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Ikeda’s conjecture on the period of the Duke-Imamoglu-Ikeda lift

Hidenori Katsurada and Hisa-aki Kawamura

ABSTRACT

Let k and n be positive even integers. For a cuspidal Hecke eigenform h in the Kohnen plus
space of weight k —n/2+1/2 for Iy(4), let I,(h) be the Duke-Imamoglu-Tkeda lift of h in
the space of cusp forms of weight k for Sp,(Z), and f the primitive form of weight 2k —n
for SL3(Z) corresponding to h under the Shimura correspondence. We then express the ratio
(In(h), In(h))/{h,h) of the period of I,(h) to that of h in terms of special values of certain
L-functions of f. This proves the conjecture proposed by Ikeda concerning the period of the
Duke-Imamoglu-Tkeda lift.

1. Introduction

One of the fascinating problems in the theory of modular forms is to find the relation
between the periods (or the Petersson products) of cuspidal Hecke eigenforms which are related
with each other through their L-functions. In particular, there are several important results
concerning the relation between the period of a cuspidal Hecke eigenform ¢ for an elliptic
modular group I' C SLo(Z) and that of its lift g. Here, by a lift of g we mean a cuspidal Hecke
eigenform for another modular group I (e.g. the symplectic group, the orthogonal group, the
unitary group) such that a certain automorphic L-function of § can be expressed in terms of
some L-functions related with g. Thus we propose the following problem:

PROBLEM A. Let (g,g) (resp. {g,g)) be the period of § (resp. g). Then express the ratio
(9,9)/{g,9)¢ in terms of arithmetic invariants of g, for example, the special values of certain
L-functions related with g for some integer e.

For instance, Zagier [39] solved Problem A for the Doi-Naganuma lift fof a primitive form
f of integral weight. Murase and Sugano [32] also solved Problem A for the Kudla lift f of a
primitive form f of integral weight. In addition, Kohnen and Skoruppa [30] solved Problem A
in the case where h is the Saito-Kurokawa lift of a cuspidal Hecke eigenform h in the Kohnen
plus space of half-integral weight.

We should also note that this type of period relation is not only interesting and important
in its own right but also plays an important role in arithmetic theory of modular forms.
For instance, by using the result of Kohnen and Skoruppa, Brown [5] and Katsurada [19]
independently proved a modification of Harder’s conjecture on congruences occurring between
Saito-Kurokawa lifts and non-Saito-Kurokawa lifts under mild conditions. Furthermore, by
using such congruences, Brown constructed a non-trivial element of the Bloch-Kato Selmer
group attached to a modular two-dimensional Galois representation. A similar type of result
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can be found in [3]. We note that this type of congruence relation was conjectured by Doi,
Hida and Ishii [7] in the case where f is the Doi-Naganuma lift of f.

Now let us explain our main result briefly. Let k& and n be positive even integers. Let h
be a cuspidal Hecke eigenform in the Kohnen plus space of weight k —n/2 4 1/2 for I(4),
and f the primitive form of weight 2k — n for SLs(Z) corresponding to h under the Shimura
correspondence. Then Ikeda [14] constructed a cuspidal Hecke eigenform I,,(h) of weight k for
Spn(Z) whose standard L-function can be expressed as (s) [T, L(s + k — 4, f), where ((s) is
Riemann’s zeta function and L(s, f) is Hecke’s L-function of f. The existence of such a Hecke
eigenform was conjectured by Duke and Imamoglu in their unpublished paper. We call I,,(h)
the Duke-Imamoglu-Tkeda lift of h (or of f). (See also the remark after Theorem 2.1.) We note
that I>(h) is nothing but the Saito-Kurokawa lift of h. Then, as a generalization of the result
of Kohnen and Skoruppa, Tkeda among others proposed the following remarkable conjecture in
[15]:

The ratio (I,,(h), I,(h))/{h, h) should be expressed, up to elementary factor, as

n/2—1
Lk, f)¢(n) T L(2i+1, f, Ad)¢(20),
i=1

where L(s, f,Ad) is the adjoint L-function of f (cf. Conjecture A).

The aim of this paper is to prove the above conjecture (cf. Theorem 2.2). We note that I,,(h)
is not likely to be realized as a theta lift except in the case n =2 (cf. Schulze-Pillot [35]).
Therefore we cannot adapt a general method of Rallis [34] for our purpose. We also note that
the conjecture cannot be explained within the framework of motives since there is no principle
attaching motives to half-integral weight modular forms so far. Taking these remarks into
account, we take an approach based on the classical Rankin-Selberg method to our problem.
Namely, the method we use is to give an explicit formula for the Rankin-Selberg series of a
certain half-integral weight Siegel modular form related with I,,(h), and to compute its residue
at a pole. We explain it more precisely.

First let ¢g, (n),1 be the first coefficient of the Fourier-Jacobi expansion of I,,(h) and
0n—1(é1,(n),1) the cusp form in the generalized Kohnen plus space of weight k —1/2 for
Fén_l)(él) C Sp,,_1(Z) corresponding to ¢r, ()1 under the Ibukiyama isomorphism o, ;. For
the precise definition of the generalized Kohnen plus space and the Ibukiyama isomorphism,
see Section 3. Then we have the following Fourier expansion of oy, —1(¢z, (n),1)

On-1(b1, (), 1)(Z) = Z c(A) exp(2mV/—1tr(AZ)),

A

where A runs over all positive definite half-integral matrices of degree n — 1, and tr denotes
the trace of a matrix. Then, in Section 3, we consider the following Rankin-Selberg series

R(s,00-1(¢1,(n),1)) of on-1(d1,(n),1) :

le(A)[?
R(57UH—1(¢ n(h), )) = s
In(h).1 ZA: e(A)(det A)

where A runs over all the SL,_1(Z)-equivalence classes of positive definite half-integral
matrices of degree n — 1 and e(A) denotes the order of the unit group of A in SL,_1(Z). In
the integral weight Siegel modular form case, the analytic properties of this type of Dirichlet
series have been studied by many people (e.g. Kalinin [17]). Similarly to that case, we also
get analytic properties of R(s,on_1(¢1,(n),1))- While such a Dirichlet series with no Euler
product has never been regarded as significant as automorphic L-functions until now, it should
be emphasized that it plays a very important role in the proof of our main result. Indeed, as
one of the most significant properties, R(s,0,—1(¢1,(n),1)) has a simple pole at s =k —1/2
with residue expressed in terms of the period of ¢y, (py1 (cf. Corollary to Proposition 3.1).
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Hence, by virtue of the main identity in [23], this enables us to rewrite Ikeda’s conjecture
in terms of the relation between the residue of R(s,0n_1(¢7,(n),1)) at s =k —1/2 and the
period of h (cf. Theorem 3.2). In order to prove Theorem 3.2, we will get an explicit formula
for R(s,0n—1(¢1,(n),1)) in terms of L(s, f, Ad) and L(s, f). To get it, in Section 4, we reduce
our computation to that of certain formal power series, which we call formal power series
of Rankin-Selberg type, associated with local Siegel series similarly to [11, 12] (cf. Theorem
4.2). Section 5 is devoted to the computation of them. This computation is similar to those
in [11, 12], but is more elaborate and longer than them. In particular we should be careful in
dealing with the case p = 2. After overcoming such obstacles we can get explicit formulas for
formal power series of Rankin-Selberg type (cf. Theorem 5.3.1). In Section 6, by using Theorem
5.3.1, we immediately get an explicit formula for R(s,o,—1(¢1,n),1)) (cf. Theorem 6.2), and
by taking the residue of it at kK — 1/2 we prove Theorem 3.2, and therefore prove Conjecture
A (cf. Theorem 6.3).

We note that we can also give an explicit formula for the Rankin-Selberg series of I,,(h).
However, it seems difficult to prove Conjecture A directly from such a formula.

By Theorem 2.2, we can give a refined version of a result concerning the algebraicity of
(f, )2 (I, (h), I,(h)) due to Choie and Kohnen (cf. Theorem 2.3). Moreover we can apply
this result to characterize prime ideals giving congruences between Duke-Imamoglu-Ikeda lifts
and non-Duke-Imamoglu-Tkeda lifts. This will be discussed in [21].

ACKNOWLEDGEMENT. The authors thank T. Tkeda, Y. Ishikawa, Y. Mizuno and S. Yamana
for their valuable comments. The authors are also thankful to an anonymous referee, whose
comments made our paper more readable.

NOTATION. Let R be a commutative ring. We denote by R* and R* the semigroup of non-
zero elements of R and the unit group of R, respectively. We also put SY = {a? | a € S} for a
subset S of R. We denote by M,,,,,(R) the set of m X n-matrices with entries in R. In particular
put My, (R) = Mpp(R). Put GL,,(R) = {A € M,,,(R) | det A € R*}, where det A denotes the
determinant of a square matrix A. For an m X n-matrix X and an m X m-matrix A, we write
A[X] ='XAX, where ' X denotes the transpose of X. Let S,,(R) denote the set of symmetric
matrices of degree n with entries in R. Furthermore, if R is an integral domain of characteristic
different from 2, let £,,(R) denote the set of half-integral matrices of degree n over R, that is,
L, (R) is the subset of symmetric matrices of degree n with entries in the field of fractions of
R whose (i, j)-component belongs to R or %R according as ¢ = j or not. In particular, we put
L, =Ly(Z), and L, , = L,(Z,) for a prime number p. For a subset S of M, (R) we denote
by S* the subset of S consisting of non-degenerate matrices. If S is a subset of S, (R) with R
the field of real numbers, we denote by Ss¢ (resp. S>¢) the subset of S consisting of positive
definite (resp. semi-positive definite) matrices. The group GL, (R) acts on the set S,,(R) in the
following way:

GLn(R) x Sp(R) 3 (9, A) — Alg] € Su(R).

Let G be a subgroup of GL,(R). For a G-stable subset B of S,,(R) we denote by B/G the set
of equivalence classes of B under the action of G. We sometimes use the same symbol B/G to
denote a complete set of representatives of B/G. We abbreviate B/GL,(R) as B/~ if there is
no fear of confusion. Let R’ be a subring of R. Then two symmetric matrices A and A’ with
entries in R are said to be equivalent over R’ with each other and write A ~r/ A’ if there is
an element X of GL,(R') such that A’ = A[X]. We also write A ~ A’ if there is no fear of

confusion. For square matrices X and Y we write X 1Y = ( )O( 10/ ) .

For an integer D € Z such that D =0 or = 1 mod 4, let dp be the discriminant of Q(v/D),
and put fp =, /%. We call an integer D a fundamental discriminant if it is the discriminant
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of some quadratic extension of Q or 1. For a fundamental discriminant D, let (%) be the

character corresponding to Q(v/D)/Q. Here we make the convention that (%) =1ifD=1.

We put e(z) = exp(2my/—1z) for x € C. For a prime number p we denote by v,(x) the
additive valuation of Q, normalized so that v,(p) = 1, and by e,(*) the continuous additive
character of Q,, such that e,(z) = e(x) for x € Z[p~'].

For a non-negative integer r we define a polynomial ¢,(z) in z by ¢,(z) = [[;_,(1 — ).
Here we understand that ¢g(x) = 1.

2. Ikeda’s conjecture on the Period of the Duke-Imamoglu-Ikeda lift

_ On _1n
Put J, = ( 1, o,
degree n, respectively. Furthermore, put

'™ = Sp.(Z) = {M € GLon(Z) | Ju[M] = J,}.

) , where 1,, and O,, denotes the unit matrix and the zero matrix of

Let H,, be Siegel’s upper half-space of degree n. Let [ be an integer or half integer. For a
congruence subgroup I" of I'™) | we denote by M;(I") the space of holomorphic modular forms
of weight [ for I. We denote by &;(I") the subspace of W;(I") consisting of cusp forms. For
F, G € &;(I") we define the Petersson product (F,G) by

(F,G)=[I"™ . F{ilgn}]_lj F(Z)G(Z)det(Im(2))'d* Z,
I'\H,
where d*Z denotes the invariant volume element on H,, defined as usual. We call (F, F') the
period of F. For a positive integer N, let

n A B n
I )(N):{(C D)EF()

and in particular put I'h(N) = 0(1)(]\7). Let p be a prime number. For a non-zero element

a€Q, we put x,(a)=1,—1, or 0 according as Q,(a'/?) = Q,, Q,(a'/?) is an unramified
quadratic extension of Q,, or Qp(al/ %) is a ramified quadratic extension of Q,. We note

C’EOnmodN},

that x,(D) = (%) if D is a fundamental discriminant. For an element 7" of L, with n

even, put &,(T) = x,((—1)"/2det T). Let T be an element of £. Then (—1)"/? det(27T) = 0 or

= 1 mod 4, and we define dr and fp as b7 = 0(_1yn/2 qer(21) a0 fp = f(_1)n/2 qet(21)» TESPECtiVEly.

For an element 7" of L, there exists an element T of LY such that T ~z, T. We then put

ep(T) = vp(f7), and [or] = bz mod Z3". They do not depend on the choice of T. We note that

(—1)"/2 det(2T) can be expressed as (—1)"/? det(2T") = dp*»") mod Z:" for any d € [or].
For each T' € L, we define the local Siegel series b, (T’ s) by

bp(T,s) = > ep(tr(TR))p "> e (R,
R€ESH(Qp)/Sn(Zp)

where p,(R) = [RZ} + Z, : Z3]. We remark that there exists a unique polynomial F,(T', X)
in X such that

1 —p) [T — p*2)
1- fp(T)pn/Qis

(cf. Kitaoka [26]). We then define a polynomial }~7p(T7 X)in X and X! as

bP(Tv s) = FP(Ta p°)

Fy(T, X) = XD E,(T,p~"t1/2X),
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We remark that F,(B, X 1) = F,(B, X) (cf. [18]).

