

1

φ(n−2)/2(p−2)

+

(n−2)/2∑
r=1

∑
d∈U

p−r(2r+1)(t2X−1)r
∏r−1
i=1 (1− p2i−1X2)

2φ(n−2r−2)/2(p−2)

× (1− p−1/2ξ0X)(1 + ηdp
r−1/2X)ζ2r(d0d, ι, tX

−1/2)

+

(n−2)/2∑
r=0

p−(2r+1)(r+1)(t2X−1)r+1/2
∏r
i=1(1− p2i−1X2)

φ(n−2r−2)/2(p−2)

× (1− p−1/2ξ0X)ζ2r+1(pd0, ι, tX
−1/2).

Here we put ηd = χ(d) for d ∈ U . By [11, Theorem 5.1], we have

ζ2r+1(pd0, ι, tX
−1/2) =

p−1tX−1/2

φr(p−2)(1− p−2t2X−1)
∏r
i=1(1− p2i−3−2rt2X−1)

,

ζ2r(d0d, ι, tX
−1/2) =

(1 + ξ0ηdp
−r)(1− ξ0ηdp

−r−2t2X−1)

φr(p−2)(1− p−2t2X−1)
∏r
i=1(1− p2i−3−2rt2X−1)

.

Hence the assertion for n = 2 can be proved by a direct calculation. Suppose

that n ≥ 4. Then K
(1)
n−1(d0, ι,X, t) can be expressed as

K
(1)
n−1(d0, ι,X, t)

=
S(d0, ι,X, t)

φ(n−2)/2(p−2)(1− p−2t2X−1)
∏(n−2)/2
i=1 (1− p2i−n−1t2X−1)

,

where S(d0, ι,X, t) is a polynomial in t of degree n. We have

2−1(1− p−1/2ξ0X)
∑
η=±1

(1 + ηp(n−2)/2−1/2X)(1 + ξ0ηp
−(n−2)/2)

× (1− ξ0ηp
−(n−2)/2−2t2X−1)

= (1− ξ0p
−1/2X)(1 + ξ0p

−1/2X − ξ0p
−5/2t2 − p−nt2X−1).

Hence

2−1
∑
d∈U

p(n−1)(−n+2)/2(t2X−1)(n−2)/2

(n−2)/2−1∏
i=1

(1− p2i−1X2)

× (1− p−1/2ξ0X)(1 + ηdp
(n−2)/2−1/2X)ζn−2(d0d, ι, tX

−1/2)

+ p−(n−1)n/2(t2X−1)(n−2)/2+1/2

(n−2)/2∏
i=1

(1− p2i−1X2)(p−2)−1

× (1− p−1/2ξ0X)ζn−1(pd0, ι, tX
−1/2)
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=
(p−(n−1)X−1t2)(n−2)/2(1− ξ0p

−5/2t2)
∏(n−2)/2−1
i=0 (1− p2i−1X2)

φ(n−2)/2(p−2)(1− p−2t2X−1)
∏(n−2)/2
i=1 (1− p2i−n−1t2X−1)

,

and therefore S(d0, ι,X, t) can be expressed as

(A) S(d0, ι,X, t)

= (p−(n−1)X−1t2)(n−2)/2

(n−2)/2−1∏
i=0

(1− p2i−1X2)(1− p−5/2ξ0t
2)

+ (1− p−n+1t2X−1)U(X, t),

where U(X, t) is a polynomial in X,X−1 and t. Now by Proposition 4.4.2,
we have

P
(1)
n−1(d0, ι,X, t) =

S(d0, ι,X, t)

φ(n−2)/2(p−2)(1− p−2t2X−1)
∏(n−2)/2
i=1 (1− p2i−n−1t2X−1)

∏n−1
i=1 (1− pi−n−1Xt2)

.

Hence the power series P
(1)
n−1(d0, ι,X, t) is a rational function in X and t.

Since F̃
(1)
p (T,X−1) = F̃

(1)
p (T,X) for any T ∈ L(1)

n−1,p, it follows that

P
(1)
n−1(d0, ι,X

−1, t) = P
(1)
n−1(d0, ι,X, t). This implies that the reduced denom-

inator of the rational function P
(1)
n−1(d0, ι,X, t) in t is at most

(1− p−2t2X−1)(1− p−2t2X)

(n−2)/2∏
i=1

{(1− p2i−n−1t2X−1)(1− p2i−n−1t2X)}.

