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Ikeda’s conjecture on the period of the Duke-Imamoḡlu-Ikeda lift

Hidenori Katsurada and Hisa-aki Kawamura

Abstract

Let k and n be positive even integers. For a cuspidal Hecke eigenform h in the Kohnen plus
space of weight k − n/2 + 1/2 for Γ0(4), let In(h) be the Duke-Imamoḡlu-Ikeda lift of h in
the space of cusp forms of weight k for Spn(Z), and f the primitive form of weight 2k − n
for SL2(Z) corresponding to h under the Shimura correspondence. We then express the ratio
〈In(h), In(h)〉/〈h, h〉 of the period of In(h) to that of h in terms of special values of certain
L-functions of f . This proves the conjecture proposed by Ikeda concerning the period of the
Duke-Imamoḡlu-Ikeda lift.

1. Introduction

One of the fascinating problems in the theory of modular forms is to find the relation
between the periods (or the Petersson products) of cuspidal Hecke eigenforms which are related
with each other through their L-functions. In particular, there are several important results
concerning the relation between the period of a cuspidal Hecke eigenform g for an elliptic
modular group Γ ⊆ SL2(Z) and that of its lift ĝ. Here, by a lift of g we mean a cuspidal Hecke
eigenform for another modular group Γ ′ (e.g. the symplectic group, the orthogonal group, the
unitary group) such that a certain automorphic L-function of ĝ can be expressed in terms of
some L-functions related with g. Thus we propose the following problem:

Problem A. Let 〈ĝ, ĝ〉 (resp. 〈g, g〉) be the period of ĝ (resp. g). Then express the ratio
〈ĝ, ĝ〉/〈g, g〉e in terms of arithmetic invariants of g, for example, the special values of certain
L-functions related with g for some integer e.

For instance, Zagier [39] solved Problem A for the Doi-Naganuma lift f̂ of a primitive form
f of integral weight. Murase and Sugano [32] also solved Problem A for the Kudla lift f̂ of a
primitive form f of integral weight. In addition, Kohnen and Skoruppa [30] solved Problem A
in the case where ĥ is the Saito-Kurokawa lift of a cuspidal Hecke eigenform h in the Kohnen
plus space of half-integral weight.

We should also note that this type of period relation is not only interesting and important
in its own right but also plays an important role in arithmetic theory of modular forms.
For instance, by using the result of Kohnen and Skoruppa, Brown [5] and Katsurada [19]
independently proved a modification of Harder’s conjecture on congruences occurring between
Saito-Kurokawa lifts and non-Saito-Kurokawa lifts under mild conditions. Furthermore, by
using such congruences, Brown constructed a non-trivial element of the Bloch-Kato Selmer
group attached to a modular two-dimensional Galois representation. A similar type of result
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can be found in [3]. We note that this type of congruence relation was conjectured by Doi,
Hida and Ishii [7] in the case where f̂ is the Doi-Naganuma lift of f.

Now let us explain our main result briefly. Let k and n be positive even integers. Let h
be a cuspidal Hecke eigenform in the Kohnen plus space of weight k − n/2 + 1/2 for Γ0(4),
and f the primitive form of weight 2k − n for SL2(Z) corresponding to h under the Shimura
correspondence. Then Ikeda [14] constructed a cuspidal Hecke eigenform In(h) of weight k for
Spn(Z) whose standard L-function can be expressed as ζ(s)

∏n
i=1 L(s + k − i, f), where ζ(s) is

Riemann’s zeta function and L(s, f) is Hecke’s L-function of f. The existence of such a Hecke
eigenform was conjectured by Duke and Imamoḡlu in their unpublished paper. We call In(h)
the Duke-Imamoḡlu-Ikeda lift of h (or of f). (See also the remark after Theorem 2.1.) We note
that I2(h) is nothing but the Saito-Kurokawa lift of h. Then, as a generalization of the result
of Kohnen and Skoruppa, Ikeda among others proposed the following remarkable conjecture in
[15]:

The ratio 〈In(h), In(h)〉/〈h, h〉 should be expressed, up to elementary factor, as

L(k, f)ζ(n)
n/2−1∏

i=1

L(2i + 1, f,Ad)ζ(2i),

where L(s, f,Ad) is the adjoint L-function of f (cf. Conjecture A).
The aim of this paper is to prove the above conjecture (cf. Theorem 2.2). We note that In(h)
is not likely to be realized as a theta lift except in the case n = 2 (cf. Schulze-Pillot [35]).
Therefore we cannot adapt a general method of Rallis [34] for our purpose. We also note that
the conjecture cannot be explained within the framework of motives since there is no principle
attaching motives to half-integral weight modular forms so far. Taking these remarks into
account, we take an approach based on the classical Rankin-Selberg method to our problem.
Namely, the method we use is to give an explicit formula for the Rankin-Selberg series of a
certain half-integral weight Siegel modular form related with In(h), and to compute its residue
at a pole. We explain it more precisely.

First let φIn(h),1 be the first coefficient of the Fourier-Jacobi expansion of In(h) and
σn−1(φIn(h),1) the cusp form in the generalized Kohnen plus space of weight k − 1/2 for
Γ

(n−1)
0 (4) ⊂ Spn−1(Z) corresponding to φIn(h),1 under the Ibukiyama isomorphism σn−1. For

the precise definition of the generalized Kohnen plus space and the Ibukiyama isomorphism,
see Section 3. Then we have the following Fourier expansion of σn−1(φIn(h),1) :

σn−1(φIn(h),1)(Z) =
∑
A

c(A) exp(2π
√
−1tr(AZ)),

where A runs over all positive definite half-integral matrices of degree n − 1, and tr denotes
the trace of a matrix. Then, in Section 3, we consider the following Rankin-Selberg series
R(s, σn−1(φIn(h),1)) of σn−1(φIn(h),1) :

R(s, σn−1(φIn(h),1)) =
∑
A

|c(A)|2

e(A)(det A)s
,

where A runs over all the SLn−1(Z)-equivalence classes of positive definite half-integral
matrices of degree n − 1 and e(A) denotes the order of the unit group of A in SLn−1(Z). In
the integral weight Siegel modular form case, the analytic properties of this type of Dirichlet
series have been studied by many people (e.g. Kalinin [17]). Similarly to that case, we also
get analytic properties of R(s, σn−1(φIn(h),1)). While such a Dirichlet series with no Euler
product has never been regarded as significant as automorphic L-functions until now, it should
be emphasized that it plays a very important role in the proof of our main result. Indeed, as
one of the most significant properties, R(s, σn−1(φIn(h),1)) has a simple pole at s = k − 1/2
with residue expressed in terms of the period of φIn(h),1 (cf. Corollary to Proposition 3.1).
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Hence, by virtue of the main identity in [23], this enables us to rewrite Ikeda’s conjecture
in terms of the relation between the residue of R(s, σn−1(φIn(h),1)) at s = k − 1/2 and the
period of h (cf. Theorem 3.2). In order to prove Theorem 3.2, we will get an explicit formula
for R(s, σn−1(φIn(h),1)) in terms of L(s, f,Ad) and L(s, f). To get it, in Section 4, we reduce
our computation to that of certain formal power series, which we call formal power series
of Rankin-Selberg type, associated with local Siegel series similarly to [11, 12] (cf. Theorem
4.2). Section 5 is devoted to the computation of them. This computation is similar to those
in [11, 12], but is more elaborate and longer than them. In particular we should be careful in
dealing with the case p = 2. After overcoming such obstacles we can get explicit formulas for
formal power series of Rankin-Selberg type (cf. Theorem 5.3.1). In Section 6, by using Theorem
5.3.1, we immediately get an explicit formula for R(s, σn−1(φIn(h),1)) (cf. Theorem 6.2), and
by taking the residue of it at k − 1/2 we prove Theorem 3.2, and therefore prove Conjecture
A (cf. Theorem 6.3).

We note that we can also give an explicit formula for the Rankin-Selberg series of In(h).
However, it seems difficult to prove Conjecture A directly from such a formula.

By Theorem 2.2, we can give a refined version of a result concerning the algebraicity of
〈f, f〉n/2/〈In(h), In(h)〉 due to Choie and Kohnen (cf. Theorem 2.3). Moreover we can apply
this result to characterize prime ideals giving congruences between Duke-Imamoḡlu-Ikeda lifts
and non-Duke-Imamoḡlu-Ikeda lifts. This will be discussed in [21].

Acknowledgement. The authors thank T. Ikeda, Y. Ishikawa, Y. Mizuno and S. Yamana
for their valuable comments. The authors are also thankful to an anonymous referee, whose
comments made our paper more readable.

Notation. Let R be a commutative ring. We denote by R× and R∗ the semigroup of non-
zero elements of R and the unit group of R, respectively. We also put S2 = {a2 | a ∈ S} for a
subset S of R. We denote by Mmn(R) the set of m × n-matrices with entries in R. In particular
put Mn(R) = Mnn(R). Put GLm(R) = {A ∈ Mm(R) | det A ∈ R∗}, where det A denotes the
determinant of a square matrix A. For an m × n-matrix X and an m × m-matrix A, we write
A[X] = tXAX, where tX denotes the transpose of X. Let Sn(R) denote the set of symmetric
matrices of degree n with entries in R. Furthermore, if R is an integral domain of characteristic
different from 2, let Ln(R) denote the set of half-integral matrices of degree n over R, that is,
Ln(R) is the subset of symmetric matrices of degree n with entries in the field of fractions of
R whose (i, j)-component belongs to R or 1

2R according as i = j or not. In particular, we put
Ln = Ln(Z), and Ln,p = Ln(Zp) for a prime number p. For a subset S of Mn(R) we denote
by S× the subset of S consisting of non-degenerate matrices. If S is a subset of Sn(R) with R
the field of real numbers, we denote by S>0 (resp. S≥0) the subset of S consisting of positive
definite (resp. semi-positive definite) matrices. The group GLn(R) acts on the set Sn(R) in the
following way:

GLn(R) × Sn(R) 3 (g,A) 7−→ A[g] ∈ Sn(R).

Let G be a subgroup of GLn(R). For a G-stable subset B of Sn(R) we denote by B/G the set
of equivalence classes of B under the action of G. We sometimes use the same symbol B/G to
denote a complete set of representatives of B/G. We abbreviate B/GLn(R) as B/∼ if there is
no fear of confusion. Let R′ be a subring of R. Then two symmetric matrices A and A′ with
entries in R are said to be equivalent over R′ with each other and write A ∼R′ A′ if there is
an element X of GLn(R′) such that A′ = A[X]. We also write A ∼ A′ if there is no fear of

confusion. For square matrices X and Y we write X⊥Y =
(

X O
O Y

)
.

For an integer D ∈ Z such that D ≡ 0 or ≡ 1 mod 4, let dD be the discriminant of Q(
√

D),
and put fD =

√
D
dD

. We call an integer D a fundamental discriminant if it is the discriminant
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of some quadratic extension of Q or 1. For a fundamental discriminant D, let
(

D
∗

)
be the

character corresponding to Q(
√

D)/Q. Here we make the convention that
(

D
∗

)
= 1 if D = 1.

We put e(x) = exp(2π
√
−1x) for x ∈ C. For a prime number p we denote by νp(∗) the

additive valuation of Qp normalized so that νp(p) = 1, and by ep(∗) the continuous additive
character of Qp such that ep(x) = e(x) for x ∈ Z[p−1].

For a non-negative integer r we define a polynomial φr(x) in x by φr(x) =
∏r

i=1(1 − xi).
Here we understand that φ0(x) = 1.

2. Ikeda’s conjecture on the Period of the Duke-Imamoḡlu-Ikeda lift

Put Jn =
(

On −1n

1n On

)
, where 1n and On denotes the unit matrix and the zero matrix of

degree n, respectively. Furthermore, put

Γ (n) = Spn(Z) = {M ∈ GL2n(Z) | Jn[M ] = Jn}.

Let Hn be Siegel’s upper half-space of degree n. Let l be an integer or half integer. For a
congruence subgroup Γ of Γ (n), we denote by Ml(Γ ) the space of holomorphic modular forms
of weight l for Γ. We denote by Sl(Γ ) the subspace of Ml(Γ ) consisting of cusp forms. For
F, G ∈ Sl(Γ ) we define the Petersson product 〈F,G〉 by

〈F,G〉 = [Γ (n) : Γ{±12n}]−1

∫
Γ\Hn

F (Z)G(Z) det(Im(Z))ld∗Z,

where d∗Z denotes the invariant volume element on Hn defined as usual. We call 〈F, F 〉 the
period of F. For a positive integer N, let

Γ
(n)
0 (N) =

{(
A B
C D

)
∈ Γ (n)

∣∣∣∣ C ≡ On mod N

}
,

and in particular put Γ0(N) = Γ
(1)
0 (N). Let p be a prime number. For a non-zero element

a ∈ Qp we put χp(a) = 1,−1, or 0 according as Qp(a1/2) = Qp,Qp(a1/2) is an unramified
quadratic extension of Qp, or Qp(a1/2) is a ramified quadratic extension of Qp. We note
that χp(D) =

(
D
p

)
if D is a fundamental discriminant. For an element T of L×

n,p with n

even, put ξp(T ) = χp((−1)n/2 det T ). Let T be an element of L×
n . Then (−1)n/2 det(2T ) ≡ 0 or

≡ 1 mod 4, and we define dT and fT as dT = d(−1)n/2 det(2T ) and fT = f(−1)n/2 det(2T ), respectively.
For an element T of L×

n,p, there exists an element T̃ of L×
n such that T̃ ∼Zp T. We then put

ep(T ) = νp(f
eT ), and [dT ] = d

eT mod Z∗
p
2. They do not depend on the choice of T̃ . We note that

(−1)n/2 det(2T ) can be expressed as (−1)n/2 det(2T ) = dp2ep(T ) mod Z∗
p
2 for any d ∈ [dT ].

For each T ∈ L×
n,p we define the local Siegel series bp(T, s) by

bp(T, s) =
∑

R∈Sn(Qp)/Sn(Zp)

ep(tr(TR))p−νp(µp(R))s,

where µp(R) = [RZn
p + Zn

p : Zn
p ]. We remark that there exists a unique polynomial Fp(T,X)

in X such that

bp(T, s) = Fp(T, p−s)
(1 − p−s)

∏n/2
i=1(1 − p2i−2s)

1 − ξp(T )pn/2−s

(cf. Kitaoka [26]). We then define a polynomial F̃p(T,X) in X and X−1 as

F̃p(T,X) = X−ep(T )Fp(T, p−(n+1)/2X).
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We remark that F̃p(B,X−1) = F̃p(B,X) (cf. [18]).