Now let k£ be a positive even integer. Let

h(z) = > cp(m)e(msz)

meZso
(—=1)"?m=0,1 mod 4

be a Hecke eigenform in the Kohnen plus space 6;—n/2+1/2 (Ip(4)) and

f(z) =) ef(m)e(mz)

m=1

the primitive form in &o_,, (I" (1)) corresponding to h under the Shimura correspondence (cf.
Kohnen [28]). For the precise definition of the Kohnen plus space, we give it in Section 3
in more general settings. Let o, € C such that «) + a;l = ])"‘“‘"/2"’1/20f(p)7 which we call
the Satake p-parameter of f. Then for a Dirichlet character xy we define Hecke’s L-function
L(s, f,x) twisted by x as

L(s, £,x) = [ J[{( = app™ 27125 (p)) (1 — o, 'p = TF /27 2y ()}

p

In particular, if x is the principal character we write L(s, f,x) as L(s, f) as usual. We define
a Fourier series I,,(h)(Z) in Z € H,, by

L((Z) = Y crnmDet(T2)),

Te(Ln)>o

where

cr,a(T) = en(por iy 2 AT BT o).

p

Then Tkeda [14] showed the following:

THEOREM 2.1. I,(h)(Z) is a Hecke eigenform in & (I"™)) whose standard L-function
coincides with

Co) [[EGs+k—i,p).

i=1

We note that I5(h) coincides with the Saito-Kurokawa lift of h. Originally, starting from a
primitive form g in &y, _,,(I'™)), Tkeda constructed the I,,(g), where g is a Hecke eigenform in
& /241 /2(F0 (4)) corresponding to g under the Shimura correspondence. We note that g is
uniquely determined, only up to constant multiple, by g, and therefore so is I,,(g).

To formulate Tkeda’s conjecture, put
I'r(s) =7 %/?I'(s/2) and T'c(s) =T'r(s)Tr(s+1).
We note that I'c(s) = 2(2r)~°I'(s). Furthermore put
€(s) = Tr(s)C(s) and &(s) = Do(s)C(s).
For a Dirichlet character x put
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where 7(x) is the Gauss sum of x. In particular, we simply write A(s, f,x) as A(s, f) if x is
the principal character. Furthermore, we define the adjoint L-function L(s, f, Ad) as

s, f,Ad) = H{l—a? (1 —p )1 —a, %)

and put
A(s, f, Ad) =Tr(s+ 1)I'c(s+2k —n—1)L(s, f, Ad),
and
A(s, f, Ad) = Tc(s)Tc(s 4 2k —n — 1)L(s, f, Ad).
We note that
Al —s, f, Ad) = A(s, f, Ad).

Then Ikeda [15] among others proposed the following conjecture:

CONJECTURE A. We have

n/21
WQQH Ak, )E Hl A(2i+1, f, Ad)&(2i),

where a(n, k) = —(n —3)(k —n/2) —n+ 1.

REMARK. The primitive form f as well as I,,(h) is uniquely determined by h. Therefore
there is no ambiguity in the above formulation. Conjecture A is compatible with the period
formula for the Saito-Kurokawa lift proved by Kohnen and Skoruppa [30] (see also Oda [33]).
In [15], Ikeda proposed a more general conjecture for the period of the Miyawaki-Ikeda lift.
We also remark that he constructed a lifting from an elliptic modular form to the space of
Hermitian modular forms, and proposed a conjecture similar to the above (cf. [16]).

Now our main result in this paper is the following:
THEOREM 2.2. Conjecture A holds true for any positive even integer n.
By the above theorem, we obtain the following result:

THEOREM 2.3. Let the notation be as above. Let D be a fundamental discriminant
such that (—1)"/2D > 0. Fori = 1,...,n/2 — 1, put L(2i + 1, f, Ad) = A(2i + 1, f, Ad)/{f, f).
Then

len (DD (S )" VI D PA (K — /2, £ (R)
(In(h), In(h)) 2 A(k, F)EM) T2 L(2i + 1, f, Ad)E(2i)

where a,, = 0 or 1 according asn = 0 mod 4 orn = 2 mod 4, and b, j, is some integer depending
only on n and k.

Proof. By [31, Theorem 1], for any such D we have
lea (D)2 _ V=1 2572 DA (R = n/2, £, (2)

(h.h) (f,.)
Thus, by Theorem 2.2, the assertion holds. ]
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A(k - TL/Q, f7 (%))

n/2
V=T"A(k, f)
1,...,n/2 — 1 are algebraic numbers and belong to the Hecke field Q(f) if £ > n (cf. Shimura

[36, 37]). Thus we obtain

It is well-known that the value

and the values L(2i + 1, f, Ad) for i =

COROLLARY. Assume that k > n and that all the Fourier coefficients of h belong to Q(f).

Then the ratio M belongs to Q(f)
(In(h), In(h))

We note that we can multiply some non-zero complex number ¢ with A so that all the
Fourier coefficients of ch belong to Q(f). We also note that the above result has been proved
by Furusawa [8] in case n = 2, and by Choie and Kohnen [6] under the assumption k& > 2n in
general case. Thus Theorem 2.3 and its corollary can be regarded as a refined version of their
results.

3. Rankin-Selberg series of the image of the first Fourier-Jacobi coefficient of the
Duke-Imamoglu-Ikeda lift under the Ibukiyama isomorphism

To prove Conjecture A, we rewrite it in terms of the residue of the Rankin-Selberg series of
a certain half-integral weight Siegel modular form. Let [ an m be positive integers. Let F(Z)
be an element of &;_1 5 (I ém) (4)). Then F(Z) has the following Fourier expansion:

F(Z)= > cr(Ae(tr(AZ))

Ae(llm)>0

We define the Rankin-Selberg series R(s, F') of F as

er(A)
R(s, F) = Z _ler(AP
A€(Lm)>0/SLm(Z) €(A) (det A)

where e(A) = #{X € SL,,(Z) | A[X] = A}.
Put

L ={AecL, |A=—"rr mod 4L,, for some r € Z™}.

For A € L], the integral vector r € Z™ in the above definition is uniquely determined modulo
27Z™ by A, and is denoted by r4. Moreover it is easily shown that the matrix

(a2 Cramncyn)

which will be denoted by A™M | belongs to L,41, and that its SL,,(Z)-equivalence class is

uniquely determined by A. In particular, if m is odd and A € (£],)*, put b(Al) =040, and

(1)

fa’ =fam. Now we define the generalized Kohnen plus space of weight [ —1/2 for Fo(m) (4) as

6+

1 p (T (4) = {F € @111 2(I§™ (4)) | ep(A) = 0 unless A € (=1)' L}, }.

Now, for the rest of this section, suppose that [ is even. Then there exists an isomorphism from
the space of Jacobi forms of index 1 to the generalized Kohnen plus space due to Ibukiyama.
To explain this, let F}m) = '™ x H,,(Z), where H,,(Z) is the subgroup of the Heisenberg
group H,,(R) consisting of all elements with integral entries.
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Let J; '\ (I §m)) denote the space of Jacobi cusp forms of weight [ and index IV for the Jacobi
group F}m). Let ¢(Z,2) € J7P(I ﬁm)) Then we have the following Fourier expansion:

§Z,z)= > c(Tr)e(tr(TZ) +r'z).
TE€Lm,r€Z™,
4T—"'rr>0
We say that two elements (T,7) and (T7,7) of L,, x Z™ are SL,,(Z)-equivalent and write
(T,r) ~ (T",r") if there exists an element g € SL,,(Z) such that 77 — 'y’ /4 = (T — trr/4)[g].
We then define a Dirichlet series R(s, ¢) as

B | (T,?")|2
R(Sa ¢) = Z e(T — tr'r‘/4()b(det(T - trr/4))s’

(T.r)

where (T, r) runs over a complete set of representatives of SL,,(Z)-equivalence classes of £, X
Z™ such that T —'rr/4 € (L,)>0. Now ¢(Z,z) can also be expressed as follows:

$(Z,2)= Y. h(Z)0:(Z2),
rezm /2Zm
where h,.(Z) is a holomorphic function on H,,, and
0.(Z,2)= > etr(Z[(A+27'n)])+2(A+27"r) 2).
)\EMl,m(Z)

We note that h,.(Z) have the following Fourier expansion:

he(Z) = co(T,r)e(tr((T — 'rr/4)2)),

where T runs over all elements of £, such that T'—*rr/4 is positive definite. Put h(Z) =
(h+(Z)),ezm j2zm - Then h is a vector valued modular form of weight [ — 1/2 for I"™) that is,
for each v = (4 B) € I'™ we have

h(v(2)) = J(v, Z)h(Z).

Here J(v,Z) is an m x m matrix whose entries are holomorphic functions on H,, such that

tJ(v, 2)J (v, Z) = |§ (7, 2)|*"11,,, where j(7, Z) = det(CZ + D). In particular, we have
Yo h@)h((2D) =i 2P Y h(Dhe(2).
rezm /2Zm rezZm /2Z™
We then put
om(0)(2) = Y. he(42).
T€Z7n/2zm,
Then Ibukiyama [9] showed the following:

The mapping ., gives a C-linear isomorphism

Om Jl?'i‘Sp(F}m)) ~ &

(™ (@),

which is compatible with the actions of Hecke operators.
We call 7,,, the Ibukiyama isomorphism. We note that

om(®) = > cs((A+'rara)/4,ra)e(tr(AZ)),
A€(L),)>0

where r = r, denotes an element of Z™ such that A +%ryry € 4£,,. This 74 is uniquely
determined up to modulo 2Z™, and ¢4 ((A + 'rara)/4,r4) does not depend on the choice of
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the representative of 74 mod 2Z™. Furthermore, we have

leg((A+ trr)/4,7)]?
R(s,om(0)) = 2 e(A)det A5
A€(Ll,)>0/SLm(Z)

and hence
R(s,¢) = 2™ R(s,0n(0)).
Now for ¢, ¢ € J; L;Sp(Fﬁm)) we define the Petersson product of ¢ and v by

(¢, ¥) = J &(Z, 2)0(Z, z) det(v)' "2 exp(—dmv " ['y]) dudvdzdy,
™\ (H,, xC™)

where Z =u++/—1lv € H,,, 2 =z 4+ v—1y € C™. Now we consider the analytic properties of
R(s, 9).

PROPOSITION 3.1. Let ¢(Z,z) € Jlf‘fSp(F§m)). Put

[m/2]
R(s,0) = Ym(s)E(2s +m+2—20) J] &(4s+2m +4— 41— 20)R(s, ¢),

i=1

where
m

Ym(s) = 217%™ H F'r(2s—i+1).

i=1

Then the following assertions hold:

(1) R(s,¢) has a meromorphic continuation to the whole s-plane, and has the following
functional equation:

R(21—3/2—m/2—s,0) = R(s, ).

(2) R(s,¢) is holomorphic for Re(s) > 1 —1/2, and has a simple pole at s =1 —1/2 with
the residue 2™ [TI™/% ¢ (2i + 1) (¢, ¢).

Proof. The assertions can be proved in the same manner as in Kalinin [17], but for the
convenience of readers we here give an outline of the proof. We define the non-holomorphic
Siegel Eisenstein series E(™)(Z, s) by

EM™(Z,s) = (detIm(2))* > [i(M,Z)[7>,
Mer{m\rm
(m) A B (m)
where I’ = 0. D el . For the ¢(Z,z2) let h(Z) = (h,(Z))rezm j2zm be as
above. Since h is a vector valued modular form for I'™)| we can apply the Rankin-Selberg
method and we obtain

R(s,0) :j S (D (Z)m(2) 22, 5)d 7,
PONHo e zm r97m

where
[m/2]
EM(Z,s) =¢@s+m+2-20) [] €@s+2m+4—41—2)E"™ (Z,5+m/2+1-1).
1=1

It is well-known that £(™)(Z, s) has a meromorphic continuation to the whole s-plane, and has
the following functional equation:
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EMN(Z,21—3/2 —m/2 —5) = EM(Z, 5).

Thus the first assertion (1) holds. Furthermore it is holomorphic for Re(s) > — 1/2, and has
a simple pole at s = — 1/2 with the residue Hg:f] &(2§ +1). We note that

— 9—m-1 hy (2 e (Z)Im(2) 124" Z.
(6, ) =2 J\Hm;m (2 (Z)in(2)

Thus the second assertion (2) holds. O

For F € 6;'_1/2(1"(57”) (4)) put

m (m/2]
R(s, F) = [[Tr(2s =i+ 1)§2s +m+2—21) [] &€(4s+2m +4 — 41 — 2i)R(s, F).
=1 =1
We note that
R(s,0m(9)) = 27 'R(s, ¢)

for ¢ € JP(I™). Thus we obtain
COROLLARY. Let the notation and the assumption be as in Proposition 3.1. Then

R(s,0m($)) has a meromorphic continuation to the whole s-plane, and has the following
functional equation:

R(2l —3/2—m/2 — 5,0m(9)) = R(s,0m(d)).
Furthermore it is holomorphic for Re(s) > [ —1/2, and has a simple pole at s =1 —1/2 with
the residue 2™ HEZ{Z] £(2i +1)(0, ¢).