Hence we have

(B) S(d0, ι,X, t) =

(n−2)/2∏
i=1

(1− p2i−n−2t2X)(a0(X) + a1(X)t2)

with some polynomials a0(X), a1(X) in X+X−1. We easily see a0(X) = 1.
By substituting p(n−1)/2X1/2 for t in (A) and (B), and comparing them we
see that a1(X) = −p−5/2ξ0. This proves the assertion.

Next let d0 ∈ pZ∗p. Then by Proposition 4.4.3(1.1), we have

K
(1)
n−1(d0, ι,X, t)

= X1/2

{
2−1

(n−2)/2∑
r=1

∑
d∈U

p−r(2r+1)(t2X−1)r
∏r−1
i=1 (1− p2i−1X2)

φ(n−2r−2)/2(p−2)

× (1 + ηdp
r−1/2X)ζ2r(d0d, ι, tX

−1/2)
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+

(n−2)/2∑
r=0

p−(2r+1)(r+1)(t2X−1)r+1/2
∏r
i=1(1− p2i−1X2)

φ(n−2r−2)/2(p−2)

× ζ2r+1(p−1d0, ι, tX
−1/2)

}
.

By [11, Theorem 5.1], we have

ζ2r+1(p−1d0, ι, tX
−1/2) =

1

φr(p−2)(1− p−2t2X−1)
∏r
i=1(1− p2i−3−2rt2X−1)

,

ζ2r(d0d, ι, tX
−1/2) =

p−1tX−1/2

φr−1(p−2)(1− p−2t2X−1)
∏r
i=1(1− p2i−3−2rt2X−1)

.

Thus the assertion can be proved in the same manner as above.

(2) First let d0 ∈ Z∗p. Then by Proposition 4.4.3(1.1), we have

K
(1)
n−1(d0, ε,X, t) =

1

φ(n−2)/2(p−2)

+

(n−2)/2∑
r=1

∑
d∈U

p−r(2r+1)(t2X−1)r
∏r−1
i=1 (1− p2i−1X2)

2φ(n−2r−2)/2(p−2)

× (1− p−1/2ξ0X)(1 + ηdp
r−1/2X)ξ0ηdζ2r(d0d, ε, tX

−1/2)

+

(n−2)/2∑
r=0

p−(2r+1)(r+1)(t2X−1)r+1/2
∏r
i=1(1− p2i−1X2)

φ(n−2r−2)/2(p−2)

× (1− p−1/2ξ0X)ζ2r+1(pd0, ε, tX
−1/2).

By [11, Theorem 5.2],

ζ2r(d0d, ε, tX
−1/2) =

1 + ξ0ηdp
−r

φr(p−2)
∏r
i=1(1− p−2it2X−1)

,

ζ2r+1(pd0, ε, tX
−1/2) =

p−r−1tX−1/2

φr(p−2)
∏r+1
i=1 (1− p−2it2X−1)

.

Hence K
(1)
n−1(d0, ε,X, t) can be expressed as

K
(1)
n−1(d0, ε,X, t) =

T (d0, ε,X, t)

φ(n−2)/2(p−2)
∏n/2
i=1(1− p−2it2X−1)

,

where T (d0, ι,X, t) is a polynomial in t of degree n, expressed as

T (d0, ι,X, t) = (p−nX−1t2)n/2(1− ξ0p
−1/2X)

(n−2)/2∏
i=1

(1− p2i−1X2)(C)

+ (1− p−nt2X−1)V (X, t),
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with a polynomial V (X, t) in X,X−1 and t. On the other hand, by using
the same argument as in (1), we can show that

(D) T (d0, ε,X, t) =

(n−2)/2∏
i=1

(1− p−2i−1t2X)(1 + b1(X)t2)

with b1(X) a polynomial in X +X−1. Thus, by substituting pn/2X1/2 for t
in (C) and (D), and comparing them, we prove the assertion.

Next let d0 ∈ pZ∗p. Then by Proposition 4.4.3(1.2), we have

K
(1)
n−1(d0, ε,X, t)

= X1/2

(n−2)/2∑
r=0

p−(2r+1)(r+1)−r(t2X−1)r+1/2
∏r
i=1(1− p2i−1X2)

φ(n−2r−2)/2(p−2)

× ζ2r+1(p−1d0, ε, tX
−1/2).

By [11, Theorem 5.2],

ζ2r+1(p−1d0, ε, tX
−1/2) =

1

φr(p−2)
∏r
i=1(1− p−2it2X−1)

.