Now let k be a positive even integer. Let

h(z) =
∑

m∈Z>0

(−1)n/2m≡0,1 mod 4

ch(m)e(mz)

be a Hecke eigenform in the Kohnen plus space S+
k−n/2+1/2(Γ0(4)) and

f(z) =
∞∑

m=1

cf (m)e(mz)

the primitive form in S2k−n(Γ (1)) corresponding to h under the Shimura correspondence (cf.
Kohnen [28]). For the precise definition of the Kohnen plus space, we give it in Section 3
in more general settings. Let αp ∈ C such that αp + α−1

p = p−k+n/2+1/2cf (p), which we call
the Satake p-parameter of f . Then for a Dirichlet character χ we define Hecke’s L-function
L(s, f, χ) twisted by χ as

L(s, f, χ) =
∏
p

{(1 − αpp
−s+k−n/2−1/2χ(p))(1 − α−1

p p−s+k−n/2−1/2χ(p))}−1.

In particular, if χ is the principal character we write L(s, f, χ) as L(s, f) as usual. We define
a Fourier series In(h)(Z) in Z ∈ Hn by

In(h)(Z) =
∑

T∈(Ln)>0

cIn(h)(T )e(tr(TZ)),

where

cIn(h)(T ) = ch(|dT |)fk−n/2−1/2
T

∏
p

F̃p(T, αp).

Then Ikeda [14] showed the following:

Theorem 2.1. In(h)(Z) is a Hecke eigenform in Sk(Γ (n)) whose standard L-function
coincides with

ζ(s)
n∏

i=1

L(s + k − i, f).

We note that I2(h) coincides with the Saito-Kurokawa lift of h. Originally, starting from a
primitive form g in S2k−n(Γ (1)), Ikeda constructed the In(g̃), where g̃ is a Hecke eigenform in
S+

k−n/2+1/2(Γ0(4)) corresponding to g under the Shimura correspondence. We note that g̃ is
uniquely determined, only up to constant multiple, by g, and therefore so is In(g̃).

To formulate Ikeda’s conjecture, put
ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = ΓR(s)ΓR(s + 1).

We note that ΓC(s) = 2(2π)−sΓ(s). Furthermore put
ξ(s) = ΓR(s)ζ(s) and ξ̃(s) = ΓC(s)ζ(s).

For a Dirichlet character χ put

Λ(s, f, χ) =
ΓC(s)L(s, f, χ)

τ(χ)
,
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where τ(χ) is the Gauss sum of χ. In particular, we simply write Λ(s, f, χ) as Λ(s, f) if χ is
the principal character. Furthermore, we define the adjoint L-function L(s, f, Ad) as

L(s, f,Ad) =
∏
p

{(1 − α2
pp

−s)(1 − p−s)(1 − α−2
p p−s)}−1,

and put
Λ(s, f, Ad) = ΓR(s + 1)ΓC(s + 2k − n − 1)L(s, f, Ad),

and
Λ̃(s, f, Ad) = ΓC(s)ΓC(s + 2k − n − 1)L(s, f, Ad).

We note that
Λ(1 − s, f, Ad) = Λ(s, f, Ad).

Then Ikeda [15] among others proposed the following conjecture:

Conjecture A. We have

〈In(h), In(h)〉
〈h, h〉

= 2α(n, k)Λ(k, f)ξ̃(n)
n/2−1∏

i=1

Λ̃(2i + 1, f, Ad) ξ̃(2i),

where α(n, k) = −(n − 3)(k − n/2) − n + 1.

Remark. The primitive form f as well as In(h) is uniquely determined by h. Therefore
there is no ambiguity in the above formulation. Conjecture A is compatible with the period
formula for the Saito-Kurokawa lift proved by Kohnen and Skoruppa [30] (see also Oda [33]).
In [15], Ikeda proposed a more general conjecture for the period of the Miyawaki-Ikeda lift.
We also remark that he constructed a lifting from an elliptic modular form to the space of
Hermitian modular forms, and proposed a conjecture similar to the above (cf. [16]).

Now our main result in this paper is the following:

Theorem 2.2. Conjecture A holds true for any positive even integer n.

By the above theorem, we obtain the following result:

Theorem 2.3. Let the notation be as above. Let D be a fundamental discriminant
such that (−1)n/2D > 0. For i = 1, ..., n/2 − 1, put L(2i + 1, f, Ad) = Λ̃(2i + 1, f, Ad)/〈f, f〉.
Then

|ch(|D|)|2〈f, f〉n/2

〈In(h), In(h)〉
=

√
−1

an |D|k−n/2Λ(k − n/2, f, (D
∗ ))

2bn,kΛ(k, f)ξ̃(n)
∏n/2−1

i=1 L(2i + 1, f, Ad)ξ̃(2i)
,

where an = 0 or 1 according as n ≡ 0 mod 4 or n ≡ 2 mod 4, and bn,k is some integer depending
only on n and k.

Proof. By [31, Theorem 1], for any such D we have

|ch(|D|)|2

〈h, h〉
=

√
−1

an 2k−n/2−1|D|k−n/2Λ(k − n/2, f, (D
∗ ))

〈f, f〉
.

Thus, by Theorem 2.2, the assertion holds.



IKEDA’S CONJECTURE Page 7 of 39

It is well-known that the value
Λ(k − n/2, f, (D

∗ ))
√
−1

n/2
Λ(k, f)

and the values L(2i + 1, f, Ad) for i =

1, ..., n/2 − 1 are algebraic numbers and belong to the Hecke field Q(f) if k > n (cf. Shimura
[36, 37]). Thus we obtain

Corollary. Assume that k > n and that all the Fourier coefficients of h belong to Q(f).

Then the ratio
〈f, f〉n/2

〈In(h), In(h)〉
belongs to Q(f).

We note that we can multiply some non-zero complex number c with h so that all the
Fourier coefficients of ch belong to Q(f). We also note that the above result has been proved
by Furusawa [8] in case n = 2, and by Choie and Kohnen [6] under the assumption k > 2n in
general case. Thus Theorem 2.3 and its corollary can be regarded as a refined version of their
results.

3. Rankin-Selberg series of the image of the first Fourier-Jacobi coefficient of the
Duke-Imamoḡlu-Ikeda lift under the Ibukiyama isomorphism

To prove Conjecture A, we rewrite it in terms of the residue of the Rankin-Selberg series of
a certain half-integral weight Siegel modular form. Let l an m be positive integers. Let F (Z)
be an element of Sl−1/2(Γ

(m)
0 (4)). Then F (Z) has the following Fourier expansion:

F (Z) =
∑

A∈(Lm)>0

cF (A)e(tr(AZ))

We define the Rankin-Selberg series R(s, F ) of F as

R(s, F ) =
∑

A∈(Lm)>0/SLm(Z)

|cF (A)|2

e(A)(detA)s
,

where e(A) = #{X ∈ SLm(Z) | A[X] = A}.
Put

L′
m = {A ∈ Lm | A ≡ − trr mod 4Lm for some r ∈ Zm}.

For A ∈ L′
m, the integral vector r ∈ Zm in the above definition is uniquely determined modulo

2Zm by A, and is denoted by rA. Moreover it is easily shown that the matrix(
1 rA/2

trA/2 (trArA + A)/4

)
which will be denoted by A(1), belongs to Lm+1, and that its SLm+1(Z)-equivalence class is
uniquely determined by A. In particular, if m is odd and A ∈ (L′

m)×, put d
(1)
A = dA(1) , and

f
(1)
A = fA(1) . Now we define the generalized Kohnen plus space of weight l − 1/2 for Γ

(m)
0 (4) as

S+
l−1/2(Γ

(m)
0 (4)) = {F ∈ Sl−1/2(Γ

(m)
0 (4)) | cF (A) = 0 unless A ∈ (−1)lL′

m}.

Now, for the rest of this section, suppose that l is even. Then there exists an isomorphism from
the space of Jacobi forms of index 1 to the generalized Kohnen plus space due to Ibukiyama.
To explain this, let Γ

(m)
J = Γ (m) n Hm(Z), where Hm(Z) is the subgroup of the Heisenberg

group Hm(R) consisting of all elements with integral entries.
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Let Jcusp
l, N (Γ (m)

J ) denote the space of Jacobi cusp forms of weight l and index N for the Jacobi
group Γ

(m)
J . Let φ(Z, z) ∈ J cusp

l, 1 (Γ (m)
J ). Then we have the following Fourier expansion:

φ(Z, z) =
∑

T∈Lm, r∈Zm,
4T−trr>0

cφ(T, r)e(tr(TZ) + rtz).

We say that two elements (T, r) and (T ′, r′) of Lm × Zm are SLm(Z)-equivalent and write
(T, r) ∼ (T ′, r′) if there exists an element g ∈ SLm(Z) such that T ′ − tr′r′/4 = (T − trr/4)[g].
We then define a Dirichlet series R(s, φ) as

R(s, φ) =
∑
(T,r)

|cφ(T, r)|2

e(T − trr/4)(det(T − trr/4))s
,

where (T, r) runs over a complete set of representatives of SLm(Z)-equivalence classes of Lm ×
Zm such that T − trr/4 ∈ (Lm)>0. Now φ(Z, z) can also be expressed as follows:

φ(Z, z) =
∑

r∈Zm/2Zm

hr(Z)θr(Z, z),

where hr(Z) is a holomorphic function on Hm, and

θr(Z, z) =
∑

λ∈M1,m(Z)

e(tr(Z[t(λ + 2−1r)]) + 2(λ + 2−1r)tz).

We note that hr(Z) have the following Fourier expansion:

hr(Z) =
∑
T

cφ(T, r)e(tr((T − trr/4)Z)),

where T runs over all elements of Lm such that T − trr/4 is positive definite. Put h(Z) =
(hr(Z))r∈Zm/2Zm . Then h is a vector valued modular form of weight l − 1/2 for Γ (m), that is,
for each γ = ( A B

C D ) ∈ Γ (m) we have

h(γ(Z)) = J(γ, Z)h(Z).

Here J(γ, Z) is an m × m matrix whose entries are holomorphic functions on Hm such that
tJ(γ, Z)J(γ, Z) = |j(γ, Z)|2l−11m, where j(γ, Z) = det(CZ + D). In particular, we have∑

r∈Zm/2Zm

hr(γ(Z))hr(γ(Z)) = |j(γ, Z)|2l−1
∑

r∈Zm/2Zm

hr(Z)hr(Z).

We then put

σm(φ)(Z) =
∑

r∈Zm/2Zm

hr(4Z).

Then Ibukiyama [9] showed the following:
The mapping σm gives a C-linear isomorphism

σm : J cusp
l, 1 (Γ (m)

J ) ' S+
l−1/2(Γ

(m)
0 (4)),

which is compatible with the actions of Hecke operators.
We call σm the Ibukiyama isomorphism. We note that

σm(φ) =
∑

A∈(L′
m)>0

cφ((A + trArA)/4, rA)e(tr(AZ)),

where r = rA denotes an element of Zm such that A + trArA ∈ 4Lm. This rA is uniquely
determined up to modulo 2Zm, and cφ((A + trArA)/4, rA) does not depend on the choice of
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the representative of rA mod 2Zm. Furthermore, we have

R(s, σm(φ)) =
∑

A∈(L′
m)>0/SLm(Z)

|cφ((A + trr)/4, r)|2

e(A) det As
,

and hence
R(s, φ) = 22smR(s, σm(φ)).

Now for φ, ψ ∈ Jcusp
l, 1 (Γ (m)

J ) we define the Petersson product of φ and ψ by

〈φ, ψ〉 =
∫
Γ

(m)
J \(Hm×Cm)

φ(Z, z)ψ(Z, z) det(v)l−m−2 exp(−4πv−1[ty]) dudvdxdy,

where Z = u +
√
−1v ∈ Hm, z = x +

√
−1y ∈ Cm. Now we consider the analytic properties of

R(s, φ).

Proposition 3.1. Let φ(Z, z) ∈ J cusp
l, 1 (Γ (m)

J ). Put

R(s, φ) = γm(s)ξ(2s + m + 2 − 2l)
[m/2]∏
i=1

ξ(4s + 2m + 4 − 4l − 2i)R(s, φ),

where

γm(s) = 21−2sm
m∏

i=1

ΓR(2s − i + 1).

Then the following assertions hold:
(1) R(s, φ) has a meromorphic continuation to the whole s-plane, and has the following

functional equation:

R(2l − 3/2 − m/2 − s, φ) = R(s, φ).

(2) R(s, φ) is holomorphic for Re(s) > l − 1/2, and has a simple pole at s = l − 1/2 with

the residue 2m+1
∏[m/2]

i=1 ξ(2i + 1)〈φ, φ〉.

Proof. The assertions can be proved in the same manner as in Kalinin [17], but for the
convenience of readers we here give an outline of the proof. We define the non-holomorphic
Siegel Eisenstein series E(m)(Z, s) by

E(m)(Z, s) = (det Im(Z))s
∑

M∈Γ
(m)
∞ \Γ (m)

|j(M,Z)|−2s,

where Γ
(m)
∞ =

{(
A B

Om D

)
∈ Γ (m)

}
. For the φ(Z, z) let h(Z) = (hr(Z))r∈Zm/2Zm be as

above. Since h is a vector valued modular form for Γ(m), we can apply the Rankin-Selberg
method and we obtain

R(s, φ) =
∫
Γ(m)\Hm

∑
r∈Zm/2Zm

hr(Z)hr(Z)Im(Z)l−1/2E(m)(Z, s)d∗Z,

where

E(m)(Z, s) = ξ(2s + m + 2 − 2l)
[m/2]∏
i=1

ξ(4s + 2m + 4 − 4l − 2i)E(m)(Z, s + m/2 + 1 − l).

It is well-known that E(m)(Z, s) has a meromorphic continuation to the whole s-plane, and has
the following functional equation:
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E(m)(Z, 2l − 3/2 − m/2 − s) = E(m)(Z, s).

Thus the first assertion (1) holds. Furthermore it is holomorphic for Re(s) > l − 1/2, and has
a simple pole at s = l − 1/2 with the residue

∏[m/2]
i=1 ξ(2j + 1). We note that

〈φ, φ〉 = 2−m−1

∫
Γ (m)\Hm

∑
r∈Zm/2Zm

hr(Z)hr(Z)Im(Z)l−1/2d∗Z.

Thus the second assertion (2) holds.

For F ∈ S+
l−1/2(Γ

(m)
0 (4)) put

R(s, F ) =
m∏

i=1

ΓR(2s − i + 1)ξ(2s + m + 2 − 2l)
[m/2]∏
i=1

ξ(4s + 2m + 4 − 4l − 2i)R(s, F ).

We note that
R(s, σm(φ)) = 2−1R(s, φ)

for φ ∈ J cusp
l, 1 (Γ (m)

J ). Thus we obtain

Corollary. Let the notation and the assumption be as in Proposition 3.1. Then
R(s, σm(φ)) has a meromorphic continuation to the whole s-plane, and has the following
functional equation:

R(2l − 3/2 − m/2 − s, σm(φ)) = R(s, σm(φ)).