Let n and k be positive even integers. Let h be a Hecke eigenform in ®$_n/2+1/2 (Iv(4)), and

Tz

f and I,(h) be as in Section 2. Write Z € H,, as Z = ( t, - > with 7 € H,,_;, z € C*!

and 7 € H;. Then we have the following Fourier-Jacobi expansion of I,,(h):

In(h)<( tT; 7Z_ )> = J§)¢In(h),1v(77 2)9(NT/),

where ¢; ()N (7, 2) is called the N-th Fourier-Jacobi coefficient of I,,(h) and defined by

N r/2
b1, N (T, 2) = Z CrL,(h) (( )2 T )) e(tr(T7) +7r'2).
TELy 1,7€EZ" 1,
ANT—trr>0

We easily see that ¢, ()~ belongs to J,:“Jf,p(]“}n_l)) for each N € Z~g. Under the above
notation, we will prove the following theorem in Section 6:

THEOREM 3.2.
Ress—p—1/2R(8,0n-1(¢1,,(h),1))
n/2—1
= 200K by T €(200€2i + DAQ2i+ 1, f, Ad),
=1

where 3(n, k) = —(n — 4)k + (n® — 5n + 2)/2.
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Then we can show the following:

THEOREM 3.3. Under the above notation and the assumption, Theorem 3.2 implies
Conjecture A.

Proof. By [23, Corollary to Main Theorem] with a minor correction (see the remark below),
we have

(In(h), In(h))

= 2*k+n71A k ~ .
<¢1n(h),1; (25171(}1)71) (k, f)&(n)

Thus Conjecture A holds true if and only if
n/2—1
(61,015 Br, 1) = 27 FO=D+nO=D/202 0,y TT E(20)A(20+ 1, £, Ad).

i=1
On the other hand, by Corollary to Proposition 3.1 we have
n/2—1
Resg_p—1/2R(8,0n—1(01,n).1)) = 2" b1, (h)15 OL(h)1) H §(2i+1).
i=1

Thus the assertion holds. O

REMARK. In [23], we incorrectly quoted Yamazaki’s result in [38]. Indeed “(F,G)” on [23,
p-2026, 1.14] should read “271(F,G)” (cf. Krieg [29]) and therefore “22¢="+17 on [23, p.2027,
1.7] should read “2%-n”.

4. Reduction to local computations

To prove Theorem 3.2, we give an explicit formula for R(s,o,-1(¢1,n),1)) for the first
Fourier-Jacobi coefficient ¢;, (n),1 of I,(h). To do this, we reduce the problem to local
computations.

For a,b € Q; let (a,b), the Hilbert symbol on Q,. Following Kitaoka [27], we define the
Hasse invariant €(A) of A € S,,(Q,)* by

e(4) = H (ai7aj)p

1<i<j<m
if A is equivalent to a;L--- Lay,, over Q, with some aj,---,a, € Q. We note that this
definition does not depend on the choice of ay,--- , a.,.
Now put
L, ={A€ Ly, | A=—"'rr mod 4L, , for some r € Z'}.
Furthermore we put Sp,(Zp)e =2Lp,p and Spn(Zp)o = Sm(Zy) \ Sm(Zp).. We note that
L ="Lmp=5m(Zy)if p#2. Let T € L}, ;. Then there exists an element r € Z7"~! such
that (‘rl/z (TJ:,,/Ti)M) belongs to L, ,. As is easily shown, r is uniquely determined by T,

up to modulo QZ;)”_l, and is denoted by rp. Moreover as will be shown in the next lemma,

(tr;/Q (T+‘T7"TT/T2T)/4) is uniquely determined by T', up to GL,,(Zy)-equivalence, and is denoted
by T,

LEMMA 4.1. (cf. [25, Lemma 3.1]) Let m be a positive integer.
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1 rA/2 1 rp/2
(1) Let A and B be elements Ofﬁlm_lvp. Then (nTA/Q (A+t:ATA)/4) ~ (frB/Q (B+*fBrB)/4>
if A~ B.
(2) Let A € ‘C;nfl,p'
10
1) ~
(2.1) Let p# 2. Then A ( 0 A)'
(2.2) Letp=2.Ifra =0mod 2, then A ~ 4B with B € L,,_1 2, and AV ~ ( (1) g ) :

In particular, ord(det B) > m or > m + 1 according as m is even or odd.
If r4 #0 mod 2, then A~ al4B with a=—-1 mod 4 and B € L,,_22 and we

1 12 0
have AN ~ | 1/2 (a+1)/4 0 |. In particular, ord(det B) > m or >m — 1
0 0 B

according as m is even or odd.

Now let m be a positive even integer. For T € (£}, ,)*, we define [b(Tl)} and eg}) as

bpra] and epay, respectively. These do not depend on the choice of rp. We note that
1

(—1)™/2det T = 2m*2dp26(T) mod Z;D for any d € [b(Tl)]. We define a polynomial Fzgl)(T,X)

in X, and a polynomial ﬁ,gl)(T,X) in X and X! by

EMN(T, X) = F,(T™, X),
and
FO(T, X) = X %" M EO (T, p= (/2 x),
Let B be a half-integral matrix B over Z, of degree m. Let p # 2. Then
F("(B,X) = F,(1LB, X).
Let p = 2. Then

~ 1 1/2 . if B=al4B'
ﬁz(l)(B,X): F2(< 1/2 (a+1)/4 >J'B’X) with a = —1 mod 4,
Fy(1LB', X) if B=4B'.

Now for each T € S,,,(Z,) X put
EONT, X) = F,(27%7T, X)

and
EOT, X) = F,(27%T, X).

We define [bgg)] and egg) as [0,-s,,p) and ey-17, respectively. We note that (—1)"™/2detT =
der(TO> mod Z;D for any d € [bgf))].

Now let m and [ be positive integers such that m > [. Then for non-degenerate symmetric
matrices A and B of degree m and [ respectively with entries in Z, we define the local density
a,(A, B) and the primitive local density 5,(A, B) representing B by A as

ap(4, B) =271 lim pCmHHED D44, (4, B),

and
Bp(A, B) = 2701 lim pt=mHEEDRI4p, (4, B),

a— 00
where

Au(A,B) ={X € Mml(zp)/pa ml(zp) | A[X]-B e paSl(Zp)€}7
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and
Bu.(A,B) = {X € A.(A, B) | rankg, /7, (X mod p) = [}.
In particular we write «,(A) = o, (A, A). Furthermore put

May =y

/!
wegia €A

for a positive definite symmetric matrix A of degree n — 1 with entries in Z, where G(A) denotes
the set of SL,_1(Z)-equivalence classes belonging to the genus of A. Then by Siegel’s main
theorem on the quadratic forms, we obtain
M(A) = 22", _1hn_1det A2 [ ] ap(A)!
P
where e,,_1 = 1 or 2 according as n = 2 or not, and

(n—2)/2

Rpn—1 = H F02Z

(cf. [27, Theorem 6.8.1]). Put
Fp=Ado € Zy | vp(do) < 1}
if p is an odd prime, and
Fo={dp € Z2 | do =1 mod 4, or dy/4 = —1 mod 4, or va(dy) = 3}.
For d € Z,; put
Sm(Zp,d) = {T € Spu(Zp) | (-1){" D2l det T = p*d mod Z;~ with some i € Z},

and Sy, (Zy, d)y = S (Zy, d) N Sy (Zy), for © = e or 0. We note that S (Zp,d) = S (Zyp,p’d)
for any even integer j. If m is even, put £$2p S (Zy)X and ! L, 1,)° We
also define E% ip(d) = Sm—j(Zyp, d) ﬂﬁm jp for j=0,1. Let m be an even integer. For
do € Fp,1 =0,1 and j =0, 1, define a rational number x(dy, m — j,1) = kp(do, m — 7,1) as

{(_1)lm(m—2)/82—(m—2)(m—1)/2}62 P
_1>m/2’(_ )m/2d ) P —(m/2—1)lv(do) if _7 -1

mlp (

w(dom—jy=4 >
((=1)mme2)/5 (Z1)m/2, dy)y}toes if j = 0.

Let (1, be the constant function on L}, , taking the value 1, and &, the function on £, ,
assigning the Hasse invariant of A for A E Ly, - We sometimes drop the suffix and write ¢, 5
as ¢, or ¢ and so on if there is no fear of confusion. From now on we sometimes write w = &'
with [ = 0 or 1 according as w = ¢ or . Let n be an even integer. For dy € F, and w = ¢! with
[ = 0,1 we define a formal power series H,_1 ,(do,w, X,Y,t) € C[X, X1, Y, Y [[t]] by

H, 1 ,(do,w, X, Y,t) = k(dg,n — 1,1) 122021

FV (4, X)FV(4,Y)
Z ap(A)

~ g(A)lt”P(dCt A)'

ALl (do)/GLn_1(Zyp)

We call H,,_1 ,(do,w, X, Y, t) a formal power series of Rankin-Selberg type. An explicit formula
for Hy,—1,p(do, wp, X, Y, t) will be given in the next section. Let F denote the set of fundamental
discriminants, and for [ = +1, put

FO ={dy € F|ldy > 0}.
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Now let h be a Hecke eigenform in 6;n/2+1/2(]”0(4)), and f, I,(h), ¢1, (n),1 and on_1(¢1, (h),1)
be as in Section 3. Then we have

THEOREM 4.2. Let the notation and the assumption be as above. Then for Re(s) > 0, we
have

Cn— —s— n—
R(S, O'n—l(d)ln(h),l)) = 9 ! 571—12( 1/2)(n=2)

X Z ‘Ch(|d0|)|2|d0|n/27k+1/2HH"—Lp(dOvvaapvo‘pvpiﬁkil/?)
doeF((=D"/?) P

+ (71)n(n72)/8 Z |Ch(|‘1lo|)|2|dO|7k+3/2 HH"—Lp(dovEp»apvapvpiwkflﬂ) )
doe F(=D"/?) P

where «, is the Satake p-parameter of f. Moreover we have

R(s,h) = k1 Z |Ch(|d0|)|2‘d0|n/2_k+l/2HHLp(do,Lp,ozp,ap,p_s"’k_"/QH/z).
doeF(=D™/?) P

Proof. Let T € (£],_1)>0. Then it follows from Lemma 4.1 that the T-th Fourier coefficient
Can71(¢1n(h),1)(T) of 0n_1(¢1,(ny,1) is uniquely determined by the genus to which 7' belongs,
and, by definition, it can be expressed as

1 D\k—n/2— =~
Conror, i) (D) = e, (TD) = en (PP )22 T FO(T, o).

p

We also note that Hp((—l)"/Q, (=1)"2dy),, = 1 for any dy € FD"") and hence

H Hp(d(% n — 1, 0) = 27('"'72)(71*1)/2
p

and

H Kvp(do, n—1, 1) — 2—(n—2)(n—1)/2(_1)n(7z—2)/8|d0|—n/2+1.
p

Thus, by using the same method as in [13, Proposition 2.2], similarly to [10, Theorem 3.3
(1)], and [11, Theorem 3.2], we obtain the first assertion. Similarly we can prove the second
assertion. |

5. Formal power series associated with local Siegel series

Throughout this section we fix a positive even integer n. In this section we give an explicit
formula for H,,_1(do,w, X,Y,t) = Hy_1 p(do,w, X, Y,t) for w =1,e (cf. Theorem 5.3.1). The
idea is to rewrite H,_1(dp,w,X,Y,t) in terms of various power series. Henceforth, for a
GLy,(Zy)-stable subset B of 5,,(Qp), we simply write » 7 instead of > r 5, if there is
no fear of confusion. We also simply write v, as v and the others if the prime number p is clear
from the context.

5.1. Formal power series of Andrianov type
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For an m x m half-integral matrix B over Z,, let (W,q) denote the quadratic space over
Z,/pZ, defined by the quadratic form g(x) = B[x] mod p, and define the radical R(W) of W
by

RW)={xeW | B(x,y) =0 for any y € W},

where B denotes the associated symmetric bilinear form of g. We then put [,(B) =
rankz, /,z, R(W)*, where R(W)! is the orthogonal complement of R(W)+ in W. Furthermore,
in case l,(B) is even, put £,(B) =1 or —1 according as R(W)* is hyperbolic or not.
In case [,(B) is odd, we put £,(B)=0. Here we make the convention that §,(B) =1 if
Ip(B) = 0. We note that &,(B) is different from the &,(B) in general, but they coincide if
B € Ly N 5GLy(Zy).
Let m be a positive even integer. For B € £ put B = ( ! r/2 )

m—L,p tr/2 (B+trr)/4 )

where 7 is an element of Z;”’l such that B + 'rr € 4L,,_1 ;. Then we put 51(,1)(3) = ¢,(BW)
and El(,l)(B) :EP(B(U). These do not depend on the choice of r, and we have f,(,l)(B) =
Xp((—=1)™/2det B). Let p#2. Then an element B of £$)717p is equivalent, over Z,, to
O©1pB; with © € GLy—n,-1(Zy) N Sp—n,—1(Z,) and By € Sy, (Z,)*. Then EP(B) =0 if nq
is odd, and Ez()l)(B) = xp((—1)m=™)/2det ©) if n; is even. Let p=2. Then an element
B e ESL)_LQ is equivalent, over Zs, to a matrix of the form 20 1 By, where © € GL;,—pn, —2(Z2) N
Sm—n,—2(Z2)e and By is one of the following three types:

(I) By =al4Bs with a = —1 mod 4, and By € Sy, (Z2)X;

(II) B; € 4Sn1+1(Z2)><;
(IIT) B; = al4By with a = —1 mod 4, and By € S, (Z2),.
Then £5)(B)=0 if B, is of type (II) or type (III). Let B; be of type (I). Then
(—=1)m=71/2g det © mod (Z5)® is uniquely determined by B and we have

& (B) = xa((=1)" ™24 det ©).