Hence

K
(1)
n−1(d0, ε,X, t) = p−1t

(n−2)/2∑
r=0

p−(2r+1)r(p−2t2X−1)r
∏r
i=1(1− p2i−1X2)

φ(n−2r−2)/2(p−2)

× 1

φr(p−2)
∏r
i=1(1− p−2it2X−1)

.

Thus the assertion can be proved in the same way as above.

Proof of Theorem 4.4.1 in case p = 2. The assertion can also be proved
by using Proposition 4.4.3(2) as above.

Proposition 4.4.4. Let k and n be positive even integers. Given a Hecke
eigenform h ∈ S+

k−n/2+1/2(Γ0(4)), let f ∈ S2k−n(Γ (1)) be the primitive form

as in Section 2. Then

L(s, h) = L(2s, f)
∑

d0∈F((−1)n/2)

ch(|d0|)|d0|−sL
(

2s− k + n/2 + 1,

(
d0

∗

))−1

,

where L
(
s,
(
d0
∗
))

is Dirichlet’s L-function for the character
(
d0
∗
)
.
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Proof. The assertion can be proved immediately by noting that
∞∑
m=1

ch(|d0|m2)m−2s = ch(|d0|)L
(

2s− k + n/2 + 1,

(
d0

∗

))−1

L(2s, f)

for d0 ∈ F ((−1)n/2).

Proof of Theorem 2.1. By Theorem 4.4.1, we have∏
p

P
(1)
n−1,p(d0, ιp, αp, p

−s+k/2+n/4−1/4) = |d0|−s+k/2+n/4−5/4

×
(n−2)/2∏
i=1

ζ(2i)L

(
2s− k − n/2 + 3,

(
d0

∗

))−1 (n−2)/2∏
i=1

L(2s− n+ 2i+ 1, f)

and∏
p

P
(1)
n−1,p(d0, εp, αp, p

−s+k/2+n/4−1/4) = |d0|−s+k/2+n/4−5/4

×
(n−2)/2∏
i=1

ζ(2i)L

(
2s− k + n/2 + 1,

(
d0

∗

))−1 (n−2)/2∏
i=1

L(2s− n+ 2i, f).

Thus the assertion follows from Theorem 3.2 and Proposition 4.4.4.

Remark. Let m be a nonnegative integer, and let k be a positive integer

such that k > m+ 2. Let E
(m+1)
k be the Siegel–Eisenstein series of weight k

and of degree m+ 1. (For the definition of the latter, see, for example, [6].)

Suppose that m > 0, and let e
(m+1)
k,1 be the first Fourier–Jacobi coefficient

of E
(m+1)
k . Then e

(m+1)
k,1 belongs to Jk, 1(Γ

(m)
J ). In [6], Hayashida defined

the generalized Cohen–Eisenstein series E
(m)
k−1/2 as E

(m)
k−1/2 = σm(e

(m+1)
k,1 ),

where σm is the Ibukiyama isomorphism. It turns out that E
(m)
k−1/2 be-

longs to M+
k−1/2(Γ

(m)
0 (4)), and in particular, E

(1)
k−1/2 coincides with the

Cohen–Eisenstein series defined in [5]. Let k and n be positive even in-

tegers such that k > n + 1. Then E
(1)
2k−n is the Hecke eigenform corre-

sponding to E
(1)
k−n/2+1/2 under the Shimura correspondence, and E

(n)
k can

be regarded as a noncuspidal version of the Duke–Imamoḡlu–Ikeda lift of

E
(1)
k−n/2+1/2. Therefore, by using the same method as in the proof of The-

orem 2.1, we can express the Koecher–Maass series of E
(n−1)
k−1/2 explicitly in

terms of L(s, E
(1)
k−n/2+1/2) and L(s, E

(1)
2k−n).
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Abstract (will appear on the journal’s web site only)

Let k and n be positive even integers. For a cuspidal Hecke eigenform
h in the Kohnen plus space of weight k − n/2 + 1/2 for Γ0(4), let f be
the corresponding primitive form of weight 2k − n for SL2(Z) under the
Shimura correspondence, and In(h) the Duke–Imamoḡlu–Ikeda lift of h to
the space of cusp forms of weight k for Spn(Z). Moreover, let φIn(h),1 be the
first Fourier–Jacobi coefficient of In(h), and σn−1(φIn(h),1) be the cusp form
in the generalized Kohnen plus space of weight k − 1/2 corresponding to
φIn(h),1 under the Ibukiyama isomorphism. We give an explicit formula for
the Koecher–Maass series L(s, σn−1(φIn(h),1)) of σn−1(φIn(h),1) expressed in
terms of the usual L-functions of h and f .