Furthermore it is holomorphic for Re(s) > l − 1/2, and has a simple pole at s = l − 1/2 with

the residue 2m
∏[m/2]

i=1 ξ(2i + 1)〈φ, φ〉.

Let n and k be positive even integers. Let h be a Hecke eigenform in S+
k−n/2+1/2(Γ0(4)), and

f and In(h) be as in Section 2. Write Z ∈ Hn as Z =
(

τ ′ z
tz τ

)
with τ ∈ Hn−1, z ∈ Cn−1

and τ ′ ∈ H1. Then we have the following Fourier-Jacobi expansion of In(h):

In(h)
((

τ ′ z
tz τ

))
=

∞∑
N=0

φIn(h),N (τ, z)e(Nτ ′),

where φIn(h),N (τ, z) is called the N -th Fourier-Jacobi coefficient of In(h) and defined by

φIn(h),N (τ, z) =
∑

T∈Ln−1, r∈Zn−1,

4NT−trr>0

cIn(h)

((
N r/2

tr/2 T

))
e(tr(Tτ) + r tz).

We easily see that φIn(h),N belongs to J cusp
k, N (Γ (n−1)

J ) for each N ∈ Z>0. Under the above
notation, we will prove the following theorem in Section 6:

Theorem 3.2.

Ress=k−1/2R(s, σn−1(φIn(h),1))

= 2β(n, k)〈h, h〉
n/2−1∏

i=1

ξ̃(2i)ξ(2i + 1)Λ̃(2i + 1, f, Ad),

where β(n, k) = −(n − 4)k + (n2 − 5n + 2)/2.
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Then we can show the following:

Theorem 3.3. Under the above notation and the assumption, Theorem 3.2 implies
Conjecture A.

Proof. By [23, Corollary to Main Theorem] with a minor correction (see the remark below),
we have

〈In(h), In(h)〉
〈φIn(h),1, φIn(h),1〉

= 2−k+n−1Λ(k, f)ξ̃(n).

Thus Conjecture A holds true if and only if

〈φIn(h),1, φIn(h),1〉 = 2−k(n−4)+n(n−7)/2+2〈h, h〉
n/2−1∏

i=1

ξ̃(2i)Λ̃(2i + 1, f, Ad).

On the other hand, by Corollary to Proposition 3.1 we have

Ress=k−1/2R(s, σn−1(φIn(h),1)) = 2n−1〈φIn(h),1, φIn(h),1〉
n/2−1∏

i=1

ξ(2i + 1).

Thus the assertion holds.

Remark. In [23], we incorrectly quoted Yamazaki’s result in [38]. Indeed “〈F,G〉” on [23,
p.2026, l.14] should read “ 2−1〈F,G〉” (cf. Krieg [29]) and therefore “ 22k−n+1” on [23, p.2027,
l.7] should read “ 22k−n”.

4. Reduction to local computations

To prove Theorem 3.2, we give an explicit formula for R(s, σn−1(φIn(h),1)) for the first
Fourier-Jacobi coefficient φIn(h),1 of In(h). To do this, we reduce the problem to local
computations.

For a, b ∈ Q×
p let (a, b)p the Hilbert symbol on Qp. Following Kitaoka [27], we define the

Hasse invariant ε(A) of A ∈ Sm(Qp)× by

ε(A) =
∏

1≤i≤j≤m

(ai, aj)p

if A is equivalent to a1⊥ · · ·⊥am over Qp with some a1, · · · , am ∈ Q×
p . We note that this

definition does not depend on the choice of a1, · · · , am.
Now put

L′
m,p = {A ∈ Lm,p | A ≡ − trr mod 4Lm,p for some r ∈ Zm

p }.

Furthermore we put Sm(Zp)e = 2Lm,p and Sm(Zp)o = Sm(Zp) \ Sm(Zp)e. We note that
L′

m,p = Lm,p = Sm(Zp) if p 6= 2. Let T ∈ L′
m−1,p. Then there exists an element r ∈ Zm−1

p such

that
(

1 r/2
tr/2 (T+trr)/4

)
belongs to Lm,p. As is easily shown, r is uniquely determined by T ,

up to modulo 2Zm−1
p , and is denoted by rT . Moreover as will be shown in the next lemma,(

1 rT /2
trT /2 (T+trT rT )/4

)
is uniquely determined by T , up to GLm(Zp)-equivalence, and is denoted

by T (1).

Lemma 4.1. (cf. [25, Lemma 3.1]) Let m be a positive integer.
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(1) Let A and B be elements of L′
m−1,p. Then

(
1 rA/2

trA/2 (A+trArA)/4

)
∼

(
1 rB/2

trB/2 (B+trBrB)/4

)
if A ∼ B.

(2) Let A ∈ L′
m−1,p.

(2.1) Let p 6= 2. Then A(1) ∼
(

1 0
0 A

)
.

(2.2) Let p = 2. If rA ≡ 0 mod 2, then A ∼ 4B with B ∈ Lm−1,2, and A(1) ∼
(

1 0
0 B

)
.

In particular, ord(detB) ≥ m or ≥ m + 1 according as m is even or odd.
If rA 6≡ 0 mod 2, then A ∼ a⊥4B with a ≡ −1 mod 4 and B ∈ Lm−2,2 and we

have A(1) ∼

 1 1/2 0
1/2 (a + 1)/4 0
0 0 B

 . In particular, ord(detB) ≥ m or ≥ m − 1

according as m is even or odd.

Now let m be a positive even integer. For T ∈ (L′
m−1,p)

×, we define [d(1)T ] and e
(1)
T as

[dT (1) ] and eT (1) , respectively. These do not depend on the choice of rT . We note that
(−1)m/2 det T = 2m−2dp2e(1)T mod Z∗

p
2 for any d ∈ [d(1)T ]. We define a polynomial F

(1)
p (T,X)

in X, and a polynomial F̃
(1)
p (T,X) in X and X−1 by

F (1)
p (T,X) = Fp(T (1), X),

and
F̃ (1)

p (T,X) = X−e(1)p (T )F (1)
p (T, p−(n+1)/2X).

Let B be a half-integral matrix B over Zp of degree m. Let p 6= 2. Then

F̃ (1)
p (B,X) = F̃p(1⊥B,X).

Let p = 2. Then

F̃
(1)
2 (B,X) =


F̃2(

(
1 1/2

1/2 (a + 1)/4

)
⊥B′, X) if B = a⊥4B′

with a ≡ −1 mod 4,

F̃2(1⊥B′, X) if B = 4B′.

Now for each T ∈ Sm(Zp)×e put

F (0)
p (T,X) = Fp(2−δ2,pT,X)

and
F̃ (0)

p (T,X) = F̃p(2−δ2,pT,X).

We define [d(0)T ] and e
(0)
T as [d2−δ2,p T ] and e2−1T , respectively. We note that (−1)m/2 det T =

dp2e(0)T mod Z∗
p
2 for any d ∈ [d(0)T ].

Now let m and l be positive integers such that m ≥ l. Then for non-degenerate symmetric
matrices A and B of degree m and l respectively with entries in Zp we define the local density
αp(A, B) and the primitive local density βp(A,B) representing B by A as

αp(A,B) = 2−δm,l lim
a→∞

pa(−ml+l(l+1)/2)#Aa(A,B),

and
βp(A,B) = 2−δm,l lim

a→∞
pa(−ml+l(l+1)/2)#Ba(A, B),

where
Aa(A,B) = {X ∈ Mml(Zp)/paMml(Zp) | A[X] − B ∈ paSl(Zp)e},
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and

Ba(A,B) = {X ∈ Aa(A,B) | rankZp/pZp
(X mod p) = l}.

In particular we write αp(A) = αp(A,A). Furthermore put

M(A) =
∑

A′∈G(A)

1
e(A′)

for a positive definite symmetric matrix A of degree n − 1 with entries in Z, where G(A) denotes
the set of SLn−1(Z)-equivalence classes belonging to the genus of A. Then by Siegel’s main
theorem on the quadratic forms, we obtain

M(A) = 22−nen−1κn−1 det An/2
∏
p

αp(A)−1

where en−1 = 1 or 2 according as n = 2 or not, and

κn−1 =
(n−2)/2∏

i=1

ΓC(2i)

(cf. [27, Theorem 6.8.1]). Put

Fp = {d0 ∈ Zp | νp(d0) ≤ 1}

if p is an odd prime, and

F2 = {d0 ∈ Z2 | d0 ≡ 1 mod 4, or d0/4 ≡ −1 mod 4, or ν2(d0) = 3}.

For d ∈ Z×
p put

Sm(Zp, d) = {T ∈ Sm(Zp) | (−1)[(m+1)/2] det T = p2id mod Z∗
p
2 with some i ∈ Z},

and Sm(Zp, d)x = Sm(Zp, d) ∩ Sm(Zp)x for x = e or o. We note that Sm(Zp, d) = Sm(Zp, p
jd)

for any even integer j. If m is even, put L(0)
m,p = Sm(Zp)×e and L(1)

m−1,p = (L′
m−1,p)

×. We
also define L(j)

m−j,p(d) = Sm−j(Zp, d) ∩ L(j)
m−j,p for j = 0, 1. Let m be an even integer. For

d0 ∈ Fp, l = 0, 1 and j = 0, 1, define a rational number κ(d0,m − j, l) = κp(d0,m − j, l) as

κ(d0,m − j, l) =


{(−1)lm(m−2)/82−(m−2)(m−1)/2}δ2,p

× ((−1)m/2, (−1)m/2d0)l
p p−(m/2−1)lν(d0) if j = 1

{(−1)m(m+2)/8 ((−1)m/22, d0)2}lδ2,p if j = 0.

Let ιm,p be the constant function on L×
m,p taking the value 1, and εm,p the function on L×

m,p

assigning the Hasse invariant of A for A ∈ L×
m,p. We sometimes drop the suffix and write ιm,p

as ιp or ι and so on if there is no fear of confusion. From now on we sometimes write ω = εl

with l = 0 or 1 according as ω = ι or ε. Let n be an even integer. For d0 ∈ Fp and ω = εl with
l = 0, 1 we define a formal power series Hn−1,p(d0, ω,X, Y, t) ∈ C[X,X−1, Y, Y −1][[t]] by

Hn−1,p(d0, ω,X, Y, t) = κ(d0, n − 1, l)−1tδ2,p(2−n)

×
∑

A∈L(1)
n−1,p(d0)/GLn−1(Zp)

F̃
(1)
p (A,X)F̃ (1)

p (A, Y )
αp(A)

ε(A)ltνp(det A).

We call Hn−1,p(d0, ω,X, Y, t) a formal power series of Rankin-Selberg type. An explicit formula
for Hn−1,p(d0, ωp, X, Y, t) will be given in the next section. Let F denote the set of fundamental
discriminants, and for l = ±1, put

F (l) = {d0 ∈ F | ld0 > 0}.
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Now let h be a Hecke eigenform in S+
k−n/2+1/2(Γ0(4)), and f, In(h), φIn(h),1 and σn−1(φIn(h),1)

be as in Section 3. Then we have

Theorem 4.2. Let the notation and the assumption be as above. Then for Re(s) À 0, we
have

R(s, σn−1(φIn(h),1)) =
en−1

2
κn−12(−s−1/2)(n−2)

×

 ∑
d0∈F((−1)n/2)

|ch(|d0|)|2|d0|n/2−k+1/2
∏
p

Hn−1,p(d0, ιp, αp, αp, p
−s+k−1/2)

+ (−1)n(n−2)/8
∑

d0∈F((−1)n/2)

|ch(|d0|)|2|d0|−k+3/2
∏
p

Hn−1,p(d0, εp, αp, αp, p
−s+k−1/2)

 ,

where αp is the Satake p-parameter of f . Moreover we have

R(s, h) = κ1

∑
d0∈F((−1)n/2)

|ch(|d0|)|2|d0|n/2−k+1/2
∏
p

H1,p(d0, ιp, αp, αp, p
−s+k−n/2+1/2).

Proof. Let T ∈ (L′
n−1)>0. Then it follows from Lemma 4.1 that the T -th Fourier coefficient

cσn−1(φIn(h),1)(T ) of σn−1(φIn(h),1) is uniquely determined by the genus to which T belongs,
and, by definition, it can be expressed as

cσn−1(φIn(h),1)(T ) = cIn(h)(T (1)) = ch(|d(1)T |)(f(1)T )k−n/2−1/2
∏
p

F̃ (1)(T, αp).

We also note that
∏

p((−1)n/2, (−1)n/2d0)p = 1 for any d0 ∈ F ((−1)n/2), and hence∏
p

κp(d0, n − 1, 0) = 2−(n−2)(n−1)/2

and ∏
p

κp(d0, n − 1, 1) = 2−(n−2)(n−1)/2(−1)n(n−2)/8|d0|−n/2+1.

Thus, by using the same method as in [13, Proposition 2.2], similarly to [10, Theorem 3.3
(1)], and [11, Theorem 3.2], we obtain the first assertion. Similarly we can prove the second
assertion.

5. Formal power series associated with local Siegel series

Throughout this section we fix a positive even integer n. In this section we give an explicit
formula for Hn−1(d0, ω,X, Y, t) = Hn−1,p(d0, ω,X, Y, t) for ω = ι, ε (cf. Theorem 5.3.1). The
idea is to rewrite Hn−1(d0, ω,X, Y, t) in terms of various power series. Henceforth, for a
GLm(Zp)-stable subset B of Sm(Qp), we simply write

∑
T∈B instead of

∑
T∈B/∼ if there is

no fear of confusion. We also simply write νp as ν and the others if the prime number p is clear
from the context.

5.1. Formal power series of Andrianov type
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For an m × m half-integral matrix B over Zp, let (W, q) denote the quadratic space over
Zp/pZp defined by the quadratic form q(x) = B[x] mod p, and define the radical R(W ) of W
by

R(W ) = {x ∈ W | B(x,y) = 0 for any y ∈ W},

where B denotes the associated symmetric bilinear form of q. We then put lp(B) =
rankZp/pZp

R(W )⊥, where R(W )⊥ is the orthogonal complement of R(W )⊥ in W. Furthermore,
in case lp(B) is even, put ξp(B) = 1 or −1 according as R(W )⊥ is hyperbolic or not.
In case lp(B) is odd, we put ξp(B) = 0. Here we make the convention that ξp(B) = 1 if
lp(B) = 0. We note that ξp(B) is different from the ξp(B) in general, but they coincide if
B ∈ Lm,p ∩ 1

2GLm(Zp).