Suppose that p # 2, and let U = U, be a complete set of representatives of Z;/(Z;)D. Then,
for each positive integer | and d € U,, there exists a unique, up to Z,-equivalence, element of
Si(Z,) N GLi(Z,) whose determinant is (—1)I(+1)/2d, which will be denoted by ©; 4. Suppose
that p =2, and put U = Uy = {1,5}. Then for each positive even integer ! and d € Us there
exists a unique, up to Zs-equivalence, element of S;(Zs). N GL;(Z2) whose determinant is
(—1)"/2d, which will be also denoted by ©;,4. In particular, if p is any prime number and [ is
even, we put ©; = ©;; We make the convention that ©; 4 is the empty matrix if [ = 0. For an
element d € U we use the same symbol d to denote the coset d mod (Z;‘,)D.
1 0
We put D;; = GL,(Z,) < 0 pl
even integer. For j = 0,1, =41 and T € ﬁij_)jm, we define a polynomial ESJ)(T,QX) in X
and X! by

) GLi(Z,) for 0 <i <. Suppose that r is a positive

EONT,6,X) = X" D EO(T, eX).

We note that Eﬁj) (T,¢,X) = £e<j>(T)ﬁISj)(T, ¢X), and in particular ESJ') (T, 1, X) coincides with
F,Sj)(T, X). We also define a polynomial Gz(f)(T,f,X, t)in X, X! and t by

r—j
(5-1) GU(T,&X,t) = (~1)pt=D/2 > EJN(T[D7),€,X),
=0 DEGLy—j(Zp)\Dr—j,i

and put éz(,j)(T, X, t) = é;j)(T, 1,X,t). We also define a polynomial G]S,j)(T,X) in X by
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r—j
(5-2) GU(T,X) = (—1)ip'=D/2(X2prti=iy > EV(T[D™Y], X).
=0 DeGLy—j(Zp)\Dr—j,i

We note that
GUN(T, X, 1) = X" MaP(T, xp~m+H/2),
(1)

Now for an element T € £, ,

we define a polynomial Bz(,l) (T,t) in t by

(1- fp(T(l))pfr/%rl/?t) HE:z)ﬂ(l — p2t1g2)
GO (T, p=r+1/2t) -

(5-3) BW(T,t) =

Then by [25, Lemma 4.2.1], we have the following:

LEMMA 5.1.1. Let n be the fixed positive even integer. Let B € s

n—1,p°
(1) Let p # 2, and suppose that B = ©,,_y,_1,41pBy withd € U and By € Sy, (Z,)*. Then
(n—n1—-2)/2
(1- g;l)(B)p(”ﬁ"H)/Qt) H (1 —p~2"142) if ny even,
B (B, t) = (nena—1)/2 i=1
[I a-p2+) if ny odd.
i=1

(2) Let p=2, and suppose that B=201By €L, ;, with © € S, n, 2(Z2).N
GLn,nI,Q(ZQ) and By € Sn1+1(Z2)><. Then

BMV(B,1)
(n—n1—2)/2
(18" (B)pm—n+1/2) I[I @-p ) if By is of type (I),
- (n—ny—2)/2 =
[T «a-p2+e) if By is of type (IT) or (III).
i=1

Let m be a positive even integer and j = 0,1. For a non-degenerate half-integral matrix T'
over Z, of degree m — j, put

RUNT, X,t) = > ED(T[W], X )trdet W),
WeMm*j(zp)X /Gmej(Zp)
This type of formal power series was first introduced by Andrianov [1] to study the standard
L-function of Siegel modular form of integral weight. Therefore we call it the formal power

series of Andrianov type. (See also Bocherer [2].) The following proposition follows from [25,
Lemma 4.1.1 (1)].

ProproOSITION 5.1.2. Let m be a positive even integer and j =0 or 1. Let T € ‘Cg)—j,p'
Then _
ES (B, X)a, (T, B)

tV(detB) _ tV(detT)R(j) T X —m+jt2 .
o (B) (T,X,p )

3)
BeL?i*j»P
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The following theorem is due to [24].

THEOREM 5.1.3. Let T be an element of £ Then

n—1,p°

BY(T, p/210)GS(T, X 1)
1= (1= p X 1)1 — pi=1X1)

R(T, X, t) =

In [4], Bocherer and Sato got a similar formula for T' € £,, ,. We note that the above formula
for p # 2 can be derived directly from [37, Theorem 20.7] (see also Zhuravlév [40]). However,
we note that we cannot use their results to prove the above formula for p = 2.

Then for dy € Fp and w = elwith I = 0, 1, we define a formal power series R,,_(do,w, X,Y,t)
in ¢t by

GV (B, X,p~"Yt2)
op(B')

Ry_1(do,w, X, Y, t) = k(do,n — 1,1)"1¢22» () "
B'e ££L1)1 p(d )

y ¢ (B’ )ty(detB)B(l)( —71/2 1Yt2)G1(,1)(B’,p_("+1)/2Y)w(B’).

More precisely this is an element of C[X, &*1,Y1/2,Y*1/2][[t]]. Now by Theorem 5,2.5, we
can rewrite H,_1(w,dp, X,Y,t) in terms of R,,_1(dp,w, X,Y,t) in the following way:

THEOREM 5.1.4. For w = ¢!, we have

En—l (d07 w, X7 Y7 t)
[ (1= p XY ) (1 —p/ 1" X 1Y e2)

Hn—l(dOaw7X7 Ya t) =

Proof. By [25, Lemma 4.2.2], we have

(B, X)

w(B tu(detB)
op(B) (B)

K(do,n — 1,0t Hy (do,w, X,V t) = Y
BeL(? | (do)

_eM(p’ 1 _
" Z y-—¢t (B)Gp(B/’p (n+1)/2Y)ap(B,B)( _1y)(y(det3)_y(det3,))/2
a,(B) b '

P

Brect

n—1,p

Let B and B’ be elements of E( and suppose that a,(B’,B) # 0. Then we note that
Ber® (dp) if and only if B’ € Ef)

ne1p n_1p(do). Hence by Proposition 5.1.2 and Theorem 5.1.3
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we have

:‘ﬂ?(d(h n— 1, l)t(sz’p(n_2)Hn71(d07 w, X7 K t)
Z G}(}l)(B/’pf(n+1)/2y)yfe(1)(3')

Y*l v(det B')/2 B

Brect?, (do)

F"(B, X)a, (B, B)

t2 71Y v(det B)/2
Xy o (B) (t*p7'Y)
BeLSﬂLP
Gz()l)(Blvpf(nﬂ)/zy)yfe(l)(B/) det B’ N p1) (R 2
= > (B (et B (BYRM(B' X, 12Yp™)
4

Brect? | (do)
_ Z @;1)(3’7X,p*"Yt2)
B ap(B’)

w(B/)Yfﬂ(l)(B')tu(det B')
Brect? | (do)
By (B, p~" /27 Y 1)Gy (B, p~ (VY
[T (1= p XY E) (1 - p X 1Y E2)

This proves the assertion. ]

The polynomials G;(,I)(T,X ) and B](,l)(T 1) are expressed explicitly, and in particular they
are determined by [o7] and the p-rank of T' (cf. [25, Lemma 4.2.1] and Lemma 5.1.1). Thus
we can rewrite the power series R, _1(dp,w, X,Y,t) in a more concise form (cf. Corollary to
Theorem 5.2.8.)

5.2. Formal power series of Koecher-MaafB type and of modified Koecher-Maaf} type

Let r be a positive even integer. For dy € F;,,j = 0,1 and [ = 0,1, we define a formal power
series Pfi)j(do,w,f,X, t) in t by

EY(B, ¢, X)

oJ(B)ty(det B)
ap(B)

(5'4) P:j;)j(do, w, 5; Xv t) = K’(d07 r—= j7 l)_lt_ar_j‘p Z
BeL) (do)

for w = ! with [ = 0,1, where a; , = 62,,(i — 1) or 1 according as i is odd or even. In particular
we put Pr@j(do,w,X, t) = Pﬁ)j(do,w, 1, X,t). This type of formal power series appears in an
explicit formula for the Koecher-Maaf series associated with the Siegel Eisenstein series and
the Duke-Imamoglu-Tkeda lift (cf. [11, 12] and [25]). Therefore we say that this formal power
series is of Koecher-Maaf type.

For a variable Y we introduce the symbol Y'/2 so that (Y1/2)2 = Y, and for an
integer a write Y%/2 = (Y'/2)@, Under this convention, we can write V¢ (D(detT) 4
Y @r—ip/2yv(do)/2(y —1/24)v(detT) jf T ¢ Cg.j_)jm(do), and we sometimes write a power series

PY.t)= Y a(TY)y @) ¢ oy, y ]

TeL? . (do)

as
P(K t) — Y“T—j,p/QY”(dO)/Q Z G(T, Y)(y—l/Qt)l/(det T)
TeL? (do)

r—3,p
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For T € ﬁfﬂj’p
Moreover for £ = +1, and j = 0,1, we define a formal power series Isr(j_)j(n;do,w,g,X, Y, t)
in t by

let égj)(T,g,X, t) be the polynomial defined in the previous subsection.

(55) PV (n;do,w, &, X,Y,t) = (do,r — j,1) 1 (tY ~H/?)ar-snyv(do)/2

GY (B’ ¢, X, pt2Y) _ ,
) Sy Ay B (tY 1/2\v(det B")
S ey )
B'eL ) (do)
for w = e'. Here we make the conventionNthat ﬁo(o) (n;dp,w, &, X,Y,t) =1 or 0 according as
v(dyg) = 0 or not. We say that the series Pfj_)j (n;do,w, &, X, Y, t) is of modified Koecher-Maaf}
type. The relation between ﬁr@j (n;do,w, &, X,Y,t) and P,Ei)j(do,w, &, X, t) will be given in the
following proposition:

PROPOSITION 5.2.1. Let r be a positive even integer. Let w = &' withl = 0,1, and j = 0, 1.
Then

. . Tﬁj . .
P’fj_)J(,r% d07wa€aX> Y7 t) = YV(dO)/2P£j_)j(d0aw7§7X7 tY—l/Z) H(l - t4p_n_r+‘7_2+l)'
=1

Proof. For i =0,...,r — j put
‘ﬁrgi)j,i(dou w, 57 X’ t) = K(d07 r—= j7 l)_lt_aTijyp

m(9) -1
X Z Z FP (B[D }’§7X)W(B)ty(detB).

B
BeL?, (dy) DEGLr—;(Zp)\Dr—j.i o (B)
Then we have
r—j
Pﬁj—)] (TL, do, W, g’ X’ Y’ t) = Z(_l)"p’(l_l)/Q (p_ntzy)lyy(dO)/z‘P?E]—)j,i (dOa w, f, Xa tY_1/2)'
i=0
We have
p(7) _ W(B) v(det B)
Pr—j,i(dOawvg,X;t)— Z Oép(B)t
BeL? , (do)
<Y ED(BLEX)#OB . B.0) [OL—(Z,).
BIELSEJ‘,F

where Q(B’,B,i) = {D € D,_;; | B'ID™'] ~ B}. Hence by [25, Lemma 4.1.1 (2)], we have

-ﬁ(]) '(d()vwagvXat)

r—7,%
_ Z 1 Z FyY) (B¢, X)a,(B', B, 1) By (v(det B)—v(det B')) /2w (det B)
- / w( )p 3 Y
- ap(B ! ap(B’)
BeL?), (do) Bec?
where

ap(B',B,i) =271 lim p~r=Dr=3=De/200X ¢ A (B, B) | X € D,_j.i}.

e— 00
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Let B and B’ be elements of Eﬁjjjyp, and suppose that a,(B’, B,i) # 0. Then we note that

Be Eﬁj_)j,p(do) if and only if B’ € Egj_)j)p(do). Hence by [25, Lemma 4.1.1 (1)], we have

PY. (do,w, &, X, 1)

E(B 6, X) ian o a,(B',B,i
— Z p ( )p (detB)/Qw(Bl> Z (tp 1/2) (det B) P( )

o, (B’ o, (B
Brec?) (do) o(B) Bec?,, o
E(B 6, X) iqen et B e i1
= > : of (B )p (det B2 (gp=1/2)v(det BY) (2= H0 =1y i (G Ly j(Zp)\Dy—j.i).
P

BreL?; (do)
By [1, Lemma 3.2.18], we have

d’r—j (p)

#GLr— (Zp\Drii) = S o=y

Hence
ﬁii)j,i(dOawvgaX’t)
F)(B'6, X vdet By Or—j(D ey
— Z p a( (Bé) )w(B’)t (det B )d)(p); J(. )(p) (tQp r+j 1)1
Brec®), (do) P i r—j—i

— O ®) ) (g, X, )85

¢i(p)¢r—j—i(p)
Thus, by [1, (3.2.34)], we have

JS,E];)j(mevW,faX» t)

r—j
=y a2y (1)t 2(pn-rri-qgtyi__Org) P (do,w, €, X, tY~1/?)

i=0 ¢i(p)¢7'—j—i(p)
j Tij . .
= Y'V(do)/Q‘PﬁJ_)j(d07w,5’){7 tY_1/2) H(l _ t4p—n—r+]—2+z).
=1

O

We give explicit formulas for Pf{)j (do,e', &, X,t) for 5 =0,1,1 = 0,1 and & = 1. From now
on we for a € QF, we simply write x,(a) as x(a) if the prime number p is clear from the
context.