Let m be a positive even integer. For B ∈ L(1)
m−1,p put B(1) =

(
1 r/2

tr/2 (B + trr)/4

)
,

where r is an element of Zm−1
p such that B + trr ∈ 4Lm−1,p. Then we put ξ

(1)
p (B) = ξp(B(1))

and ξ
(1)

p (B) = ξp(B(1)). These do not depend on the choice of r, and we have ξ
(1)
p (B) =

χp((−1)m/2 det B). Let p 6= 2. Then an element B of L(1)
m−1,p is equivalent, over Zp, to

Θ⊥pB1 with Θ ∈ GLm−n1−1(Zp) ∩ Sm−n1−1(Zp) and B1 ∈ Sn1(Zp)×. Then ξp(B) = 0 if n1

is odd, and ξ
(1)

p (B) = χp((−1)(m−n1)/2 detΘ) if n1 is even. Let p = 2. Then an element
B ∈ L(1)

m−1,2 is equivalent, over Z2, to a matrix of the form 2Θ⊥B1, where Θ ∈ GLm−n1−2(Z2) ∩
Sm−n1−2(Z2)e and B1 is one of the following three types:

(I) B1 = a⊥4B2 with a ≡ −1 mod 4, and B2 ∈ Sn1(Z2)×e ;
(II) B1 ∈ 4Sn1+1(Z2)×;

(III) B1 = a⊥4B2 with a ≡ −1 mod 4, and B2 ∈ Sn1(Z2)o.

Then ξ
(1)

2 (B) = 0 if B1 is of type (II) or type (III). Let B1 be of type (I). Then
(−1)(m−n1)/2adet Θ mod (Z∗

2)
2 is uniquely determined by B and we have

ξ
(1)

2 (B) = χ2((−1)(m−n1)/2a detΘ).

Suppose that p 6= 2, and let U = Up be a complete set of representatives of Z∗
p/(Z∗

p)
2. Then,

for each positive integer l and d ∈ Up, there exists a unique, up to Zp-equivalence, element of
Sl(Zp) ∩ GLl(Zp) whose determinant is (−1)[(l+1)/2]d, which will be denoted by Θl,d. Suppose
that p = 2, and put U = U2 = {1, 5}. Then for each positive even integer l and d ∈ U2 there
exists a unique, up to Z2-equivalence, element of Sl(Z2)e ∩ GLl(Z2) whose determinant is
(−1)l/2d, which will be also denoted by Θl,d. In particular, if p is any prime number and l is
even, we put Θl = Θl,1 We make the convention that Θl,d is the empty matrix if l = 0. For an
element d ∈ U we use the same symbol d to denote the coset d mod (Z∗

p)
2.

We put Dl,i = GLn(Zp)
(

1l−i 0
0 p1i

)
GLl(Zp) for 0 ≤ i ≤ l. Suppose that r is a positive

even integer. For j = 0, 1, ξ = ±1 and T ∈ L(j)
r−j,p, we define a polynomial F̃

(j)
p (T, ξ,X) in X

and X−1 by

F̃ (j)
p (T, ξ,X) = X−e(j)(T )F (j)

p (T, ξX).

We note that F̃
(j)
p (T, ξ,X) = ξe(j)(T )F̃

(j)
p (T, ξX), and in particular F̃

(j)
p (T, 1, X) coincides with

F̃
(j)
p (T,X). We also define a polynomial G̃

(j)
p (T, ξ,X, t) in X,X−1 and t by

(5-1) G̃(j)
p (T, ξ,X, t) =

r−j∑
i=0

(−1)ipi(i−1)/2ti
∑

D∈GLr−j(Zp)\Dr−j,i

F̃ (j)
p (T [D−1], ξ,X),

and put G̃
(j)
p (T,X, t) = G̃

(j)
p (T, 1, X, t). We also define a polynomial G

(j)
p (T,X) in X by
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(5-2) G(j)
p (T,X) =

r−j∑
i=0

(−1)ipi(i−1)/2(X2pr+1−j)i
∑

D∈GLr−j(Zp)\Dr−j,i

F (j)
p (T [D−1], X).

We note that
G̃(j)

p (T,X, 1) = X−e(j)(T )G(j)
p (T,Xp−(m+1)/2).

Now for an element T ∈ L(1)
r−1,p we define a polynomial B

(1)
p (T, t) in t by

(5-3) B(1)
p (T, t) =

(1 − ξp(T (1))p−r/2+1/2t)
∏(r−2)/2

i=1 (1 − p−2i+1t2)

G
(1)
p (T, p−r+1/2t)

.

Then by [25, Lemma 4.2.1], we have the following:

Lemma 5.1.1. Let n be the fixed positive even integer. Let B ∈ L(1)
n−1,p.

(1) Let p 6= 2, and suppose that B = Θn−n1−1,d⊥pB1 with d ∈ U and B1 ∈ Sn1(Zp)×. Then

B(1)
p (B, t) =


(1 − ξ

(1)

p (B)p(n1−n+1)/2t)
(n−n1−2)/2∏

i=1

(1 − p−2i+1t2) if n1 even,

(n−n1−1)/2∏
i=1

(1 − p−2i+1t2) if n1 odd.

(2) Let p = 2, and suppose that B = 2Θ⊥B1 ∈ L′
n−1,2 with Θ ∈ Sn−n1−2(Z2)e ∩

GLn−n1−2(Z2) and B1 ∈ Sn1+1(Z2)×. Then

B(1)
p (B, t)

=


(1 − ξ

(1)

2 (B)p(n1−n+1)/2t)
(n−n1−2)/2∏

i=1

(1 − p−2i+1t2) if B1 is of type (I),

(n−n1−2)/2∏
i=1

(1 − p−2i+1t2) if B1 is of type (II) or (III).

Let m be a positive even integer and j = 0, 1. For a non-degenerate half-integral matrix T
over Zp of degree m − j, put

R(j)(T,X, t) =
∑

W∈Mm−j(Zp)×/GLm−j(Zp)

F̃ (j)
p (T [W ], X)tν(det W ).

This type of formal power series was first introduced by Andrianov [1] to study the standard
L-function of Siegel modular form of integral weight. Therefore we call it the formal power
series of Andrianov type. (See also Böcherer [2].) The following proposition follows from [25,
Lemma 4.1.1 (1)].

Proposition 5.1.2. Let m be a positive even integer and j = 0 or 1. Let T ∈ L(j)
m−j,p.

Then ∑
B∈L(j)

m−j,p

F̃
(j)
p (B,X)αp(T,B)

αp(B)
tν(det B) = tν(det T )R(j)(T,X, p−m+jt2).
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The following theorem is due to [24].

Theorem 5.1.3. Let T be an element of L(1)
n−1,p. Then

R(1)(T,X, t) =
B

(1)
p (T, pn/2−1t)G̃(1)

p (T,X, t)∏n−1
j=1 (1 − pj−1X−1t)(1 − pj−1Xt)

.

In [4], Böcherer and Sato got a similar formula for T ∈ Ln,p. We note that the above formula
for p 6= 2 can be derived directly from [37, Theorem 20.7] (see also Zhuravlëv [40]). However,
we note that we cannot use their results to prove the above formula for p = 2.

Then for d0 ∈ Fp and ω = εlwith l = 0, 1, we define a formal power series R̃n−1(d0, ω,X, Y, t)
in t by

R̃n−1(d0, ω,X, Y, t) = κ(d0, n − 1, l)−1tδ2,p(2−n)
∑

B′∈L(1)
n−1,p(d0)

G̃
(1)
p (B′, X, p−nY t2)

αp(B′)

×Y −e(1)(B′)tν(det B′)B(1)
p (B′, p−n/2−1Y t2)G(1)

p (B′, p−(n+1)/2Y )ω(B′).

More precisely this is an element of C[X,X−1, Y 1/2, Y −1/2][[t]]. Now by Theorem 5,2,5, we
can rewrite Hn−1(ω, d0, X, Y, t) in terms of R̃n−1(d0, ω,X, Y, t) in the following way:

Theorem 5.1.4. For ω = εl, we have

Hn−1(d0, ω,X, Y, t) =
R̃n−1(d0, ω,X, Y, t)∏n

j=1(1 − pj−1−nXY t2)(1 − pj−1−nX−1Y t2)
.

Proof. By [25, Lemma 4.2.2], we have

κ(d0, n − 1, l)tδ2,p(n−2)Hn−1(d0, ω,X, Y, t) =
∑

B∈L(1)
n−1,p(d0)

F̃
(1)
p (B,X)
αp(B)

ω(B)tν(det B)

×
∑

B′∈L(1)
n−1,p

Y −e(1)(B′)G
(1)
p (B′, p−(n+1)/2Y )αp(B′, B)

αp(B′)
(p−1Y )(ν(det B)−ν(det B′))/2.

Let B and B′ be elements of L(1)
n−1,p, and suppose that αp(B′, B) 6= 0. Then we note that

B ∈ L(1)
n−1,p(d0) if and only if B′ ∈ L(1)

n−1,p(d0). Hence by Proposition 5.1.2 and Theorem 5.1.3
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we have

κ(d0, n − 1, l)tδ2,p(n−2)Hn−1(d0, ω,X, Y, t)

=
∑

B′∈L(1)
n−1,p(d0)

G
(1)
p (B′, p−(n+1)/2Y )Y −e(1)(B′)

αp(B′)
(pY −1)ν(det B′)/2ω(B′)

×
∑

B∈L(1)
n−1,p

F̃
(1)
p (B,X)αp(B′, B)

αp(B)
(t2p−1Y )ν(det B)/2

=
∑

B′∈L(1)
n−1,p(d0)

G
(1)
p (B′, p−(n+1)/2Y )Y −e(1)(B′)

αp(B′)
tν(det B′)ω(B′)R(1)(B′, X, t2Y p−n)

=
∑

B′∈L(1)
n−1,p(d0)

G̃
(1)
p (B′, X, p−nY t2)

αp(B′)
ω(B′)Y −e(1)(B′)tν(det B′)

× B
(1)
p (B′, p−n/2−1Y t2)G(1)

p (B′, p−(n+1)/2Y )∏n
j=1(1 − pj−1−nXY t2)(1 − pj−1−nX−1Y t2)

.

This proves the assertion.

The polynomials G
(1)
p (T,X) and B

(1)
p (T, t) are expressed explicitly, and in particular they

are determined by [dT ] and the p-rank of T (cf. [25, Lemma 4.2.1] and Lemma 5.1.1). Thus
we can rewrite the power series R̃n−1(d0, ω,X, Y, t) in a more concise form (cf. Corollary to
Theorem 5.2.8.)

5.2. Formal power series of Koecher-Maaß type and of modified Koecher-Maaß type

Let r be a positive even integer. For d0 ∈ Fp, j = 0, 1 and l = 0, 1, we define a formal power
series P

(j)
r−j(d0, ω, ξ,X, t) in t by

(5-4) P
(j)
r−j(d0, ω, ξ,X, t) = κ(d0, r − j, l)−1t−ar−j,p

∑
B∈L(j)

r−j,p(d0)

F̃
(j)
p (B, ξ,X)

αp(B)
ω(B)tν(det B)

for ω = εl with l = 0, 1, where ai,p = δ2,p(i − 1) or 1 according as i is odd or even. In particular
we put P

(j)
r−j(d0, ω,X, t) = P

(j)
r−j(d0, ω, 1, X, t). This type of formal power series appears in an

explicit formula for the Koecher-Maaß series associated with the Siegel Eisenstein series and
the Duke-Imamoḡlu-Ikeda lift (cf. [11, 12] and [25]). Therefore we say that this formal power
series is of Koecher-Maaß type.

For a variable Y we introduce the symbol Y 1/2 so that (Y 1/2)2 = Y, and for an
integer a write Y a/2 = (Y 1/2)a. Under this convention, we can write Y −e(j)(T )tν(det T ) as
Y ar−j,p/2Y ν(d0)/2(Y −1/2t)ν(det T ) if T ∈ L(j)

r−j,p(d0), and we sometimes write a power series

P (Y, t) =
∑

T∈L(j)
r−j,p(d0)

a(T, Y )Y −e(j)(T )tν(det T ) ∈ C[Y, Y −1][[t]]

as

P (Y, t) = Y ar−j,p/2Y ν(d0)/2
∑

T∈L(j)
r−j,p(d0)

a(T, Y )(Y −1/2t)ν(det T ).
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For T ∈ L(j)
r−j,p let G̃

(j)
p (T, ξ,X, t) be the polynomial defined in the previous subsection.

Moreover for ξ = ±1, and j = 0, 1, we define a formal power series P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t)

in t by

(5-5) P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t) = κ(d0, r − j, l)−1(tY −1/2)−ar−j,pY ν(d0)/2

×
∑

B′∈L(j)
r,p(d0)

G̃
(j)
p (B′, ξ,X, p−nt2Y )

αp(B′)
ω(B′)(tY −1/2)ν(det B′)

for ω = εl. Here we make the convention that P̃
(0)
0 (n; d0, ω, ξ,X, Y, t) = 1 or 0 according as

ν(d0) = 0 or not. We say that the series P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t) is of modified Koecher-Maaß

type. The relation between P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t) and P

(j)
r−j(d0, ω, ξ,X, t) will be given in the

following proposition:

Proposition 5.2.1. Let r be a positive even integer. Let ω = εl with l = 0, 1, and j = 0, 1.
Then

P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t) = Y ν(d0)/2P

(j)
r−j(d0, ω, ξ,X, tY −1/2)

r−j∏
i=1

(1 − t4p−n−r+j−2+i).

Proof. For i = 0, ..., r − j put

P̃
(j)
r−j,i(d0, ω, ξ,X, t) = κ(d0, r − j, l)−1t−ar−j,p

×
∑

B∈L(j)
r−j,p(d0)

∑
D∈GLr−j(Zp)\Dr−j,i

F̃
(j)
p (B[D−1], ξ,X)

αp(B)
ω(B)tν(det B).

Then we have

P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t) =

r−j∑
i=0

(−1)ipi(i−1)/2(p−nt2Y )iY ν(d0)/2P̃
(j)
r−j,i(d0, ω, ξ,X, tY −1/2).

We have

P̃
(j)
r−j,i(d0, ω, ξ,X, t) =

∑
B∈L(j)

r−j,p(d0)

ω(B)
αp(B)

tν(det B)

×
∑

B′∈L(j)
r−j,p

F̃ (j)
p (B′, ξ,X)#(Ω̃(B′, B, i)/GLr−j(Zp)),

where Ω̃(B′, B, i) = {D ∈ Dr−j,i | B′[D−1] ∼ B}. Hence by [25, Lemma 4.1.1 (2)], we have

P̃
(j)
r−j,i(d0, ω, ξ,X, t)

=
∑

B∈L(j)
r−j,p(d0)

1
αp(B)

∑
B′∈L(j)

r−j,p

F̃
(j)
p (B′, ξ,X)αp(B′, B, i)

αp(B′)
ω(B)p−(ν(det B)−ν(det B′))/2tν(det B),

where

αp(B′, B, i) = 2−1 lim
e→∞

p−(r−j)(r−j−1)e/2#{X ∈ Ae(B′, B) | X ∈ Dr−j,i}.
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Let B and B′ be elements of L(j)
r−j,p, and suppose that αp(B′, B, i) 6= 0. Then we note that

B ∈ L(j)
r−j,p(d0) if and only if B′ ∈ L(j)

r−j,p(d0). Hence by [25, Lemma 4.1.1 (1)], we have

P̃
(j)
r−j,i(d0, ω, ξ,X, t)

=
∑

B′∈L(j)
r−j,p(d0)

F̃
(j)
p (B′, ξ,X)

αp(B′)
pν(det B′)/2ω(B′)

∑
B∈L(j)

r−j,p

(tp−1/2)ν(det B) αp(B′, B, i)
αp(B)

=
∑

B′∈L(j)
r−j,p(d0)

F̃
(j)
p (B′, ξ,X)

αp(B′)
pν(det B′)/2(tp−1/2)ν(det B′)(t2p−r+j−1)i#(GLr−j(Zp)\Dr−j,i).