X
D

THEOREM 5.2.2. Let dy € Fp and & = x(do).
(1) Let r be even. Then
(p—lt)u(dg)
brj2-1 (P21 = p~/2&o)
(14 2p~7/2-3/2)(1 _’_t2p77‘/275/2£§) — ot T22 (X 4 XL g pl/2r/2 1 /24r/2)
1—p2X#2)(1 — p—2X 142 112 1—2p=2i-1X)(1 — 2p—2i-1X 1
1=1

PO (dy, 1, X,t) =

X )

and
&

PO (dy, e, X, t) = 7 : _ .
Grja—1(p72) (1 —p~/28) [[[L (1 — 2p~ 2 X)(1 — t2p= 2 X 1)
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(2) Let r be even. Then
PY (do,1, X, 1)
(ptt) o) (1 — got?p~/?)
(1—2p=2X)(1 — t2p=2X 1) HET:—IQ)/2(1 — 2p~2-1X)(1 — t2p—2i—1X—1)¢(7_2)/2(p—2)

9

and
(710" (1 — &t )

Prgi)l(dOagvat) = r/2 5 2% 9 % 1 2 .
[0 = 2p=2X)(1 - 2p= 2 X 1)d(r_2)/2(p™?)

Proof. The assertions (1) and (2) are due to [22, Proposition 4.3], and to [25, Theorem
4.4.1], respectively. O

COROLLARY. Let & = #£1.
(1) Let r be even. Then

(p~ ')t
brja—1(p~2)(1 — p~7/2&)

X {(1+t2p—T/2—3/2£)(1+t2p—7‘/2—5/2££(2)) _£Ot2p_T/2_2(X+X_1 _’_p1/2—7“/2£+p—1/2+’r/2€)}
1

(1= p2Xe) (1= p2X ) [ (1= £p 2 X)(1 - 221X 1)

and

PO (dy, 1, €, X, 1) =

X

£2
brja1 (P72 (1 — p=r/260) TII/A (1 — £2p=2X) (1 — 12p=2 X 1)

PT(O)(d0757€aX7t) =

(2) Let r be even. Then
P££)1 (d07 2 57 Xa t)

(p~ 1)) (1 — &t*p~P/%¢)
(1—2p=2X)(1 — 2p—2X 1) HELIQ)/Q(l —2p~2i-1X)(1 — t2p*2i*1X*1)¢(T._2)/2(p*2)

)

and
(p~'1)(0) (1 — &ot?p—1/27")¢)
H:fl(l — 12p2X)(1 — t2p—2iX—1)¢(T72)/2(p—2)

Pﬁi)l(doaevga Xv t) =

Proof. Put N
F(T7 67 X) tE(j)(T)

() _
Sr_j(d07w7§aX7t) - Z Oép(T) )

and

SD (doyw, X, t) = Y Fofi’;;)te(j)<T>.
Then we have
PP (dy,w,€, X, 1) = "9 8D (dy,w, &, X, %) and P (dg,w, X, 1) = ") 59 (dy, 0, X, 1?).
By definition we have
SD (do,w, &, X, 12) = S, (do, w, EX, £12).

Thus the assertion follows from the above theorem. [
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_Now let 7 be an even integer, and for j=0,1, we consider partial series of
pY (n;do,w, &, X,Y,t) : Let £ = £1. and | = 0, 1. First let p # 2. Then put

r=j
(5_6_1) ng)(n;do,El,f,X, Y7 t) = YV(dO)/2

y > Gy (pB'.& X, p " 2Y)
op(pB’)

E(pBl)l (ty—1/2)u(det pB')7
B'€Sr(Zp,do)NSr(Zyp)

and
(5_6_2) Qq("l—)l(na dOa glv 57 Xa K t) = K(dOa r— 1, l)ilyy(do)/Q

3 G (pB', ¢, X, p YY)
Qp (pB')

% E(pB/)l(tY_l/Q)V(dEthl),

B'ep=tSr—1(Zp,do)NSr—1(Zp)

where égj)(pB’,ﬁ,X,p’”tQY) is the polynomial defined in (5-1) for 7 = 0,1. Next let p = 2.
Then put

(5-6-3) Q' (n;do, e\, X, Y, 1) = r(do,r — 1,1) = (£Y ~1/2) P25 (2n) yw(do) /2

3 GV (4B, €, X, 27 2Y)

4B/ l tY_1/2 Dg(det(4B/))
e () ,

X
B'€S,_1(Z2,do)NSr—1(Z2)

and

(5-6-4) Q' (n;do, '\, X, Y, t) = r(do,r, 1)Ly (do)/2

3 GV (2B, ¢, X, 27 2Y)

B! tY_1/2 v(det(2B"))
B (B (112 :

X
B'€S,(Z2,d0)NSr(Z2).

where éél)(élB’7 £,X,27"2Y) and égo) (2B',¢, X,27"2Y) are the polynomials defined in (5-1).
Here we make the convention that ng) (n;do, €', &, X,Y,t) =1 or 0 according as v(dy) = 0 or
not.

A non-degenerate square matrix D = (d;;)mxm With entries in Z,, is said to be reduced if D
satisfies the following two conditions:

(a) For i =j, d;; = p® with a non-negative integer e;;

(b) For i # j, d;; is a non-negative integer satisfying d;; <p% — 1 if i < j and d;; =0 if

1> 7.

It is well known that we can take the set of all reduced matrices as a complete set of
representatives of GLy,(Zp)\ M, (Z,)> .

To consider the relation between _

P (n;do,e', €, X,Y,t) and QY (n;do,el, €, X, Y 1),

and to express R,_1(do, !, X,Y,t) in terms of R@j(n; do, €', €, X,Y,t), we give some prelimi-
nary results.

LEMMA 5.2.3. Let p # 2. Let m be an even integer, and r an integer such that 0 < r < m.
Let d € U and & = £1.
(1) Suppose that r is even.

(1.1) Let B' € S,.(Z,)*. Then

6;0) (@m—r,dJ—pB/a 607 X7 t) = é](;)) (pB/7 gOX(d)7 X’ t)
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(1.2) Let B’ € S,_1(Z,)*. Then
G (Om—ralpB' &, X, t) = G (pdB', &, X, t).

(2) Suppose that r is odd.
(2.1) Let B' € S,(Zy,)*. Then

GO 14 lpB' &0, X, t) = GV (=pdB', &, X, 1).
(2.2) Let B’ € S,_1(Z,)*. Then
G (O ralpB' 6o, X,t) = GY (pB',éox(d), X, 1).
(3) Suppose that r is even. Then we have
G(d'B, &, X,t) = GV (B, &, X, t)

for d' € Z}, and B € S,(Zy)*.

p?

Proof. Let m — r be even. By [20, Proposition 3.2], we have
E(On-ralpB' 6o, X) = I\ (pB', &ox(d), X)
for B’ € S,(Z,)*. We note that

m

GO (Om_ralpB &, X t) =Y (—1)'pi=D/2¢
=0
x > FO (©m—ralpB)[D .60, X),

DEGLm(Zp)\QO (O, _r.a LpB',i)

where for j = 0,1 and B € Egi)fj’p put

QU(B,i) = {W € Dpyi | BW e Ll 1.

Thus the assertion (1.1) follows from [25, Lemma 4.1.2 (3)]. Furthermore we have
F(On—palpB' &0, X) = F)(110,,_, 4 LpB, &, X)
= Fp(dLOp_, LpB' &, X) = Fy(110,_, LpdB', &, X)
= F,(1LpdB' &, X) = FV (pdB', &, X)

for B’ € S;_1(Zp)*. Thus the assertion (1.2) follows from [25, Lemma 4.1.2 (3)]. The other
assertions can be proved in a similar way. |

LEMMA 5.2.4. Let p = 2. Let m and r be even integers such that 0 < r < m, and £, = %1.
(1) Let d € U.
(1.1) Let B’ € S,(Z3)*. Then

é;()) ((—)m—r,dJ—ZB/a 507 X7 t) = é;()) (2317 fOX(d)7 Xa t)a
(1.2) Let B’ € S,_1(Z3)*. Then
G (20,,_r.q LAB' &0, X, t) = GSY (4B’ &, X, t).

(2)
(2.1) Let a € U and B’ € S;(Z2)*. Then

GY)(~al20,,_, 5 14B' &, X, 1) = Gy (2B’ ,€0x(a), X, ).
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(2.2) Let B' € S,._1(Z3)* and a € Z3. Then
G (Op_y 12a12B &, X, t) = GSV (4aB’, &, X, t).
(3) We have
GV (d'B, &, X, 1) = GV(B, &, X, t
2 ( 750) ) ) 2 ( 7507 ) )
for d' € Z3, and B € S,(Zs3)*.
(4) Let ug € Z; and By € ST-_Q(ZQ)X. Then
égl) (U’OL5Bla§0aX7t) = 6(21) (UOLBla&LXat)'

Proof. All the assertions except (4) can be proved in a way similar to Lemma 5.2.3.
To prove (4), we first note that GL.,—1(Z2)\Q(uoL5B1,1) = GLp—1(Z2)\Q(ugLBy,4) for
i=0,---,m— 1. Hence it suffices to prove

F{D (o 15B1)[D™), €0, X) = F§Y (o L B1) D7), &, X)
for D € ﬁ(uoLBl,i). We may assume that D is reduced. Since we have ug € Z5 we have
D= ( é g > with d € My y,—2(Z2) and M,,_2(Z2). We also note that 2D1_1 € My,—2(Zs).
1
We have
F{P (o L5B1)[D™], €0, X) = Fa((1-Lug L5B1)[1 LD "], &, X)

~ 10 0
= Aa((1Luo158) (02007 )] o)
00 D!

" 10 0
= Fy((5L5up L By) KO 1—dD; ! )] &0, X).
00 Dyt

We can easily see that there exits an element U = (u;;) € GL2(Z2) such that (1Lu)[U] =
515up and w12 = 0,uz2 = 1 mod 2. Then we have

EV ((ugL5B1)[D 7], &0, X) = Fa((1Lug LBy)[(1LD V], &, X),

w1l U12 —u12dD]? .
where V' = | w,; uss —usedD;'+dD; ! | . By construction, we have V' € GL,,(Z2), and hence we
0 0 lm—2

have
Fy((1Lug L B)[(1LD )V, &, X) = ES ((uoLBy)[D™Y], &0, X).
[

Let En_l(do,w,X ,Y,t) be the formal power series defined at the beginning of
Section 5. We express En_l(dg,w,X,Y,t) in terms of ngr)(n;dod,w,x(d),X,Y,t) and
Qg%_l(n;dmw,LX,Y,t). Henceforth, for dy € F,, and non-negative integers m,r such that
r <m, put U(m,r,dy) = {1}, U N {do}, or U accordingasr =0, r=m>1,or1 <r <m—1.
Moreover, we sometimes abbreviate S,(Z,) and S,(Z,,d) as S, and S,,(d), respectively.
Furthermore we abbreviate S,(Z2), and S;(Z2,d); as Sy 2., and Syo(d),, respectively, for

T =e,o.

THEOREM 5.2.5. Let dy € Fp,, and & = x(do). Ford e U(n —1,n — 2r — 1,dy) put

1—&p /%Y

1— pr—1/2x(d)y(1 - p_n_1/2+TX(d)Yt2)-

D27‘(d07 d7Kt) =
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(1) Let w =1, or v(dy) = 0. Then

(n—2)/2

Z [T, (1= p* Y2 TIP220 - p 2ty 2t
21750‘T¢(n—2r—2)/2(p72)

x 3 DQT(do,d Y, QY (n; dod, w, x(d), X, Y, t)
deU(n—1,n—2r—1,dy)

(n—2)/2 rrr i— n—2r— —2i—m—
N ‘Z Hi:l( P 1Y2) H( 2 2)/2( —p2 1th4)
¢)(n72r72)/2( —2)

x (1 — fopfl/QY)Qgﬂ)_H(n; do,w,1, XY t).
(2) Let v(dy) > 0. Then

n 1(d07w X Yt

(n—2)/2

Z H::1( 21 1Y2) H(n 2r— 2)/2( p—2i—n—ly2t4)
¢(n—2r—2)/2( )

><(1 — op VPY)QYY, 1 (nydo, 2,1, X, Y 1),

n 1(d0,€ X Yt

Proof. Let p # 2. Let B be a symmetric matrix of degree 2r or 2r 4+ 1 with entries in Z,,.
Then we note that ©,,_a,_2 4LpB belongs to L,,_1 ,(do) if and only if B € Sa,41,(p~ dod) N
SQTJ,.LP, and that @7L_2T_17dJ_pB belongs to En—l,p(do) if and only if B e SQT,p(dod) N 527«71,.
Thus by the theory of Jordan decompositions (cf. [27, Theorem 5.3.1]), for w = ! we have

Ry_1(do,w, X, Y, t) = k(do,n — 1,1) "1ty ~1/2)2.0(2=1)

(’ﬂ 2)/2 Gél) (@n_QT_Q dJ—pBl7p7(n+1)/2Y)
8 Z Z Z ap(®n727‘72,dJ—pB/)

r=0 deU(n—1,n—2r—2,do) B'€p=1Sor41,p(dod)NS2rs1,p

x B (09,04 LpB ,p* Y #)G M (0, _0r—24LpB’, 1, X,p Y

Xw(@n_%,_ZdeB/)(tyfl/Q)l/(dct(pB’))
(n—2)/2

+ Z Z Z Gz(al)<@n—2r71,deB’7p—(n+1)/2y>

ap(Op_9r_1.q4lpB’
r=0  deU(n—1,n—2r—1,do) B'€Sarp(dod)NS2r.p p(On—2r-1,41pB’)

x B (O sr_1.aLpB,p > V)G (0, 0 1,4LpB, 1, X, p 2Y)
Xw(@nfgrfl’deB/)(tY_l/Q)V(det(PB/)) }7

where éz(,l)(*,*,X,p’”ﬂtZY),G:E,I)(*,p*(”“)ﬂ), and B,(*,p~"/?71Y1?) are those defined in
(5-1), (5-2), and (5-3), respectively. By [25, Lemma 4.2.1] and Lemma 5.1.1 we have

Gz(gl) (Gn—Qr—2,dJ—pB/7pi(n+1)/2Y)B;()1) (Gn—QT—Q,dJ—pB/a pin/271Yt2)

(n—2r—2)/2

_ H 21 1y2 H (1 _p72i7nfly2t4)(1 _ §0p71/2y)’

i=1
and

Gél) (Gn—Qr—l,dJ—pB/7pi(n+1)/2Y)B;()1) (671—2r—1,dJ—pB/a pin/271Yt2)
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.1 | (n—2r—2)/2
— (1 _ p21—1y2) H (1 _ p—2i—n—ly2t4>D2T<d0, d, Kt)
i=1 =1

Put Hy) | (B) = G)(B,€, X,p "t?Y) for B € Syi_1(Z,)*, and HY),(B) = G (B, &, X,p %Y
for B € S5;(Zy)* and £ = £1. Then HQ(ZD_M and HQ(S)5 are GLo;_1(Z,) -invariant functions on
Soi—1(Z,)* with values in C[X,X 1Y, Y ~1,¢] and satisfy the conditions (H-p-1) ~ (H-p-5)
in [25, Section 4] by virtue of Lemma 5.2.3. Thus the assertion (1) in case p # 2 follows from
[25, Propositions 4.3.3 and 4.3.4].

Next let p = 2. Let B be a symmetric matrix of degree 2r or 2r + 1 with entries in Zs, and
d € U. We note that 20,,_9,_2 41 4B belongs to L,_12(do) if and only if B € Sa,41,2(dod) N
Sart1,2, and that —d120,,_5,._514B belongs to L,,_12(do) if and only if B € Sa,422(dod) N
Sor42,2. Then, similarly to the above, we have

En—l(do,w,X,Kt) = fi(do,n _ 1’l7tyfl/2)71

(n—2)/2
X{ Z < Z Z Gz()l)(26n—2r72,dL4B’,2_("+1)/2y)

r=0 \deU(n—1,n—2r—2,do) B’€S2,+1,2(dod)NS2r+1,2;¢
égl) (20,_9y—2,414B',1, X, 2-142Y)
(20,2, —2,414DB’)
Xw(2@n—27-—27dl4B’)(tY*1/2)u(dct(43'))+n,2r72
+ Z GI()l) (20, _9p_o LAB' 27"+ 1)/2y)

B'€8S2r11,2(do)NS2r+1,2;0

x B (20,,_9,_2,4L4B',p~"/* 71V ?)

G (200-2,214B',1, X, 27 "#2Y)
a2(2®n—2r—2l4B/)
Xw(Q@n_Qr_zLLLB/)(ty—1/2)V(det(4B/))+n—2r—2
+ > GV (~1120,_y,_4 L4B', 27 ("D /2y)
B'€S2r42,2(do)NS2r42,250

x B (20, 3,2 LAB',p~ /> 1Y)

G (1120, 5,4 14B' 1, X,2-™2Y)
ag(—lJ_2@n_2r_4J_4B’)

xB{)(—1120,_5,_4 L4B',p~"/*71V1?)

XW(_:[J_Z@n27‘4J_4B/)(tY_1/2)V(det(4B/))+n_2T—4>

(n—2)/2
+ Z Z Z Gg()l)(_dJ—QGn—zr—zL4B/, 2_(n+1)/2y)
r=0 deU(n—1,n—2r—1,dg) B'€Sar 2(dod)NS2y 2;c
égl) (7dJ_2@n_2r_2J_4B/7 17 X’ 2*nt2y)

B{Y(=d120,_3, 5 LAB',p~"/?7'Y
xBy( n—2r—2 )P ) ag(—d120, 9. o 14B")

XW(fdJ_QGn_QT_QJ_ZLB/)(tY71/2)V(d6t(4B/))+n72T72 } .

Thus the assertion (1) in case p = 2 can be proved by using [25, Lemma 4.2.1], Lemmas 5.1.1
and 5.2.4, and [25, Propositions 4.3.3 and 4.3.4] in the same way as above. Similarly the
assertion (2) can be proved. O

Now let Iggll(n;do,w,n,X,Y,t) and ﬁﬁ)(n;do,w,n,X,Y,t) be those defined in (5-5),
and Q3. | (n;do,w,m, X,Y,t) and QS (n;dod,w,n, X,Y,t) be those defined in (5-6-1) ~
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(5-6-4). Then to rewrite the above theorem, first we express P( 71 (nydo,w,n, X,Y,t) and
Py(,?)(n,do,w,n,X,Y,t) in terms of Q2T+1(n,d0,w,77,X,Y,t) and QQT (n;dod, w,n, X, Y, 1).

PROPOSITION 5.2.6. Let m be an even integer. Let dy € F,, and n = £1.
(1) (1.1) Let I =0 or v(dy) = 0. Then

(m=2)/2 ~(1) !
- QW (ns do, e, n, X, Y1)
Pr(nll n;d ,El,n,X,Kt _ 2r+1\"'"% ) sy Ly
1( 0 ) ; ¢(m—2—27")/2(p_2)
(m—2)/2
s 5 Q%) (n; dod, €', x(d), X, Y, 1)
21760’T¢(m7272r)/2(p_2)

r=0 deU(m—1,m—1-2r,dy)
(1.2) Let v(dy) > 1. Then
O (nydod, e, mx(d), X, Y, t) =

for any d and

m—2)/2
( Z/ QQr-‘,—l(n; dngvnavat)

—0 ¢(m7272r)/2(p_2)

B (nido,e,m, X, Y, t) =

(2) (2.1) Let I =0 or v(dy) = 0. Then

PO (n;dy, el n, X, Y, 1)
m/2

1 +p(fm+2r)/2x(d) (0)
- Z Z 21*50,7-+50,m¢ 9 2(p_2) (71 dOd € anX(d)7 Xﬂ K t)
r=0 detd(m,m—2r,do) (m—2r)/

(m—2)/2
+ —Qs, n:dg, e, n, X, Y, t
Z ¢m 2r/2( ) 2+1( 0 " )

(2.2) Let v(dp) > 0. Then
ﬁv(n(,))(n;dOagvnaXaY?t) =0.

Proof. The assertions can be proved in a way similar to Theorem 5.2.5. |

COROLLARY. Let r be a non-negative integer. Let dy be an element of F,, and £ = 1.
(1) Let I =0 or v(dg) = 0. Then

O (n; do, €', €, X, Y, 1)
- -1 d myp=m’
=> > CO"OAD) E ™ 50) 1 dod, &, £x(d), X, Y1)

21=80,r—m+do.r g Om(p~2) r—2m
m=0 dGL{(Qr 2m,dop)

m+1 —m—m?

+Z ) 2(r 2m— 1(n;d0,5l,§,X7Y,t)),

and

r m,—m—m?
(_1) lp i ~2(1) 2 1
2T erams

r (_1)m+1p—7n m2 0
XY gheg oy rem (i dod £ €X(d), X,Y,)).
m=0 deU (2r+1,2m~+1,dy) m

Qéi)-&-l(n;dOagl7£7X7YV7t): (n;do,el,f,X,Y,t)




Page 28 of 39 HIDENORI KATSURADA AND HISA-AKI KAWAMURA

(2) Let v(dg) > 0. We have

W N G Vi oY .
Q2,’,+1(n,d075,§,X7}/,t) = WPQT-FI—Qm(n’dO’E’g’X’ Y, t),

m=0

and
D (n;dy,e,& X,Y,t) = 0.

Proof.  We prove the assertion (1) by induction on 7. Clearly the assertion holds for r = 0.
Let > 1 and suppose that the assertion holds for any 7’ < r. Fix [ and we simply write
QY) (nyd,e',€, X, Y, t) and P} (nyd, e, €, X, Y, 1) as Q5 ;(d; €) and Py} ,(d; ), respectively.

2i—j 2i—j 2i—j
Then by Proposition 5.2.6 and the induction hypothesis we have

: S D7 50
Qgrlﬂdo; §) = r+1 (do; €) Z QS ~2) Z sz(rl2i_2j+1(d0; £)
7 =0 j
(1P g
+ Z Z 91—30,r—i—j b; (p~2) PQ(T)—Qi—Qj (dod/§ SX(d/))

=0 d’€U(2r—2i+1,2j+1,do)
)DIED DI
=0 deU (2r+1,2i+1,do) 21-%0r—i g (p=2)
s

S Y e MO B et ()

=0 d’eU (2r—2i,2j,dod)

J+1 —j—3*
P
E : —2) PQ(i)—Qi—Qj—l(dod; SX(d))

j=0
By Proposition 5.2.1 and Corollary to Theorem 5.2.2 we have
(1 (1
Pz(r)—%—zj—1(d0d§ Ex(d) = PZ(T)—Qi—Zj—l(dO; £)
for d e U(2r +1,2i + 1,dp) and hence
(1
Z P2(r)72i72j71(d0d; &x(d)) = 0.
deU(2r+1,2i+1,do)
Moreover we have

(1 (x(d) +p)p7" 50
Z Z 921—60,r—i91—60,r—i—j+60,r— LPQ(T‘) 2i— Qj(dodd/ gX( ) (dl))
deU(2r+1,2i+1,do) d’ €U (2r—2i,24,dod)

(—1)p7" 5
= > W%(r) 22 (dod”; Ex(d")).
4" eU(2r,2i+24,do)

Hence we have

Q;)H(do;f) 2r+1(d07 + Z P2(r1 2m+1(do; §) Am

m=1

- 1
=Y g blam(dediéx(d)A

m=1deU(2r+1,2m+1,do)

g 1
-2 > mpz(g) om (dod; Ex(d)) B

m=0 deU (2r,2m,dy)
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m—1 . .. m . . .9
(1) (1)

where A, = — and B,, = — .

Z Pm—j(P~2)0;(p72) ]Z::O bm—j(p~2)dj(p~2)
(—1)mp‘m""2

Pm(p~?)

desired result for Qéi)ﬂ(n, do, €', €, X,Y,t). We also get the result for Qgg)(n;do,el,f,X, Y. ),
and this completes the induction. Similarly the assertion (2) can be proved.

We have A,, =

for m > 1, and B,, =1 or 0 according as m =0 or m > 1. Thus we get the

O
The following lemma follows from [12, Lemma 3.4]:

LEMMA 5.2.7. Let 1 be a positive integer, and q,U and ) variables. Then

]:[(1 o U*quf’H*l)Ul

i=1
l (bl( l—m m ,
_ —z+1 71— 1 m (m—m 2
- Z & (q—l qb) H H —Uq (=1) q( 2,
m=0 -m i=1 =1

The following corollary follows directly from the above lemma, and will be used in the proof
of Theorem 5.2.8.

COROLLARY. Lett and Y be variables, and p a prime number.
(1) For non-negative integers | and i such that ig +1 <1 < (n —2)/2 we have
(n—2-21)/2 o Hl+m 1( 21 1Y2) H(n 2l—2m— 2)/2( . p_Qi_n_1Y2t4)

1=10

(=1D)"p G (P™2)P(n—2-21)/2-m(P2)

m=0

Hlﬂ (1 7p2¢71y2)H(n 20— 2)/2( p72l7n72it4)(p2lfly2)(n72172)/2

1=1g i=1

Pn—2—21)/2(P72)

(2) For a non-negative integer | < (n — 2)/2 we have

(n—2-21)/2 I+m i— n—2l—2m— —2i—n—
o mZH't1 (1—p2 1Yz)H( 20—2 2)/2( —p 2 1th4)

_ — = =1
=1"p Pm(p~2 )¢(n7272l)/27m(p_2)

m=0
Hl‘—1(1 p2i= 1y2)H(n 20— 2)/2( _p—2l—n—21’—2t4)(p2l+1y2)(n—2l—2)/2
¢(n7272l)/2(p_2) '

(3) For a non-negative integer | < (n — 4)/2 we have

T Loy [T = PV LGP0 prai ey
—4)P
m—0 ¢m( )¢ n7472l)/27m(p 2)

_ Hi:1(1 _ p2i—1y2) HEZI2174)/2(1 _ p—2l—n—2i—2t4)(p2l+ly2)(n—2l—4)/2
¢(n—4—2l)/2(p72)

In the equations listed above, we understand that the product H?:a(*) =1ifa>b.
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THEOREM 5.2.8. Let the notation be as in Theorem 5.2.5.
(1) Suppose that v(dy) = 0. Put & = x(dp). Then

Ry_1(do,w, X, Y, t) = (1 — p~"t?)

2/ (n—2-210)/2
X { Z Z P (n; dod, w, x(d), X, Y, t) H (1= p~2-n=2igh)
1=0 deU(n—1,n—1—2l,do) pale}

— n—2l— 1— i— — —
y (pQI 1Y2)( 21—-2)/2 Hi:(l)(l _ p2 1Y2)pl 1/2X(d)y(1 + X(d)Ypl 1/2)
217000 (1 + Eop~1/2Y ) p(n—21-2)/2(p72)

(n4)/2 (n—d—21)/2
+ Z Pz(ll-s)-l(m do,w, 1, X,Y,t) H (1— p—2l—n—2zt4)
1=0 i=2

X

(pQI—ly2)(n—2l—2)/2 Hé:l(l _ in—ly2)(1 _ fop_l/zy)(l +p—21—2t2)
Bn—21—2)/2(p72) '

(2) Suppose that v(dy) > 0 and w = ¢. Put & = x(do). Then

Ryo1(do,w, X, Y, t) = (1 —p~"t?)