By [1, Lemma 3.2.18], we have

#(GLr−j(Zp)\Dr−j,i) =
φr−j(p)

φi(p)φr−j−i(p)
.

Hence

P̃
(j)
r−j,i(d0, ω, ξ,X, t)

=
∑

B′∈L(j)
r−j,p(d0)

F̃
(j)
p (B′, ξ,X)

αp(B′)
ω(B′)tν(det B′) φr−j(p)

φi(p)φr−j−i(p)
(t2p−r+j−1)i

=
φr−j(p)

φi(p)φr−j−i(p)
P

(j)
r−j(d0, ω, ξ,X, t)(t2p−r+j−1)i.

Thus, by [1, (3.2.34)], we have

P̃
(j)
r−j(n; d0, ω, ξ,X, t)

= Y ν(d0)/2

r−j∑
i=0

(−1)ipi(i+1)/2(p−n−r+j−2t4)i φr−j(p)
φi(p)φr−j−i(p)

P
(j)
r−j(d0, ω, ξ,X, tY −1/2)

= Y ν(d0)/2P
(j)
r−j(d0, ω, ξ,X, tY −1/2)

r−j∏
i=1

(1 − t4p−n−r+j−2+i).

We give explicit formulas for P
(j)
r−j(d0, ε

l, ξ,X, t) for j = 0, 1, l = 0, 1 and ξ = ±1. From now
on we for a ∈ Q×

p , we simply write χp(a) as χ(a) if the prime number p is clear from the
context.

Theorem 5.2.2. Let d0 ∈ Fp and ξ0 = χ(d0).
(1) Let r be even. Then

P (0)
r (d0, ι,X, t) =

(p−1t)ν(d0)

φr/2−1(p−2)(1 − p−r/2ξ0)

× (1 + t2p−r/2−3/2)(1 + t2p−r/2−5/2ξ2
0) − ξ0t

2p−r/2−2(X + X−1 + p1/2−r/2 + p−1/2+r/2)

(1 − p−2Xt2)(1 − p−2X−1t2)
∏r/2

i=1(1 − t2p−2i−1X)(1 − t2p−2i−1X−1)
,

and

P (0)
r (d0, ε,X, t) =

ξ2
0

φr/2−1(p−2)(1 − p−r/2ξ0)
∏r/2

i=1(1 − t2p−2iX)(1 − t2p−2iX−1)
.
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(2) Let r be even. Then

P
(1)
r−1(d0, ι,X, t)

=
(p−1t)ν(d0)(1 − ξ0t

2p−5/2)

(1 − t2p−2X)(1 − t2p−2X−1)
∏(r−2)/2

i=1 (1 − t2p−2i−1X)(1 − t2p−2i−1X−1)φ(r−2)/2(p−2)
,

and

P
(1)
r−1(d0, ε,X, t) =

(p−1t)ν(d0)(1 − ξ0t
2p(−1/2−r))∏r/2

i=1(1 − t2p−2iX)(1 − t2p−2iX−1)φ(r−2)/2(p−2)
.

Proof. The assertions (1) and (2) are due to [22, Proposition 4.3], and to [25, Theorem
4.4.1], respectively.

Corollary. Let ξ = ±1.
(1) Let r be even. Then

P (0)
r (d0, ι, ξ,X, t) =

(p−1t)ν(d0)

φr/2−1(p−2)(1 − p−r/2ξ0)

× {(1 + t2p−r/2−3/2ξ)(1 + t2p−r/2−5/2ξξ2
0) − ξ0t

2p−r/2−2(X + X−1 + p1/2−r/2ξ + p−1/2+r/2ξ)}

× 1

(1 − p−2Xt2)(1 − p−2X−1t2)
∏r/2

i=1(1 − t2p−2i−1X)(1 − t2p−2i−1X−1)
,

and

P (0)
r (d0, ε, ξ,X, t) =

ξ2
0

φr/2−1(p−2)(1 − p−r/2ξ0)
∏r/2

i=1(1 − t2p−2iX)(1 − t2p−2iX−1)
.

(2) Let r be even. Then

P
(1)
r−1(d0, ι, ξ,X, t)

=
(p−1t)ν(d0)(1 − ξ0t

2p−5/2ξ)

(1 − t2p−2X)(1 − t2p−2X−1)
∏(r−2)/2

i=1 (1 − t2p−2i−1X)(1 − t2p−2i−1X−1)φ(r−2)/2(p−2)
,

and

P
(1)
r−1(d0, ε, ξ,X, t) =

(p−1t)ν(d0)(1 − ξ0t
2p(−1/2−r)ξ)∏r/2

i=1(1 − t2p−2iX)(1 − t2p−2iX−1)φ(r−2)/2(p−2)
.

Proof. Put

S
(j)
r−j(d0, ω, ξ,X, t) =

∑
T∈L(j)

r−j,p

F̃ (T, ξ,X)
αp(T )

te
(j)(T ),

and

S
(j)
r−j(d0, ω,X, t) =

∑
T∈L(j)

r−j,p

F̃ (T,X)
αp(T )

te
(j)(T ).

Then we have

P
(j)
r−j(d0, ω, ξ,X, t) = tν(d0)S

(j)
r−j(d0, ω, ξ,X, t2) and P

(j)
r−j(d0, ω,X, t) = tν(d0)S

(j)
r−j(d0, ω,X, t2).

By definition we have

S
(j)
r−j(d0, ω, ξ,X, t2) = S

(j)
r−j(d0, ω, ξX, ξt2).

Thus the assertion follows from the above theorem.
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Now let r be an even integer, and for j = 0, 1, we consider partial series of
P̃

(j)
r−j(n; d0, ω, ξ,X, Y, t) : Let ξ = ±1. and l = 0, 1. First let p 6= 2. Then put

(5-6-1) Q(0)
r (n; d0, ε

l, ξ,X, Y, t) = Y ν(d0)/2

×
∑

B′∈Sr(Zp,d0)∩Sr(Zp)

G̃
(0)
p (pB′, ξ,X, p−nt2Y )

αp(pB′)
ε(pB′)l(tY −1/2)ν(det pB′),

and

(5-6-2) Q
(1)
r−1(n; d0, ε

l, ξ,X, Y, t) = κ(d0, r − 1, l)−1Y ν(d0)/2

×
∑

B′∈p−1Sr−1(Zp,d0)∩Sr−1(Zp)

G̃
(1)
p (pB′, ξ,X, p−nt2Y )

αp(pB′)
ε(pB′)l(tY −1/2)ν(det pB′),

where G̃
(j)
p (pB′, ξ,X, p−nt2Y ) is the polynomial defined in (5-1) for j = 0, 1. Next let p = 2.

Then put

(5-6-3) Q
(1)
r−1(n; d0, ε

l, ξ,X, Y, t) = κ(d0, r − 1, l)−1(tY −1/2)δ2,p(2−n)Y ν(d0)/2

×
∑

B′∈Sr−1(Z2,d0)∩Sr−1(Z2)

G̃
(1)
2 (4B′, ξ,X, 2−nt2Y )

α2(4B′)
ε(4B′)l(tY −1/2)ν2(det(4B′)),

and

(5-6-4) Q(0)
r (n; d0, ε

l, ξ,X, Y, t) = κ(d0, r, l)−1Y ν(d0)/2

×
∑

B′∈Sr(Z2,d0)∩Sr(Z2)e

G̃
(0)
2 (2B′, ξ,X, 2−nt2Y )

α2(2B′)
ε(B′)l(tY −1/2)ν(det(2B′)),

where G̃
(1)
2 (4B′, ξ,X, 2−nt2Y ) and G̃

(0)
2 (2B′, ξ,X, 2−nt2Y ) are the polynomials defined in (5-1).

Here we make the convention that Q
(0)
0 (n; d0, ε

l, ξ,X, Y, t) = 1 or 0 according as ν(d0) = 0 or
not.

A non-degenerate square matrix D = (dij)m×m with entries in Zp is said to be reduced if D
satisfies the following two conditions:

(a) For i = j, dii = pei with a non-negative integer ei;
(b) For i 6= j, dij is a non-negative integer satisfying dij ≤ pej − 1 if i < j and dij = 0 if

i > j.
It is well known that we can take the set of all reduced matrices as a complete set of
representatives of GLm(Zp)\Mm(Zp)×.

To consider the relation between
P̃

(j)
r−j(n; d0, ε

l, ξ,X, Y, t) and Q
(j)
r−j(n; d0, ε

l, ξ,X, Y, t),
and to express R̃n−1(d0, ε

l, X, Y, t) in terms of P̃
(j)
r−j(n; d0, ε

l, ξ,X, Y, t), we give some prelimi-
nary results.

Lemma 5.2.3. Let p 6= 2. Let m be an even integer, and r an integer such that 0 ≤ r ≤ m.
Let d ∈ U and ξ0 = ±1.
(1) Suppose that r is even.
(1.1) Let B′ ∈ Sr(Zp)×. Then

G̃(0)
p (Θm−r,d⊥pB′, ξ0, X, t) = G̃(0)

p (pB′, ξ0χ(d), X, t).
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(1.2) Let B′ ∈ Sr−1(Zp)×. Then

G̃(1)
p (Θm−r,d⊥pB′, ξ0, X, t) = G̃(1)

p (pdB′, ξ0, X, t).

(2) Suppose that r is odd.
(2.1) Let B′ ∈ Sr(Zp)×. Then

G̃(0)
p (Θm−r,d⊥pB′, ξ0, X, t) = G̃(1)

p (−pdB′, ξ0, X, t).

(2.2) Let B′ ∈ Sr−1(Zp)×. Then

G̃(1)
p (Θm−r,d⊥pB′, ξ0, X, t) = G̃(0)

p (pB′, ξ0χ(d), X, t).

(3) Suppose that r is even. Then we have

G̃(0)
p (d′B, ξ0, X, t) = G̃(0)

p (B, ξ0, X, t)

for d′ ∈ Z∗
p, and B ∈ Sr(Zp)×.

Proof. Let m − r be even. By [20, Proposition 3.2], we have

F̃ (0)
p (Θm−r,d⊥pB′, ξ0, X) = F̃ (0)

p (pB′, ξ0χ(d), X)

for B′ ∈ Sr(Zp)×. We note that

G̃(0)
p (Θm−r,d⊥pB′, ξ0, X, t) =

m∑
i=0

(−1)ipi(i−1)/2ti

×
∑

D∈GLm(Zp)\eΩ(0)(Θm−r,d⊥pB′,i)

F̃ (0)
p ((Θm−r,d⊥pB′)[D−1], ξ0, X),

where for j = 0, 1 and B ∈ L(j)
m−j,p put

Ω̃(j)(B, i) = {W ∈ Dm−j,i | B[W−1] ∈ L(j)
m−j,p}.

Thus the assertion (1.1) follows from [25, Lemma 4.1.2 (3)]. Furthermore we have

F̃ (1)
p (Θm−r,d⊥pB′, ξ0, X) = F̃p(1⊥Θm−r,d⊥pB′, ξ0, X)

= F̃p(d⊥Θm−r⊥pB′, ξ0, X) = F̃p(1⊥Θm−r⊥pdB′, ξ0, X)

= F̃p(1⊥pdB′, ξ0, X) = F̃ (1)
p (pdB′, ξ0, X)

for B′ ∈ Sr−1(Zp)×. Thus the assertion (1.2) follows from [25, Lemma 4.1.2 (3)]. The other
assertions can be proved in a similar way.

Lemma 5.2.4. Let p = 2. Let m and r be even integers such that 0 ≤ r ≤ m, and ξ0 = ±1.
(1) Let d ∈ U .
(1.1) Let B′ ∈ Sr(Z2)×. Then

G̃
(0)
2 (Θm−r,d⊥2B′, ξ0, X, t) = G̃

(0)
2 (2B′, ξ0χ(d), X, t),

(1.2) Let B′ ∈ Sr−1(Z2)×. Then

G̃
(1)
2 (2Θm−r,d⊥4B′, ξ0, X, t) = G̃

(1)
2 (4dB′, ξ0, X, t).

(2)
(2.1) Let a ∈ U and B′ ∈ Sr(Z2)×. Then

G̃
(1)
2 (−a⊥2Θm−r−2⊥4B′, ξ0, X, t) = G̃

(0)
2 (2B′, ξ0χ(a), X, t).



Page 24 of 39 HIDENORI KATSURADA AND HISA-AKI KAWAMURA

(2.2) Let B′ ∈ Sr−1(Z2)× and a ∈ Z∗
2. Then

G̃
(0)
2 (Θm−r⊥2a⊥2B′, ξ0, X, t) = G̃

(1)
2 (4aB′, ξ0, X, t).

(3) We have

G̃
(0)
2 (d′B, ξ0, X, t) = G̃

(0)
2 (B, ξ0, X, t)

for d′ ∈ Z∗
2, and B ∈ Sr(Z2)×.

(4) Let u0 ∈ Z∗
2 and B1 ∈ Sr−2(Z2)×. Then

G̃
(1)
2 (u0⊥5B1, ξ0, X, t) = G̃

(1)
2 (u0⊥B1, ξ0, X, t).

Proof. All the assertions except (4) can be proved in a way similar to Lemma 5.2.3.
To prove (4), we first note that GLm−1(Z2)\Ω̃(u0⊥5B1, i) = GLm−1(Z2)\Ω̃(u0⊥B1, i) for
i = 0, · · · ,m − 1. Hence it suffices to prove

F̃
(1)
2 ((u0⊥5B1)[D−1], ξ0, X) = F̃

(1)
2 ((u0⊥B1)[D−1], ξ0, X)

for D ∈ Ω̃(u0⊥B1, i). We may assume that D is reduced. Since we have u0 ∈ Z∗
2 we have

D =
(

1 d
O D1

)
with d ∈ M1,m−2(Z2) and Mm−2(Z2). We also note that 2D−1

1 ∈ Mm−2(Z2).

We have
F̃

(1)
2 ((u0⊥5B1)[D−1], ξ0, X) = F̃2((1⊥u0⊥5B1)[1⊥D−1], ξ0, X)

= F̃2((1⊥u0⊥5B1)
[(

1 0 0
0 1 −dD−1

1

0 0 D−1
1

)]
, ξ0, X)

= F̃2((5⊥5u0⊥B1)
[(

1 0 0
0 1 −dD−1

1

0 0 D−1
1

)]
, ξ0, X).