22 (n—2-21)/2
X { Z Z Pz(?)(n;dod,w,x(d),X, Y, t) H (1 — p2-n=2igt)
I=1 deU(n—1,n—1-21,do) i

YRR (1 g Y2 X (@)Y (L4 X (@)Y
2¢(n—21-2)/2(p™?)

(n—4)/2 (n—4—21)/2
+ Z Pz(zlll(n;dmw?LX,Kt) H (1 — p=2-n—2igd)
=0 =2

X

(p2lfly2)(n72l72)/2 H§:1(1 _ p2ifly2)(1 _|_p72l72t2)
P(n—21-2)/2(P?)

(3) Suppose that v(dy) > 0 and w = e. Then

(n—2)/2

Ro_1(do,w, X, Y, t) Z P (

21+1 TL dO,wa 17X3Kt)

(p2l+1y2)(n72l 2)/2 Hi:1( p2i— 1Y2) H(n 2— 2l)/2(1 7p72l7n72i72t4)

X
¢(n7272l)/2( —2)
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Proof. Suppose that v(dg) = 0 or w = ¢. Then by (1) of Theorem 5.2.5 and (1) of Corollary
to Proposition 5.2.6, we have

Ry_1(do,w; X, Yt)
(n—2)/2 2i-1y72 (n—2r 2)/2 —2i—n—1y 244
Z [T, (1= p> V) I (1-p S Day(do, di, Y 1)

5., 2
2 (b(””’” 2)/2(P7%) dy €U(n—1,n—2r—1,do)

X{Z S CDMR DT 0 s () (), X, V)

1—80,r—m+d0,r -2
m—Odgeu(2r2mdod1) 2 Sm(p?)

m+1 —m—-—m
+ Z ) P2(7%)—2m—1(n;d0dlawaX(dl)?X7Y;t))}
( 2)/2 i— —2r— L 9%im—
S S 1Y2)H5112 DR pry2
—0 ¢(n727"72)/2(p_2)
_ "L (=1)mp—mp—m
(1—&op 1/2y){ 3 (;(Z)PQQH o (1o, . 1, X, Y, 1)
m=0 m\P
r
(—1ymtip=m=m®
+ Z Z 21760,7‘—m,¢m( )P2(r) Qm(n; dodz, w, X(dQ)avat) :

m=0ds €U (2r+1,2m+1,do)

By Proposition 5.2.1 and Corollary to Theorem 5.2.2, for any d; € U we have
ﬁZ(:-)',-l—Qm(n§ dody, w, X(dl)’ XY, t) = ﬁQ(B,-I—Qm(n; do,w,1, XY, t)'

Moreover, if r > m > 0, then U(n — 1,n — 2r — 1,dp) =U(2r + 1,2m + 1,dod;) = U. Hence

(A) Ry_1(do,w,X,Y,t)

(n—2)/2 m i— n m —2i—n— J— m
B ' Hi=1(17p2 1}/2)1—15 12 2 )/2( —p 2 1Y2t4)p 2(71)
= Z S(n;m,dy,Y) —

= Gm(P72)d(n—2)/2-m(P™?)

(n-2)/2
+ > > P (nidod,w, x(d), X, Y, )

I=1 deu

(n—2-21)/2
x Z {2 Z Daiyom(do, dy, Y, 1)

m=0 d1 €U(21+2m,2m,do)
% (x(dn)x(d) + p~™)(=1)"p™™ — (1~ §op1/2Y)(—1)umm2}

Hiign(l 24— 1y2) H(n 20—2m— 2)/2(1_p—2i—n—1y2t4)
20m(P™2)b(n—2-21)2-m(P™2)

X

(n—2)/2
+ Z Py} (n;do,w, 1, X, Y, 1)

(n—2—2l)/2 )
X{ > (L =&p VYY) (1))

m=0
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Hl4+m(1 2z 1Y2) H(n 2l—2m— 2)/2( p72ifnfly2t4)

X =1
¢m( )¢(n 2—21)/2— m(p 2)
(n—4-21)/
- Z ZD21+2m+2 do,d, Y, t)(=1)"p~ ™" m’
deu
XHiiT(l 2z 1Y2) l—[(n 2l—2m— 4)/2(1_p—2i—n—1y2t4)
Pm(p=2)¢ n7472l)/27m(p_2) ’
where
S(n7 m, dO7Y)
dod ™) Doy (do,dy, Y, t _ _
_ 3 (x(dod1) +p )22 (do, du )7(17&)}) 12y Y= or

dieU(n—1,n—2m—1,do)
according as v(dy) = 0 or not. We have

(1 _ 50p71/2y)p7m(1 _p72n+2l+2m+ly2t4)

1 —m —2n m m
= Z Dopsomya(do, di, Y, t)p~™(1 — p=2n+2m+2042y () _ ;2+2m+1y2)
dieUd
= (1 — p~/2g)Y)pmtmH2H2(] _ pm2nt2mi2lily 2y

+(1 o _1/2§0Y)( —n+2m+2[+2)p21+m—n+ly2t2(1 _ p—ntQ)

forany 0 <1< (n—2)/2 and 0 < m < (n — 2] — 2)/2. Furthermore we have

1
3 > Darpam(do, dy, Y, 1) (x(da)x(d) +p~™) = (1 = &op~/?Y)p~
d,eUu

x(d)(1 —p—1/2§OY)(1 — p—ntQ)pH—m—l/Qy(l + X(d)ypl—l/Q)
N 1 pl+2m-1y?2

for any 1 <1< (n—2)/2,0<m < (n—20—2)/2 and d € Y. Suppose that v(dy) = 0. Then
for any m we have

1 —m
3 > Do (do,d1,Y,t)(x(d1)x(do) +p~™)
dieU(n—1,n—2m—1,do)

m &op™ V2V (1— p7lY2)(1— pt?)

7(]‘ 7€0p71/2y)p7 1 _pg,,”_lyg
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We remark that U(n —1,n — 21 — 1,dy) =U for I > 0 and U(n — 1,n — 1,dy) = {dp}. Hence

Ro—1(do,w, X, Y, 1) = &p?Y (1 = p~"t?)
(n—2)/2 1-1/2
~ n _ 14+ x(d)Yp
x Y > Py (n;dod,w, x(d), X, Y, 1)(1 — p~"t%)p' 1/2X(d)Y1+<§)1/2Y
1=0  deU(n—1,n—21—1,do) opP
(n—2-21)/2 +m— i— n—2l—2m— —2%i—m—
S e LIS P IR
21 %00 py (P~ )¢(n—2—2l)/2—m( )

m=0
(n—2)/2

+ Z P2(H)_1 77, d07 w, 17 X7 Y? t){(l - £0p71/2y)pin+2+2l

(n 2-21)/2 o Hitgn(l_in_lyg) H(n 2l—2m— 2)/2( _p—Qi—n—ly2t4)

—1 = i=1
* mzzo (=17 Sm(P™2)P(n—2—21)/2-m (P™?)
+Y2t2p2lfn+1(1 _ €0p71/2y)( _ 7nt2)

. (n422l)/2( - . Hl+m( p2-1Y?2) H(n 20—2m— 4)/2< iy 2y
m=0 ¢m( )¢(n—4—2l)/2—m( 2) .
Thus the assertion (1) follows from Corollary to Lemma 5.2.7. Similarly the assertion (2) can

be proved.
Suppose that v(dp) > 0 and w = e. Then by (2) of Theorem 5.2.5 and (2) of Corollary to

Proposition 5.2.6, we have
(n—2)/2
Ry 1(do,w, X, Y, t) Z BY) (n;do,w, 1, X, Y, t)

(n—2-21)/2 I+m i— n—2l—2m— —2i—n—
~ Z ((_1>mpm—m2) Hzil (1 _p2 1Y2)H1(2:12 ’ 2)/2(1 i ? 1Y2t4).
= Pm(P™2)P(n—2-21) /2-m (P™?)
Thus the assertion (3) follows from Corollary to Lemma 5.2.7. U

By Proposition 5.2.1 we immediately obtain:

COROLLARY. Let the notation be as in Theorem 5.2.8.
(1) Suppose that v(dy) = 0. Then

n/2—1
Roor(do, 0, X,Y,0) = (1—p ™) J[ (1—p~2n+2ish)

i=1

n—2)/2 |
{ O (R U VI L ENUR s

deU(n—1,n—1—21,do)
— n—2l— — i— — —
Y2 (2D - Y 2)p 2 (@)Y (14 x ()Y
217000 (1 4 Eop™/2Y ) pn—21-2)/2(p72)

(n—=2)/2 |
—7 1 —
+ Z H 23420 pll (do,w, 1, X, 1Y Y/?)

y (pQIfly2)(n72172)/2 Hi’:1(1 7p2ifly2)(1 _ é‘op*l/QY)(l +p72172t2) }

Pn—21-2)/2(p~?)
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(2) Suppose that v(dy) > 0 and w = ¢. Put & = x(dp). Then
n/2—1

j’énfl(dOMU,X,Kt) = (]_ _p—ntQ) H (1 _p—2n+2it4)
i=1

(n—2)/2 1
X { > [ —prrrest > P (dod, w, x(d), X, tY ~1/?)
=1 i=1 deU(n—1,n—1—21,do)
(pZIfly2)(n72l72)/2 Hi;i(l _ p%*lYQ)pl*l/QX(d)Y(l + X(d)ypl71/2)
20 (n—21—2)/2(p7?)

X

(n=2)/2 1
+ Z H(l _ pfnf2lf3+2z‘]54)132(Z1J)r1(do’w7 1,X, tY’l/z)
=0 i=1

_ n—2l— l i _9]_
X(le 1Y2)( 21—-2)/2 Hz‘:l(l_p% 1Y2)(1 +p 21 2t2) .
¢(n72172)/2(P_2)

(3) Suppose that v(dy) > 0 and w = €. Then

n/2 (n—2)/2
Rn—l(dOawaXv Y7 t) = (1 - §0p71/2y) H(l - p72n+2172t4) Z P2(l1—i)-1(d07w7 17X7 tyil/z)
i=1 =0

n—20— l i— l —2l—n+42i—
y (p2l+ly2)( 21—-2)/2 Hi:l(l _ p2 1y2) Hi:l(l —p 2l—n+2 3t4)
) .

¢(n—2—21)/2(]972

5.3. Explicit formulas for formal power series of Rankin-Selberg type

We prove our main result in this section.

THEOREM 5.3.1. Let dy € F,, and put & = x(do).

(1) We have
Hn—l(doa Ly Xv K t)
n/2—1
= ¢(n72)/2(p72)71(pilt)’“(do)(1 —p "t?) H (1 — p=2n+2igt)
i=1

(L+p22) (1 +p 38t —p 22X + X 1+ Y +Y )
(1—p2XY#)(1 - p2XY 1#2)(1 — p 2X 1Y) (1 — p 2X 1Y 12

1

X .

H?ﬁfl(l — p2LXYE2)(1 — p2LXY ~12)(1 — p 2L X -1Y#2)(1 — p-2i-1X -1y —142)

(2) We have
anl(dO7E>XaKt)
n/2—1
_ ¢(n—2)/2(p_2)_1(1 _ p—nt2) H (1 _p—2n+2zt4)(tp—1)u(do)
i=1

(1 _i_pfntQ)(l _‘_pfnflfth) _p71/27nt2§0(X _|_X71 +Y + Y*l)
(1-pXYt2)(1—p XY 1#2)(1 — p~"X~1Y2)(1 — p "X -1Y~142)
1

X
270 p 2 XYR) (1~ p XY 12)(1— p 2 XY E)(1 - p X1V 1)
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Proof. First suppose that w = «. For an integer [ put

V(,X,Y,t)
l
_ (1 _ t2p_2XY_1)(1 _ t2p_2X_1Y_1) H(]- _ t2p_2i_1XY_1)(]. _ t2p_2i_1X_1Y_1).
i=1
For d € U, put ng = x(d). Then by Theorem 5.2.2, and (1) of Corollary to Theorem 5.2.8, we
have

(n—2)/2 —1y2)(n—2)/2
= - - ; (p~'Y?) o
Ru_1(dy,w, X,Y,t) = (1 —p "t?) (1-p 2”+2’t4) —
11;[1 G(n—2)/2(p72)

(p~'Y2) DR — pm 26 Y) (L4 p 72 (pm Y T2 ) (1 — pO gtV )

+ (1-t2p2XY (1 —t2p2X-1Y 1)
(n—2)/2 1 n—2]—349i _ _ v 0
n Z Z [T (1 —p 23420 (p 1ty =2 (D) § (dod, 1, na, X, Y, 1)
V(l,X,Y,t)
=1 dGM(n 1,n—1—21,do)
(n—2) /2 (1 _p—n—21—3+2it4)(p—lty—l/Q)y(do)SéllJ)rl(do’ L XY, t2)
+ Z V(I—1X,Y,0) )

where 527- (dod, t,n4, X,Y,t) and Séi)_H(do, t, X,Y,t) are polynomials in ¢ of degree at most 2.
We note that & = 0 if v(dp) > 0. Hence R,,_1(dp,¢, X,Y,t) can be expressed as