We can easily see that there exits an element U = (uij) ∈ GL2(Z2) such that (1⊥u0)[U ] =
5⊥5u0 and u12 ≡ 0, u22 ≡ 1 mod 2. Then we have

F̃
(1)
2 ((u0⊥5B1)[D−1], ξ0, X) = F̃2((1⊥u0⊥B1)[(1⊥D−1)V ], ξ0, X),

where V =

(
u11 u12 −u12dD−1

1

u21 u22 −u22dD−1
1 +dD−1

1
0 0 1m−2

)
. By construction, we have V ∈ GLm(Z2), and hence we

have
F̃2((1⊥u0⊥B1)[(1⊥D−1])V ], ξ0, X) = F̃

(1)
2 ((u0⊥B1)[D−1], ξ0, X).

Let R̃n−1(d0, ω,X, Y, t) be the formal power series defined at the beginning of
Section 5. We express R̃n−1(d0, ω,X, Y, t) in terms of Q

(0)
2r (n; d0d, ω, χ(d), X, Y, t) and

Q
(1)
2r+1(n; d0, ω, 1, X, Y, t). Henceforth, for d0 ∈ Fp and non-negative integers m, r such that

r ≤ m, put U(m, r, d0) = {1},U ∩ {d0}, or U according as r = 0, r = m ≥ 1, or 1 ≤ r ≤ m − 1.
Moreover, we sometimes abbreviate Sr(Zp) and Sr(Zp, d) as Sr,p and Sr,p(d), respectively.
Furthermore we abbreviate Sr(Z2)x and Sr(Z2, d)x as Sr,2;x and Sr,2(d)x, respectively, for
x = e, o.

Theorem 5.2.5. Let d0 ∈ Fp, and ξ0 = χ(d0). For d ∈ U(n − 1, n − 2r − 1, d0) put

D2r(d0, d, Y, t) =
1 − ξ0p

−1/2Y

1 − pr−1/2χ(d)Y
(1 − p−n−1/2+rχ(d)Y t2).
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(1) Let ω = ι, or ν(d0) = 0. Then

R̃n−1(d0, ω,X, Y, t) =
(n−2)/2∑

r=0

∏r
i=1(1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

21−δ0,rφ(n−2r−2)/2(p−2)

×
∑

d∈U(n−1,n−2r−1,d0)

D2r(d0, d, Y, t)Q(0)
2r (n; d0d, ω, χ(d), X, Y, t)

+
(n−2)/2∑

r=0

∏r
i=1(1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

φ(n−2r−2)/2(p−2)

×(1 − ξ0p
−1/2Y )Q(1)

2r+1(n; d0, ω, 1, X, Y, t).

(2) Let ν(d0) > 0. Then

R̃n−1(d0, ε,X, Y, t) =
(n−2)/2∑

r=0

∏r
i=1(1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

φ(n−2r−2)/2(p−2)

×(1 − ξ0p
−1/2Y )Q(1)

2r+1(n; d0, ε, 1, X, Y, t).

Proof. Let p 6= 2. Let B be a symmetric matrix of degree 2r or 2r + 1 with entries in Zp.
Then we note that Θn−2r−2,d⊥pB belongs to Ln−1,p(d0) if and only if B ∈ S2r+1,p(p−1d0d) ∩
S2r+1,p, and that Θn−2r−1,d⊥pB belongs to Ln−1,p(d0) if and only if B ∈ S2r,p(d0d) ∩ S2r,p.
Thus by the theory of Jordan decompositions (cf. [27, Theorem 5.3.1]), for ω = εl we have

R̃n−1(d0, ω,X, Y, t) = κ(d0, n − 1, l)−1(tY −1/2)δ2,p(2−n)

×

{
(n−2)/2∑

r=0

∑
d∈U(n−1,n−2r−2,d0)

∑
B′∈p−1S2r+1,p(d0d)∩S2r+1,p

G
(1)
p (Θn−2r−2,d⊥pB′, p−(n+1)/2Y )

αp(Θn−2r−2,d⊥pB′)

×B(1)
p (Θn−2r−2,d⊥pB′, p−n/2−1Y t2)G̃(1)

p (Θn−2r−2,d⊥pB′, 1, X, p−nt2Y )

×ω(Θn−2r−2,d⊥pB′)(tY −1/2)ν(det(pB′))

+
(n−2)/2∑

r=0

∑
d∈U(n−1,n−2r−1,d0)

∑
B′∈S2r,p(d0d)∩S2r,p

G
(1)
p (Θn−2r−1,d⊥pB′, p−(n+1)/2Y )

αp(Θn−2r−1,d⊥pB′)

×B(1)
p (Θn−2r−1,d⊥pB′, p−n/2−1Y t2)G̃(1)

p (Θn−2r−1,d⊥pB′, 1, X, p−nt2Y )

×ω(Θn−2r−1,d⊥pB′)(tY −1/2)ν(det(pB′))

}
,

where G̃
(1)
p (∗, ∗, X, p−n/2t2Y ), G(1)

p (∗, p−(n+1)/2), and Bp(∗, p−n/2−1Y t2) are those defined in
(5-1), (5-2), and (5-3), respectively. By [25, Lemma 4.2.1] and Lemma 5.1.1 we have

G(1)
p (Θn−2r−2,d⊥pB′, p−(n+1)/2Y )B(1)

p (Θn−2r−2,d⊥pB′, p−n/2−1Y t2)

=
r∏

i=1

(1 − p2i−1Y 2)
(n−2r−2)/2∏

i=1

(1 − p−2i−n−1Y 2t4)(1 − ξ0p
−1/2Y ),

and

G(1)
p (Θn−2r−1,d⊥pB′, p−(n+1)/2Y )B(1)

p (Θn−2r−1,d⊥pB′, p−n/2−1Y t2)
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=
r−1∏
i=1

(1 − p2i−1Y 2)
(n−2r−2)/2∏

i=1

(1 − p−2i−n−1Y 2t4)D2r(d0, d, Y, t).

Put H
(1)
2i−1,ξ(B) = G̃

(1)
p (B, ξ,X, p−nt2Y ) for B ∈ S2i−1(Zp)×, and H

(0)
2i,ξ(B) = G̃

(0)
p (B, ξ,X, p−nt2Y )

for B ∈ S2i(Zp)× and ξ = ±1. Then H
(1)
2i−1,ξ and H

(0)
2i,ξ are GL2i−1(Zp) -invariant functions on

S2i−1(Zp)× with values in C[X,X−1, Y, Y −1, t] and satisfy the conditions (H-p-1) ∼ (H-p-5)
in [25, Section 4] by virtue of Lemma 5.2.3. Thus the assertion (1) in case p 6= 2 follows from
[25, Propositions 4.3.3 and 4.3.4].

Next let p = 2. Let B be a symmetric matrix of degree 2r or 2r + 1 with entries in Z2, and
d ∈ U . We note that 2Θn−2r−2,d⊥4B belongs to Ln−1,2(d0) if and only if B ∈ S2r+1,2(d0d) ∩
S2r+1,2, and that −d⊥2Θn−2r−2⊥4B belongs to Ln−1,2(d0) if and only if B ∈ S2r+2,2(d0d) ∩
S2r+2,2. Then, similarly to the above, we have

R̃n−1(d0, ω,X, Y, t) = κ(d0, n − 1, l, tY −1/2)−1

×

{
(n−2)/2∑

r=0

( ∑
d∈U(n−1,n−2r−2,d0)

∑
B′∈S2r+1,2(d0d)∩S2r+1,2;e

G(1)
p (2Θn−2r−2,d⊥4B′, 2−(n+1)/2Y )

×B(1)
p (2Θn−2r−2,d⊥4B′, p−n/2−1Y t2)

G̃
(1)
2 (2Θn−2r−2,d⊥4B′, 1, X, 2−nt2Y )

α2(2Θn−2r−2,d⊥4B′)

×ω(2Θn−2r−2,d⊥4B′)(tY −1/2)ν(det(4B′))+n−2r−2

+
∑

B′∈S2r+1,2(d0)∩S2r+1,2;o

G(1)
p (2Θn−2r−2⊥4B′, 2−(n+1)/2Y )

×B(1)
p (2Θn−2r−2⊥4B′, p−n/2−1Y t2)

G̃
(1)
2 (2Θn−2r−2⊥4B′, 1, X, 2−nt2Y )

α2(2Θn−2r−2⊥4B′)

×ω(2Θn−2r−2⊥4B′)(tY −1/2)ν(det(4B′))+n−2r−2

+
∑

B′∈S2r+2,2(d0)∩S2r+2,2;o

G(1)
p (−1⊥2Θn−2r−4⊥4B′, 2−(n+1)/2Y )

×B(1)
p (−1⊥2Θn−2r−4⊥4B′, p−n/2−1Y t2)

G̃
(1)
2 (−1⊥2Θn−2r−4⊥4B′, 1, X, 2−nt2Y )

α2(−1⊥2Θn−2r−4⊥4B′)

×ω(−1⊥2Θn−2r−4⊥4B′)(tY −1/2)ν(det(4B′))+n−2r−4

)

+
(n−2)/2∑

r=0

∑
d∈U(n−1,n−2r−1,d0)

∑
B′∈S2r,2(d0d)∩S2r,2;e

G(1)
p (−d⊥2Θn−2r−2⊥4B′, 2−(n+1)/2Y )

×B(1)
p (−d⊥2Θn−2r−2⊥4B′, p−n/2−1Y t2)

G̃
(1)
2 (−d⊥2Θn−2r−2⊥4B′, 1, X, 2−nt2Y )

α2(−d⊥2Θn−2r−2⊥4B′)

×ω(−d⊥2Θn−2r−2⊥4B′)(tY −1/2)ν(det(4B′))+n−2r−2

}
.

Thus the assertion (1) in case p = 2 can be proved by using [25, Lemma 4.2.1], Lemmas 5.1.1
and 5.2.4, and [25, Propositions 4.3.3 and 4.3.4] in the same way as above. Similarly the
assertion (2) can be proved.

Now let P̃
(1)
m−1(n; d0, ω, η,X, Y, t) and P̃

(0)
m (n; d0, ω, η,X, Y, t) be those defined in (5-5),

and Q
(1)
2r+1(n; d0, ω, η,X, Y, t) and Q

(0)
2r (n; d0d, ω, η,X, Y, t) be those defined in (5-6-1) ∼
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(5-6-4). Then to rewrite the above theorem, first we express P̃
(1)
m−1(n; d0, ω, η,X, Y, t) and

P̃
(0)
m (n; d0, ω, η,X, Y, t) in terms of Q

(1)
2r+1(n; d0, ω, η,X, Y, t) and Q

(0)
2r (n; d0d, ω, η,X, Y, t).

Proposition 5.2.6. Let m be an even integer. Let d0 ∈ Fp, and η = ±1.
(1) (1.1) Let l = 0 or ν(d0) = 0. Then

P̃
(1)
m−1(n; d0, ε

l, η,X, Y, t) =
(m−2)/2∑

r=0

Q
(1)
2r+1(n; d0, ε

l, η,X, Y, t)
φ(m−2−2r)/2(p−2)

+
(m−2)/2∑

r=0

∑
d∈U(m−1,m−1−2r,d0)

Q
(0)
2r (n; d0d, εl, ηχ(d), X, Y, t)
21−δ0,rφ(m−2−2r)/2(p−2)

.

(1.2) Let ν(d0) ≥ 1. Then

Q
(0)
2r (n; d0d, ε, ηχ(d), X, Y, t) = 0

for any d and

P̃
(1)
m−1(n; d0, ε, η,X, Y, t) =

(m−2)/2∑
r=0

Q
(1)
2r+1(n; d0, ε, η,X, Y, t)

φ(m−2−2r)/2(p−2)
.

(2) (2.1) Let l = 0 or ν(d0) = 0. Then

P̃ (0)
m (n; d0, ε

l, η,X, Y, t)

=
m/2∑
r=0

∑
d∈U(m,m−2r,d0)

1 + p(−m+2r)/2χ(d)
21−δ0,r+δ0,mφ(m−2r)/2(p−2)

Q
(0)
2r (n; d0d, εl, ηχ(d), X, Y, t)

+
(m−2)/2∑

r=0

1
φ(m−2r)/2(p−2)

Q
(1)
2r+1(n; d0, ε

l, η,X, Y, t).

(2.2) Let ν(d0) > 0. Then

P̃ (0)
m (n; d0, ε, η,X, Y, t) = 0.

Proof. The assertions can be proved in a way similar to Theorem 5.2.5.

Corollary. Let r be a non-negative integer. Let d0 be an element of Fp and ξ = ±1.
(1) Let l = 0 or ν(d0) = 0. Then

Q
(0)
2r (n; d0, ε

l, ξ,X, Y, t)

=
r∑

m=0

∑
d∈U(2r,2m,d0)

(−1)m(χ(d) + p−m)p−m2

21−δ0,r−m+δ0,rφm(p−2)
P̃

(0)
2r−2m(n; d0d, εl, ξχ(d), X, Y, t)

+
r−1∑
m=0

(−1)m+1p−m−m2

φm(p−2)
P̃

(1)
2r−2m−1(n; d0, ε

l, ξ,X, Y, t)),

and

Q
(1)
2r+1(n; d0, ε

l, ξ,X, Y, t) =
r∑

m=0

(−1)mp−m−m2

φm(p−2)
P̃

(1)
2r−2m+1(n; d0, ε

l, ξ,X, Y, t)

+
r∑

m=0

∑
d∈U(2r+1,2m+1,d0)

(−1)m+1p−m−m2

21−δ0,r−mφm(p−2)
P̃

(0)
2r−2m(n; d0d, εl, ξχ(d), X, Y, t)).
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(2) Let ν(d0) > 0. We have

Q
(1)
2r+1(n; d0, ε, ξ,X, Y, t) =

r∑
m=0

(−1)mpm−m2

φm(p−2)
P̃

(1)
2r+1−2m(n; d0, ε, ξ,X, Y, t),

and

Q
(0)
2r (n; d0, ε, ξ,X, Y, t) = 0.

Proof. We prove the assertion (1) by induction on r. Clearly the assertion holds for r = 0.
Let r ≥ 1 and suppose that the assertion holds for any r′ < r. Fix l and we simply write
Q

(j)
2i−j(n; d, εl, ξ,X, Y, t) and P̃

(j)
2i−j(n; d, εl, ξ,X, Y, t) as Q

(j)
2i−j(d; ξ) and P̃

(j)
2i−j(d; ξ), respectively.

Then by Proposition 5.2.6 and the induction hypothesis we have

Q
(1)
2r+1(d0; ξ) = P̃

(1)
2r+1(d0; ξ) −

r∑
i=1

1
φi(p−2)


r−i∑
j=0

(−1)jp−j−j2

φj(p−2)
P̃

(1)
2r−2i−2j+1(d0; ξ)

+
r−i∑
j=0

∑
d′∈U(2r−2i+1,2j+1,d0)

(−1)j+1p−j−j2

21−δ0,r−i−j φj(p−2)
P̃

(0)
2r−2i−2j(d0d

′; ξχ(d′))


−

r−1∑
i=0

∑
d∈U(2r+1,2i+1,d0)

1
21−δ0,r−iφi(p−2)

×


r−i∑
j=0

∑
d′∈U(2r−2i,2j,d0d)

(−1)j(χ(d′) + p−j)p−j2

21−δ0,r−i−j+δ0,r−iφj(p−2)
P̃

(0)
2r−2i−2j(d0dd′; ξχ(d)χ(d′))

+
r−i−1∑

j=0

(−1)j+1p−j−j2

φj(p−2)
P̃

(1)
2r−2i−2j−1(d0d; ξχ(d))

 .

By Proposition 5.2.1 and Corollary to Theorem 5.2.2 we have

P̃
(1)
2r−2i−2j−1(d0d; ξχ(d)) = P̃

(1)
2r−2i−2j−1(d0; ξ)

for d ∈ U(2r + 1, 2i + 1, d0) and hence∑
d∈U(2r+1,2i+1,d0)

P̃
(1)
2r−2i−2j−1(d0d; ξχ(d)) = 0.

Moreover we have∑
d∈U(2r+1,2i+1,d0)

∑
d′∈U(2r−2i,2j,d0d)

(−1)j(χ(d′) + p−j)p−j2

21−δ0,r−i21−δ0,r−i−j+δ0,r−i
P̃

(0)
2r−2i−2j(d0dd′; ξχ(d)χ(d′))

=
∑

d′′∈U(2r,2i+2j,d0)

(−1)jp−j−j2

21−δ0,r−i−j
P̃

(0)
2r−2i−2j(d0d

′′; ξχ(d′′)).

Hence we have

Q
(1)
2r+1(d0; ξ) = P̃

(1)
2r+1(d0; ξ) +

r∑
m=1

P̃
(1)
2r−2m+1(d0; ξ)Am

−
r∑

m=1

∑
d∈U(2r+1,2m+1,d0)

1
21−δ0,r−m

P̃
(0)
2r−2m(d0d; ξχ(d))Am

−
r∑

m=0

∑
d∈U(2r,2m,d0)

1
21−δ0,r−m

P̃
(0)
2r−2m(d0d; ξχ(d))Bm,
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where Am = −
m−1∑
j=0

(−1)jp−j−j2

φm−j(p−2)φj(p−2)
and Bm = −

m∑
j=0

(−1)jp−j−j2

φm−j(p−2)φj(p−2)
. We have Am =

(−1)mp−m−m2

φm(p−2)
for m ≥ 1, and Bm = 1 or 0 according as m = 0 or m ≥ 1. Thus we get the

desired result for Q
(1)
2r+1(n; d0, ε

l, ξ,X, Y, t). We also get the result for Q
(0)
2r (n; d0, ε

l, ξ,X, Y, t),
and this completes the induction. Similarly the assertion (2) can be proved.

The following lemma follows from [12, Lemma 3.4]:

Lemma 5.2.7. Let l be a positive integer, and q, U and Q variables. Then

l∏
i=1

(1 − U−1Qq−i+1)U l

=
l∑

m=0

φl(q−1)
φl−m(q−1)φm(q−1)

l−m∏
i=1

(1 − Qq−i+1)
m∏

i=1

(1 − Uqi−1)(−1)mq(m−m2)/2.

The following corollary follows directly from the above lemma, and will be used in the proof
of Theorem 5.2.8.

Corollary. Let t and Y be variables, and p a prime number.
(1) For non-negative integers l and i0 such that i0 + 1 ≤ l ≤ (n − 2)/2 we have

(n−2−2l)/2∑
m=0

(−1)mpm−m2

∏l+m−1
i=i0

(1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)
φm(p−2)φ(n−2−2l)/2−m(p−2)

=

∏l−1
i=i0

(1 − p2i−1Y 2)
∏(n−2l−2)/2

i=1 (1 − p−2l−n−2it4)(p2l−1Y 2)(n−2l−2)/2

φ(n−2−2l)/2(p−2)
.

(2) For a non-negative integer l ≤ (n − 2)/2 we have

(n−2−2l)/2∑
m=0

(−1)mpm−m2
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)
φm(p−2)φ(n−2−2l)/2−m(p−2)

=
∏l

i=1(1 − p2i−1Y 2)
∏(n−2l−2)/2

i=1 (1 − p−2l−n−2i−2t4)(p2l+1Y 2)(n−2l−2)/2

φ(n−2−2l)/2(p−2)
.

(3) For a non-negative integer l ≤ (n − 4)/2 we have

(n−4−2l)/2∑
m=0

(−1)mpm−m2
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−4)/2

i=1 (1 − p−2i−n−1Y 2t4)
φm(p−2)φ(n−4−2l)/2−m(p−2)

=
∏l

i=1(1 − p2i−1Y 2)
∏(n−2l−4)/2

i=1 (1 − p−2l−n−2i−2t4)(p2l+1Y 2)(n−2l−4)/2

φ(n−4−2l)/2(p−2)
.

In the equations listed above, we understand that the product
∏b

i=a(∗) = 1 if a > b.
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Theorem 5.2.8. Let the notation be as in Theorem 5.2.5.
(1) Suppose that ν(d0) = 0. Put ξ0 = χ(d0). Then

R̃n−1(d0, ω,X, Y, t) = (1 − p−nt2)

×

{
(n−2)/2∑

l=0

∑
d∈U(n−1,n−1−2l,d0)

P̃
(0)
2l (n; d0d, ω, χ(d), X, Y, t)

(n−2−2l)/2∏
i=1

(1 − p−2l−n−2it4)

×
(p2l−1Y 2)(n−2l−2)/2

∏l−1
i=0(1 − p2i−1Y 2)pl−1/2χ(d)Y (1 + χ(d)Y pl−1/2)

21−δ0,l(1 + ξ0p−1/2Y )φ(n−2l−2)/2(p−2)

+
(n−4)/2∑

l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

(n−4−2l)/2∏
i=2

(1 − p−2l−n−2it4)

×
(p2l−1Y 2)(n−2l−2)/2

∏l
i=1(1 − p2i−1Y 2)(1 − ξ0p

−1/2Y )(1 + p−2l−2t2)
φ(n−2l−2)/2(p−2)

}
.

(2) Suppose that ν(d0) > 0 and ω = ι. Put ξ0 = χ(d0). Then

R̃n−1(d0, ω,X, Y, t) = (1 − p−nt2)

×

{
(n−2)/2∑

l=1

∑
d∈U(n−1,n−1−2l,d0)

P̃
(0)
2l (n; d0d, ω, χ(d), X, Y, t)

(n−2−2l)/2∏
i=1

(1 − p−2l−n−2it4)

×
(p2l−1Y 2)(n−2l−2)/2

∏l−1
i=1(1 − p2i−1Y 2)pl−1/2χ(d)Y (1 + χ(d)Y pl−1/2)

2φ(n−2l−2)/2(p−2)

+
(n−4)/2∑

l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

(n−4−2l)/2∏
i=2

(1 − p−2l−n−2it4)

×
(p2l−1Y 2)(n−2l−2)/2

∏l
i=1(1 − p2i−1Y 2)(1 + p−2l−2t2)

φ(n−2l−2)/2(p−2)

}
.

(3) Suppose that ν(d0) > 0 and ω = ε. Then

R̃n−1(d0, ω,X, Y, t) =
(n−2)/2∑

l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

×
(p2l+1Y 2)(n−2l−2)/2

∏l
i=1(1 − p2i−1Y 2)

∏(n−2−2l)/2
i=1 (1 − p−2l−n−2i−2t4)

φ(n−2−2l)/2(p−2)
.
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Proof. Suppose that ν(d0) = 0 or ω = ι. Then by (1) of Theorem 5.2.5 and (1) of Corollary
to Proposition 5.2.6, we have

R̃n−1(d0, ω; X,Y, t)

=
(n−2)/2∑

r=0

∏r
i=1(1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

21−δ0,rφ(n−2r−2)/2(p−2)

∑
d1∈U(n−1,n−2r−1,d0)

D2r(d0, d1, Y, t)

×

{
r∑

m=0

∑
d2∈U(2r,2m,d0d1)

(−1)m(χ(d2) + p−m)p−m2

21−δ0,r−m+δ0,rφm(p−2)
P̃

(0)
2r−2m(n; d0d1d2, ω, χ(d1)χ(d2), X, Y ; t)

+
r−1∑
m=0

(−1)m+1p−m−m2

φm(p−2)
P̃

(1)
2r−2m−1(n; d0d1, ω, χ(d1), X, Y ; t))

}

+
(n−2)/2∑

r=0

∏r
i=1(1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

φ(n−2r−2)/2(p−2)

×(1 − ξ0p
−1/2Y )

{
r∑

m=0

(−1)mp−mp−m2

φm(p−2)
P̃

(1)
2r+1−2m(n; d0, ω, 1, X, Y, t)

+
r∑

m=0

∑
d2∈U(2r+1,2m+1,d0)

(−1)m+1p−m−m2

21−δ0,r−mφm(p−2)
P̃

(0)
2r−2m(n; d0d2, ω, χ(d2), X, Y, t)

}
.

By Proposition 5.2.1 and Corollary to Theorem 5.2.2, for any d1 ∈ U we have

P̃
(1)
2r+1−2m(n; d0d1, ω, χ(d1), X, Y, t) = P̃

(1)
2r+1−2m(n; d0, ω, 1, X, Y, t).

Moreover, if r > m ≥ 0, then U(n − 1, n − 2r − 1, d0) = U(2r + 1, 2m + 1, d0d1) = U . Hence

(A) R̃n−1(d0, ω,X, Y, t)

=
(n−2)/2∑

m=0

S(n;m, d0, Y )
∏m

i=1(1 − p2i−1Y 2)
∏(n−2−2m)/2

i=1 (1 − p−2i−n−1Y 2t4)p−m2
(−1)m

φm(p−2)φ(n−2)/2−m(p−2)

+
(n−2)/2∑

l=1

∑
d∈U

P̃
(0)
2l (n; d0d, ω, χ(d), X, Y, t)

×
(n−2−2l)/2∑

m=0

{
1
2

∑
d1∈U(2l+2m,2m,d0)

D2l+2m(d0, d1, Y, t)

×(χ(d1)χ(d) + p−m)(−1)mp−m2
− (1 − ξ0p

−1/2Y )(−1)mp−m−m2

}

×
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)
2φm(p−2)φ(n−2−2l)/2−m(p−2)

+
(n−2)/2∑

l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

×

{
(n−2−2l)/2∑

m=0

((1 − ξ0p
−1/2Y )(−1)mp−m−m2

)
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×
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)
φm(p−2)φ(n−2−2l)/2−m(p−2)

−
(n−4−2l)/2∑

m=0

1
2

∑
d∈U

D2l+2m+2(d0, d, Y, t)(−1)mp−m−m2

×
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−4)/2

i=1 (1 − p−2i−n−1Y 2t4)
φm(p−2)φ(n−4−2l)/2−m(p−2)

}
,

where

S(n; m, d0, Y )

=
∑

d1∈U(n−1,n−2m−1,d0)

(χ(d0d1) + p−m)D2m(d0, d1, Y, t)
2

− (1 − ξ0p
−1/2Y )p−m or 0

according as ν(d0) = 0 or not. We have

(1 − ξ0p
−1/2Y )p−m(1 − p−2n+2l+2m+1Y 2t4)

−1
2

∑
d1∈U

D2l+2m+2(d0, d1, Y, t)p−m(1 − p−2n+2m+2l+2)(1 − p2l+2m+1Y 2)

= (1 − p−1/2ξ0Y )p−n+m+2l+2(1 − p−2n+2m+2l+1Y 2t4)

+(1 − p−1/2ξ0Y )(1 − p−n+2m+2l+2)p2l+m−n+1Y 2t2(1 − p−nt2)

for any 0 ≤ l ≤ (n − 2)/2 and 0 ≤ m ≤ (n − 2l − 2)/2. Furthermore we have

1
2

∑
d1∈U

D2l+2m(d0, d1, Y, t)(χ(d1)χ(d) + p−m) − (1 − ξ0p
−1/2Y )p−m

=
χ(d)(1 − p−1/2ξ0Y )(1 − p−nt2)pl+m−1/2Y (1 + χ(d)Y pl−1/2)

1 − p2l+2m−1Y 2

for any 1 ≤ l ≤ (n − 2)/2, 0 ≤ m ≤ (n − 2l − 2)/2 and d ∈ U . Suppose that ν(d0) = 0. Then
for any m we have

1
2

∑
d1∈U(n−1,n−2m−1,d0)

D2m(d0, d1, Y, t)(χ(d1)χ(d0) + p−m)

−(1 − ξ0p
−1/2Y )p−m =

ξ0p
m−1/2Y (1 − p−1Y 2)(1 − p−nt2)

1 − p2m−1Y 2
.
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We remark that U(n − 1, n − 2l − 1, d0) = U for l > 0 and U(n − 1, n − 1, d0) = {d0}. Hence

R̃n−1(d0, ω,X, Y, t) = ξ0p
−1/2Y (1 − p−nt2)

×
(n−2)/2∑

l=0

∑
d∈U(n−1,n−2l−1,d0)

P̃
(0)
2l (n; d0d, ω, χ(d), X, Y, t)(1 − p−nt2)pl−1/2χ(d)Y

1 + χ(d)Y pl−1/2

1 + ξ0p−1/2Y

×
(n−2−2l)/2∑

m=0

(−1)mpm−m2
∏l+m−1

i=0 (1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)
21−δ0,lφm(p−2)φ(n−2−2l)/2−m(p−2)

+
(n−2)/2∑

l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

{
(1 − ξ0p

−1/2Y )p−n+2+2l

×
(n−2−2l)/2∑

m=0

(−1)mpm−m2
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)
φm(p−2)φ(n−2−2l)/2−m(p−2)

+Y 2t2p2l−n+1(1 − ξ0p
−1/2Y )(1 − p−nt2)

×
(n−4−2l)/2∑

m=0

(−1)mpm−m2
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−4)/2

i=1 (1 − p−2i−n−1Y 2t4)
φm(p−2)φ(n−4−2l)/2−m(p−2)

}
.

Thus the assertion (1) follows from Corollary to Lemma 5.2.7. Similarly the assertion (2) can
be proved.

Suppose that ν(d0) > 0 and ω = ε. Then by (2) of Theorem 5.2.5 and (2) of Corollary to
Proposition 5.2.6, we have

R̃n−1(d0, ω,X, Y, t) =
(n−2)/2∑

l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

×
(n−2−2l)/2∑

m=0

((−1)mpm−m2
)

∏l+m
i=1 (1 − p2i−1Y 2)

∏(n−2l−2m−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

φm(p−2)φ(n−2−2l)/2−m(p−2)
.