Rp_1(dy, 1, X,Y,t)
(1—p ") [ 2201 — p= 2 (p~ 1y —1/2)0) S (dy, 1, X, Y, 1)
- 2 2(P 2V ((n = 2)/2,X,Y,1) ’
where S(dp, ¢, X,Y,t) is a polynomial in ¢ of degree at most n. Moreover it can be expressed as
(D) S(dg,t, X,Y,t?)
(p—ly2)(n—2)/2 HZ(ZI2)/2(1 _ t2p—2i—1Xy—1)(1 _ t2p—2i—1X—ly—1)
D(n—2)/2(p~2)
xEp VY (1 —t2p XY TH(1 - 2p2X Ty Y

(pfly2)(n72)/2 HZ(ZI2)/2(1 _ t2p*2i*1XY*1)(1 _ t2p72i71X71Y71)
¢(n—2)/2(p72)

x(1—p 1 26Y) (1 +p 22) (1 — p 2/ 2&t2Y 1)

+(1 = p " 3tNU(do, X, Y, 1, %)

+

with U(dp,t, X,Y,t) a polynomial in ¢. Hence by Theorem 5.1.4 we have

Hn—l(dOa L7X7 Kt) = (pilt)y(d())(l 7p7nt2) HZZ?_l(l 7p72n+2it4)

y S(do, 1, X, Y, 1%)
(1 —p2XY2) (1 —p2XY - 12)(1 — p2 X1V 2)(1 — p2X 1Y ~112)
1

X
H:L:/?_l(l _ p72i71XYt2)(1 _ p72i71XY71t2)(1 _ p72i71X71Yt2)(1 _ p72i71X71Y71t2)
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1
X .
Hz('ZIQ)/Q(l —pAXYE2)(1 - p-2X-1Y¢2)

Hence the power series H,,_1(dp, ¢, X,Y,t) is a rational function in X,Y and ¢, and is invariant
under the transformation Y +— Y ~!. This implies that the reduced denominator of the rational
function H,,_1(dp,t, X,Y,t) in ¢ is at most
(1—p2XY)(1 —p XY 1)1 — p2X Y2 (1 —p 2 X 'Y 14?)
n/2—1
% H (1 o p72i71XYt2)(1 o p72i71XY71t2)(1 *p72i71X71Yt2)(1 7p72i71X71Y71t2)
i=1

and therefore we have

2 (n—2)/2 —2i 2 —2i v —17/742
AL, A —p XY (A —p T XYY
(E S(d07 [/7Xa}/at2) = ai(d()vX) Y)t2z = _
) ; ¢(n—2)/2(p 2)

)

where a;(dp, X,Y) (i = 0,1,2) is a polynomial in X + X ! and Y + Y L. First assume v(dp) =
0. Then we can easily see ag(dy, X,Y) = 1. Then by substituting +p+3)/2 for ¢? in (D) and
(E), and comparing them, we obtain
1+ ay (d07 Xa Y)p(n+3)/2 + as (d07 X7 Y)pn+3
=1+ (p(n—3)/2 +p(7z—1)/2 _ §op"/2_1(X + X—l +Y + Y—l)) _’_pn—2.

Hence a1(do, X,Y)=p 2 +p 3 —p P 2(X + X1 +Y +Y N and ax(do, X,Y) =p°.
This proves the assertion in case v(dg) = 0. Next assume v(dg) > 0. Then in the same manner
as above we have ag(dp, X,Y) =1, and

1+ al(do,X,Y)p(n-‘r?))/Q + GQ(do,X, Y)pn+3 =1 ip(n_l)/Q

Hence az(dy, X,Y) = 0 and a1 (do, X,Y) = p~2. This proves the assertion in case v(dg) > 0.
Similarly the assertion for v(dp) = 0 and w = ¢ can be proved. Next suppose that v(dy) > 0

and w = €. Then the assertion can be proved similarly by using Theorems 5.1.4 and 5.2.2, and

(2) of Corollary to Theorem 5.2.8. O

6. Proof of Theorem 3.2

Now we give an explicit form of R(s,c,—1(¢1,(n),1)) for the first Fourier-Jacobi coefficient
¢1,,(hy,1 of the Duke-Imamoglu-Tkeda lift.

PROPOSITION 6.1. Let k and n be positive even integers. Given a Hecke eigenform h €
@z_n/QH/Q(FO(ZL)), let f € &op_,(I"V) be the primitive form as in Section 2. Then

R(s,h) = L(2s =2k +n+1,f,Ad) > len(ldo])*|do|*
doeF(~=1)"/?
~ H{(l +p72s+2k7n71)(1 + p72s+2k7n72xp(d0)2) _ 2p72s+kfn/2flxp(d0)cf(p)}.
p

Proof. The assertion can be proved by Theorems 4.2 and 5.3.1. |

THEOREM 6.2. Let k and n be positive even integers. Given a Hecke eigenform h €
e:—n/2+1/2(F0(4))7 let f € &y (I'V) and ¢y, (1)1 € J,:ulsp(F(7l_1)’J) be as in Section 2 and
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Section 3, respectively. Put A, = <%=+ H?ﬁfl €(2i). Then, we have

n—2
2

R(s,0n1(61, (1)) = M2 /2020 (s - 2k + 1) [ (s +2n — 4k +2 - 20) "
=1

n—2
2

x{R(s —n/2+1,h)((2s — 2k + 3) [ ] L(2s — 2k + 2 + 2, f, Ad)((2s — 2k + 2i + 2)
=1

n—2

H(=1)" 2B R(s, h)((25 — 2k +n+ 1) [ L(2s — 2k + 2i + 1, f,Ad)((2s — 2k + 2i + 1)}
=1

Proof. The assertion follows directly from Theorems 4.2 and 5.3.1, and Proposition 6.1. []

Proof of Theorem 3.2. The assertion trivially holds if n = 2. Suppose that n > 4. By

Theorem 6.2 we have
n/2—1

(F)  R(s,00-1(¢r,m.1)) = [ €(2i)207/20=27(s)
i=1

n

x QU(s)'R(s —n/2+1,h) [ A(2s — 2k +2i + 2, £, Ad)¢(25 — 2k + 2i + 2)
=1

n—2
2

H(=1)"28R(s, b) [ L(2s — 2k + 20 + 1, £, Ad)C(25 — 2k + 20 +1) o,

i=1

where
(n—2)/2 n-1
T(s)=Tr(2s+n—2k+1) [] Tr(4s+2n—4k+2-2i) [[Tr(2s—i+1),
=1 =1
and

U(s) =Tr(2s — 2k +3)I'r(2s —n+2)
(n—2)/2
x JI (To(2s—2k+2i+2)lc(2s — n+ 2i + 1)Tr(2s — 2k + 2i + 2)).
i=1
We note that R(s, h) is holomorphic at s = k — 1/2. Thus by taking the residue of the both-sides
of (F)at s=k—1/2, we get

n/2—1
b ~ . T(k—1/2)
Resg—r_1/2R(8,0pn— = 97k(n=2) 20) =
ess—k—1/2R (8, on-1(¢1,(n),1)) };[1 &( Z)u(k_l/z)

xResy_j_nj2r1/2R(s,h) [ A2i+1, f,Ad)E(2i + 1).
i=1
We easily see that
T(k-1/2) _ o(n—1)(n-2)/2
Uk —1/2) '
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By [31, Theorem 1], we have

ReSs:k_n/2+1/2R(S, h) = 22kin<h, h>

Thus we complete the proof.

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.
21.

22.

23.

24.

25.

26.
27.

28.
29.
30.
31.
32.

33.

References

. A. N. Andrianov, Quadratic forms and Hecke operators, Grundl. Math. Wiss., 286, Springer-Verlag, Berlin,

1987.

S. Bocherer, Eine Rationalitdtsatz fiir formale Heckereihen zur Siegelschen Modulgruppe, Abh. Math. Sem.
Univ. Hamburg 56 (1986), 35-47.

S. Bocherer, N. Dummigan, and R. Schulze-Pillot, Yoshida lifts and Selmer groups, J. Math. Soc. Japan
64(2012), 1353-1405.

S. Bocherer and F. Sato, Rationality of certain formal power series related to local densities, Comment.
Math. Univ. St.Paul. 36 (1987), 53-86.

J. Brown, Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture, Compos. Math. 143 (2007),
no. 2, 290-322.

. Y. Choie and W. Kohnen, On the Petersson norm of certain Siegel modular forms, Ramanujan J. 7 (2003),

45-48.

K. Doi, H. Hida and H. Ishii, Discriminant of Hecke fields and twisted adjoint L-values for GL(2), Invent.
Math. 134 (1998), 547-577.

M. Furusawa, On Petersson norms for some liftings, Math. Ann. 248 (1984), 543-548.

T. Ibukiyama, On Jacobi forms and Siegel modular forms of half integral weights, Comment. Math. Univ.
St.Paul. 41 (1992), no. 2, 109-124.

T. Ibukiyama and H. Katsurada, An explicit formula for Koecher-Maaf} Dirichlet series for Eisenstein series
of Klingen type, J. Number Theory, 102 (2003), 223-256.

T. Ibukiyama and H. Katsurada, An explicit formula for Koecher-Maaf Dirichlet series for the Ikeda lifting,
Abh. Math. Sem. Hamburg 74 (2004), 101-121.

T. Ibukiyama and H. Katsurada, Koecher-Maafi series for real analytic Siegel Eisenstein series,
Automorphic forms and zeta functions, 170-197, World Sci. Publ., Hackensack, NJ, 2006.

T. Ibukiyama and H. Saito, On zeta functions associated to symmetric matrices. I. An explicit form of
zeta functions, Amer. J. Math. 117 (1995), 1097-1155.

T. Ikeda, On the lifting of elliptic modular forms to Siegel cusp forms of degree 2n, Ann. of Math. 154
(2001), no. 3, 641-681.

T. Ikeda, Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture, Duke Math. J. 131
(2006), no. 3, 469-497.

T. Ikeda, On the lifting of hermitian modular forms, Compositio Math. 144 (2008) 1107-1154.

V. L. Kalinin, Analytic properties of the convolution products of genus g, Math. USSR Sbornik 48 (1984),
193-200.

H. Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999), 415-452.

H. Katsurada, Congruence of Siegel modular forms and special values of their standard zeta functions,
Math. Z. 259 (2008), 97-111.

H. Katsurada, Exact standard zeta values of Siegel modular forms Experiment. Math. 19(2010),65-76.
H. Katsurada, Congruence between Duke-Imamoglu-lIkeda lifts and non-Duke-Imamoglu-Ikeda lifts,
Preprint, 2013, arXiv:1101.3377v1[math. NT].

H. Katsurada, Explicit formulas for the twisted Koecher-Maass series of the Duke-Imamoglu-Ikeda lift and
their applications, in Math. Z. 276(2014) 1049-1075.

H. Katsurada and H. Kawamura, A certain Dirichlet series of Rankin-Selberg type associated with the
Ikeda lifting, J. Number Theory 128 (2008), 2025-2052.

H. Katsurada and H. Kawamura, On the Andrianov-type identity for power series attached to Jacobi forms
and its applications, Acta Arith. 145 (2010), 233-265.

H. Katsurada and H. Kawamura, Koecher-Maaf3 series of a certain half-integral weight modular form
related to the Duke-Imamoglu-Ikeda lift, Acta. Arith. 162(2014) 1-42.

Y. Kitaoka, Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J. 95 (1984), 73-84.

Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, 106. Cambridge University
Press, Cambridge, 1993

W. Kohnen, Modular forms of half-integral weight on I'g(4), Math. Ann. 248 (1980), 249-266.

A. Krieg, A Dirichlet series for modular forms of degree n, Acta Arith. 59 (1991), 243-259.

W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree 2,
Invent. Math. 95 (1989), 541-558.

W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent.
Math. 64 (1981), 175-198.

A. Murase and T. Sugano, Inner product formula for Kudla lift, Automorphic forms and zeta functions,
280-313, World Sci. Publ., Hackensack, NJ, 2006.

T. Oda, On the poles of Andrianov L-functions, Math. Ann. 256 (1981), 323-340.



34.

35.

36.

37.

38.

40.

IKEDA’S CONJECTURE Page 39 of 39

S. Rallis, L-functions and Oscillator representation, Lecture Notes in Math., Vol. 1245, Springer-Verlag,
Berlin, 1987.

R. Schulze-Pillot, Local theta correspondence and the theta lifting of Duke-Imamoglu and Ikeda, Osaka J.
Math. 45(2008), 965-971.

G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math.
29 (1976), no. 6, 783-804

G. Shimura Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs,
82, Amer. Math. Soc., 2000.

T. Yamazaki, Rankin-Selberg method for Siegel cusp forms, Nagoya Math. J. 120 (1990), 35-49.

. D. Zagier, Modular forms whose Fourier coefficients involve zeta functions of quadratic fields, Modular
functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 105-169. Lecture
Notes in Math., Vol. 627, Springer, Berlin, 1977.

V. G. Zhuravlév, Euler expansions of theta-transformations of Siegel modular forms of half integer weight
and their analytic properties, Math. USSR Sbornik 51 (1985), 169-190.

Hidenori Katsurada Hisa-aki Kawamura
Muroran Institute of Technology Department of Mathematics, Graduate
27-1 Mizumoto, Muroran 050-8585, Japan School of Science, Hiroshima University

hidenori@mmm.muroran-it.ac.jp I- 77-31 nggim}g ;1:;’ Higashi-Hiroshima

hisa@hiroshima-u.ac.jp