Thus the assertion (3) follows from Corollary to Lemma 5.2.7.

By Proposition 5.2.1 we immediately obtain:

Corollary. Let the notation be as in Theorem 5.2.8.
(1) Suppose that ν(d0) = 0. Then

R̃n−1(d0, ω,X, Y, t) = (1 − p−nt2)
n/2−1∏

i=1

(1 − p−2n+2it4)

×

{
(n−2)/2∑

l=0

l∏
i=1

(1 − p−n−2l−3+2it4)
∑

d∈U(n−1,n−1−2l,d0)

P
(0)
2l (d0d, ω, χ(d), X, tY −1/2)

×
(p2l−1Y 2)(n−2l−2)/2

∏l−1
i=0(1 − p2i−1Y 2)pl−1/2χ(d)Y (1 + χ(d)Y pl−1/2)

21−δ0,l(1 + ξ0p−1/2Y )φ(n−2l−2)/2(p−2)

+
(n−2)/2∑

l=0

l∏
i=1

(1 − p−n−2l−3+2it4)P (1)
2l+1(d0, ω, 1, X, tY −1/2)

×
(p2l−1Y 2)(n−2l−2)/2

∏l
i=1(1 − p2i−1Y 2)(1 − ξ0p

−1/2Y )(1 + p−2l−2t2)
φ(n−2l−2)/2(p−2)

}
.
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(2) Suppose that ν(d0) > 0 and ω = ι. Put ξ0 = χ(d0). Then

R̃n−1(d0, ω,X, Y, t) = (1 − p−nt2)
n/2−1∏

i=1

(1 − p−2n+2it4)

×

{
(n−2)/2∑

l=1

l∏
i=1

(1 − p−n−2l−3+2it4)
∑

d∈U(n−1,n−1−2l,d0)

P
(0)
2l (d0d, ω, χ(d), X, tY −1/2)

×
(p2l−1Y 2)(n−2l−2)/2

∏l−1
i=1(1 − p2i−1Y 2)pl−1/2χ(d)Y (1 + χ(d)Y pl−1/2)

2φ(n−2l−2)/2(p−2)

+
(n−2)/2∑

l=0

l∏
i=1

(1 − p−n−2l−3+2it4)P (1)
2l+1(d0, ω, 1, X, tY −1/2)

×
(p2l−1Y 2)(n−2l−2)/2

∏l
i=1(1 − p2i−1Y 2)(1 + p−2l−2t2)

φ(n−2l−2)/2(p−2)

}
.

(3) Suppose that ν(d0) > 0 and ω = ε. Then

R̃n−1(d0, ω,X, Y, t) = (1 − ξ0p
−1/2Y )

n/2∏
i=1

(1 − p−2n+2i−2t4)
(n−2)/2∑

l=0

P
(1)
2l+1(d0, ω, 1, X, tY −1/2)

×
(p2l+1Y 2)(n−2l−2)/2

∏l
i=1(1 − p2i−1Y 2)

∏l
i=1(1 − p−2l−n+2i−3t4)

φ(n−2−2l)/2(p−2)
.

5.3. Explicit formulas for formal power series of Rankin-Selberg type

We prove our main result in this section.

Theorem 5.3.1. Let d0 ∈ Fp and put ξ0 = χ(d0).
(1) We have

Hn−1(d0, ι,X, Y, t)

= φ(n−2)/2(p−2)−1(p−1t)ν(d0)(1 − p−nt2)
n/2−1∏

i=1

(1 − p−2n+2it4)

× (1 + p−2t2)(1 + p−3ξ2
0t2) − p−5/2t2ξ0(X + X−1 + Y + Y −1)

(1 − p−2XY t2)(1 − p−2XY −1t2)(1 − p−2X−1Y t2)(1 − p−2X−1Y −1t2)

× 1∏n/2−1
i=1 (1 − p−2i−1XY t2)(1 − p−2i−1XY −1t2)(1 − p−2i−1X−1Y t2)(1 − p−2i−1X−1Y −1t2)

.

(2) We have

Hn−1(d0, ε,X, Y, t)

= φ(n−2)/2(p−2)−1(1 − p−nt2)
n/2−1∏

i=1

(1 − p−2n+2it4)(tp−1)ν(d0)

× (1 + p−nt2)(1 + p−n−1ξ2
0t2) − p−1/2−nt2ξ0(X + X−1 + Y + Y −1)

(1 − p−nXY t2)(1 − p−nXY −1t2)(1 − p−nX−1Y t2)(1 − p−nX−1Y −1t2)

× 1∏n/2−1
i=1 (1 − p−2iXY t2)(1 − p−2iXY −1t2)(1 − p−2iX−1Y t2)(1 − p−2iX−1Y −1t2)

.
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Proof. First suppose that ω = ι. For an integer l put

V (l,X, Y, t)

= (1 − t2p−2XY −1)(1 − t2p−2X−1Y −1)
l∏

i=1

(1 − t2p−2i−1XY −1)(1 − t2p−2i−1X−1Y −1).

For d ∈ U , put ηd = χ(d). Then by Theorem 5.2.2, and (1) of Corollary to Theorem 5.2.8, we
have

R̃n−1(d0, ω,X, Y, t) = (1 − p−nt2)
(n−2)/2∏

i=1

(1 − p−2n+2it4)

{
(p−1Y 2)(n−2)/2ξ0

φ(n−2)/2(p−2)

+
(p−1Y 2)(n−2)/2(1 − p−1/2ξ0Y )(1 + p−2t2)(p−1tY −1/2)ν(d0)(1 − p−5/2ξ0t

2Y −1)
(1 − t2p−2XY −1)(1 − t2p−2X−1Y −1)

+
(n−2)/2∑

l=1

∑
d∈U(n−1,n−1−2l,d0)

∏l
i=1(1 − p−n−2l−3+2it4)(p−1tY −1/2)ν(d0)S

(0)
2l (d0d, ι, ηd, X, Y, t2)

V (l,X, Y, t)

+
(n−2)/2∑

l=1

∏l
i=2(1 − p−n−2l−3+2it4)(p−1tY −1/2)ν(d0)S

(1)
2l+1(d0, ι,X, Y, t2)

V (l − 1, X, Y, t)

}
,

where S
(0)
2r (d0d, ι, ηd, X, Y, t) and S

(1)
2r+1(d0, ι,X, Y, t) are polynomials in t of degree at most 2.

We note that ξ0 = 0 if ν(d0) > 0. Hence R̃n−1(d0, ι,X, Y, t) can be expressed as

R̃n−1(d0, ι,X, Y, t)

=
(1 − p−nt2)

∏(n−2)/2
i=1 (1 − p−n−2it4)(p−1tY −1/2)ν(d0)S(d0, ι,X, Y, t2)

φ(n−2)/2(p−2)V ((n − 2)/2, X, Y, t)
,

where S(d0, ι,X, Y, t) is a polynomial in t of degree at most n. Moreover it can be expressed as

(D) S(d0, ι,X, Y, t2)

=
(p−1Y 2)(n−2)/2

∏(n−2)/2
i=1 (1 − t2p−2i−1XY −1)(1 − t2p−2i−1X−1Y −1)

φ(n−2)/2(p−2)

×ξ0p
−1/2Y (1 − t2p−2XY −1)(1 − t2p−2X−1Y −1)

+
(p−1Y 2)(n−2)/2

∏(n−2)/2
i=1 (1 − t2p−2i−1XY −1)(1 − t2p−2i−1X−1Y −1)

φ(n−2)/2(p−2)

×(1 − p−1/2ξ0Y )(1 + p−2t2)(1 − p−5/2ξ0t
2Y −1)

+(1 − p−n−3t4)U(d0, X, Y, ι, t2)

with U(d0, ι,X, Y, t) a polynomial in t. Hence by Theorem 5.1.4 we have

Hn−1(d0, ι,X, Y, t) = (p−1t)ν(d0)(1 − p−nt2)
∏n/2−1

i=1 (1 − p−2n+2it4)

× S(d0, ι,X, Y, t2)
(1 − p−2XY t2)(1 − p−2XY −1t2)(1 − p−2X−1Y t2)(1 − p−2X−1Y −1t2)

× 1∏n/2−1
i=1 (1 − p−2i−1XY t2)(1 − p−2i−1XY −1t2)(1 − p−2i−1X−1Y t2)(1 − p−2i−1X−1Y −1t2)
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× 1∏(n−2)/2
i=1 (1 − p−2iXY t2)(1 − p−2iX−1Y t2)

.

Hence the power series Hn−1(d0, ι,X, Y, t) is a rational function in X,Y and t, and is invariant
under the transformation Y 7→ Y −1. This implies that the reduced denominator of the rational
function Hn−1(d0, ι,X, Y, t) in t is at most

(1 − p−2XY t2)(1 − p−2XY −1t2)(1 − p−2X−1Y t2)(1 − p−2X−1Y −1t2)

×
n/2−1∏

i=1

(1 − p−2i−1XY t2)(1 − p−2i−1XY −1t2)(1 − p−2i−1X−1Y t2)(1 − p−2i−1X−1Y −1t2)

and therefore we have

(E) S(d0, ι,X, Y, t2) =
2∑

i=0

ai(d0, X, Y )t2i

∏(n−2)/2
i=1 (1 − p−2iXY t2)(1 − p−2iX−1Y t2)

φ(n−2)/2(p−2)
,

where ai(d0, X, Y ) (i = 0, 1, 2) is a polynomial in X + X−1 and Y + Y −1. First assume ν(d0) =
0. Then we can easily see a0(d0, X, Y ) = 1. Then by substituting ±p(n+3)/2 for t2 in (D) and
(E), and comparing them, we obtain

1 ± a1(d0, X, Y )p(n+3)/2 + a2(d0, X, Y )pn+3

= 1 ± (p(n−3)/2 + p(n−1)/2 − ξ0p
n/2−1(X + X−1 + Y + Y −1)) + pn−2.

Hence a1(d0, X, Y ) = p−2 + p−3 − p−5/2(X + X−1 + Y + Y −1)ξ0 and a2(d0, X, Y ) = p−5.
This proves the assertion in case ν(d0) = 0. Next assume ν(d0) > 0. Then in the same manner
as above we have a0(d0, X, Y ) = 1, and

1 ± a1(d0, X, Y )p(n+3)/2 + a2(d0, X, Y )pn+3 = 1 ± p(n−1)/2

Hence a2(d0, X, Y ) = 0 and a1(d0, X, Y ) = p−2. This proves the assertion in case ν(d0) > 0.
Similarly the assertion for ν(d0) = 0 and ω = ε can be proved. Next suppose that ν(d0) > 0

and ω = ε. Then the assertion can be proved similarly by using Theorems 5.1.4 and 5.2.2, and
(2) of Corollary to Theorem 5.2.8.

6. Proof of Theorem 3.2

Now we give an explicit form of R(s, σn−1(φIn(h),1)) for the first Fourier-Jacobi coefficient
φIn(h),1 of the Duke-Imamoḡlu-Ikeda lift.

Proposition 6.1. Let k and n be positive even integers. Given a Hecke eigenform h ∈
S+

k−n/2+1/2(Γ0(4)), let f ∈ S2k−n(Γ (1)) be the primitive form as in Section 2. Then

R(s, h) = L(2s − 2k + n + 1, f,Ad)
∑

d0∈F(−1)n/2

|ch(|d0|)|2|d0|−s

×
∏
p

{(1 + p−2s+2k−n−1)(1 + p−2s+2k−n−2χp(d0)2) − 2p−2s+k−n/2−1χp(d0)cf (p)}.

Proof. The assertion can be proved by Theorems 4.2 and 5.3.1.

Theorem 6.2. Let k and n be positive even integers. Given a Hecke eigenform h ∈
S+

k−n/2+1/2(Γ0(4)), let f ∈ S2k−n(Γ (1)) and φIn(h),1 ∈ J cusp
k, 1 (Γ (n−1),J) be as in Section 2 and
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Section 3, respectively. Put λn = en−1
2

∏n/2−1
i=1 ξ̃(2i). Then, we have

R(s, σn−1(φIn(h),1)) = λn2(−s−1/2)(n−2)ζ(2s + n − 2k + 1)−1

n−2
2∏

i=1

ζ(4s + 2n − 4k + 2 − 2i)−1

×{R(s − n/2 + 1, h)ζ(2s − 2k + 3)

n−2
2∏

i=1

L(2s − 2k + 2i + 2, f,Ad)ζ(2s − 2k + 2i + 2)

+(−1)n(n−2)/8R(s, h)ζ(2s − 2k + n + 1)

n−2
2∏

i=1

L(2s − 2k + 2i + 1, f,Ad)ζ(2s − 2k + 2i + 1)}.

Proof. The assertion follows directly from Theorems 4.2 and 5.3.1, and Proposition 6.1.

Proof of Theorem 3.2. The assertion trivially holds if n = 2. Suppose that n ≥ 4. By
Theorem 6.2 we have

(F) R(s, σn−1(φIn(h),1)) =
n/2−1∏

i=1

ξ̃(2i)2(−s−1/2)(n−2)T (s)

×

U(s)−1R(s − n/2 + 1, h)

n−2
2∏

i=1

Λ̃(2s − 2k + 2i + 2, f,Ad)ξ(2s − 2k + 2i + 2)

+(−1)n(n−2)/8R(s, h)

n−2
2∏

i=1

L(2s − 2k + 2i + 1, f,Ad)ζ(2s − 2k + 2i + 1)

 ,

where

T (s) = ΓR(2s + n − 2k + 1)
(n−2)/2∏

i=1

ΓR(4s + 2n − 4k + 2 − 2i)
n−1∏
i=1

ΓR(2s − i + 1),

and

U(s) = ΓR(2s − 2k + 3)ΓR(2s − n + 2)

×
(n−2)/2∏

i=1

(ΓC(2s − 2k + 2i + 2)ΓC(2s − n + 2i + 1)ΓR(2s − 2k + 2i + 2)).

We note that R(s, h) is holomorphic at s = k − 1/2. Thus by taking the residue of the both-sides
of (F) at s = k − 1/2 , we get

Ress=k−1/2R(s, σn−1(φIn(h),1)) = 2−k(n−2)

n/2−1∏
i=1

ξ̃(2i)
T (k − 1/2)
U(k − 1/2)

×Ress=k−n/2+1/2R(s, h)

n−2
2∏

i=1

Λ̃(2i + 1, f,Ad)ξ(2i + 1).

We easily see that
T (k − 1/2)
U(k − 1/2)

= 2(n−1)(n−2)/2.



Page 38 of 39 HIDENORI KATSURADA AND HISA-AKI KAWAMURA

By [31, Theorem 1], we have

Ress=k−n/2+1/2R(s, h) = 22k−n〈h, h〉.

Thus we complete the proof.
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