

キナルジンの空気接触酸化

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-05-23
	キーワード (Ja):
	キーワード (En):
	作成者: 小松, 藤男
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3114

キナルジンの空気接触酸化

小 松 藤 男

Air Catalytic and Non-catalytic Oxidation of Quinaldine

Fujio Komatsu

Abstract

Quinaldinic acid was synthesized from quinaldine, one of the high temperature tar base, for determination of microquantities of copper, and quinoline aldehyde was obtained as by-product. The synthesis was carried out by non-catalytic and catalytic air oxidation at $350\sim600^{\circ}$ C, under the presence of vanadium pentoxide, mixtures of vanadium pentoxide and molybdenum trioxide, and calcium and cadmium metavanadate with pumice stone as carrier. It determined the amounts of reaction temperature, space velocity, mole ratio of their mixtures, in relation to yields of the product and by-product. Consequently, each maximum yield was 6% for no catalyst at 450° C, 60% for vanadium pentoxide using steam at 410° C, 37% for their mixtures using steam at $400\sim410^{\circ}$ C, 20% for Cd(VO₃)₂ at 400° C and 11% for Ca(VO₃)₂ at 405° C.

Furthermore utilizing Nernst's approximation equation, calculated the equilibrium constant K_P and the author showed the selective partial oxidation of this reaction thermodynamically to be possible.

[1] 序 論

本実験は高沸点タール塩基の利用の一端として行なわれたもので、a-picoline¹⁾の空気接触酸化の場合と同様に、キナルジンの空気接触酸化においては、適当な条件の下に、キナルジン酸およびキノリンアルデヒド又はキノリンが得られるであろうとの推察の下に、銅の微量定量に用いられるキナルジン酸の収量の増大を目的として行なわれたものである。

Maxted: J. Soc. Chem. Ind., 47, 101 T (1938).

Maxted and Dunsby: J. Chem. Soc., 48, 1439 (1928).

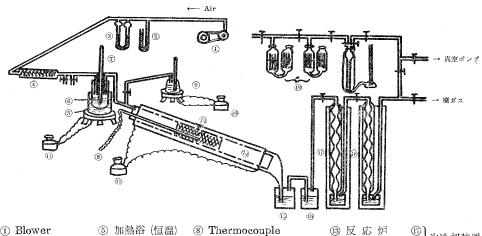
Maxted and Hassid: J. Soc. Chem. Ind., 50, 399 (1931).

Milas and Walsh: J. Am. Chem. Soc. 58, 1389 (1935).

Neumann Z. Electro Chem. 41, 589 (1935).

小松藤男: 室工大研報, 1,338 (1952).

Wilhelm Mathes, Walter Sauermilch und Theo Klein: Chem. Ber. 84, 452 (1951).


¹⁾ Kiprianov and Shostak: J. Applied Chem. (U.S.S.R.) 11, 471 (1938).

1952年, 石黒氏ら $^{\circ}$ によれば、キナルジンの空気酸化に $V_{2}O_{5}$, MoO_{3} , WO_{3} を触媒とし、 450~480℃の反応温度において、キナルドインと少量のキノリンアルデヒドが生成されるが、 キノリン-2-カルボン酸は生成されないととを報告 しているし, また 1954 年には, Wilhelm Mathes, Walter Sauermilch³⁾ がアルデヒドの良好収量条件としては,坦体としての Silica gel にその 10% (重量) の MoO。 を触媒とし、AI 製反応管により、空間速度 400、理論空気量 7.5 倍、 410℃の反応温度で水蒸気を用い、40~50%のアルデヒドを得ているが、カルボン酸の生成に ふれていないし、又その物理化学的データや、無触媒酸化におけるアルデヒドおよびカルボン 酸の収率にもふれていない。従つて,本実験では,無触媒の場合,V,Q。触媒で軽石を坦体とす る場合、 V_2O_5 と MoO_3 との混合触媒の場合、および Cd、Ca のメタバナデート塩触媒の場合 に、カルボン酸とアルデヒドとの生成量の関係を反応温度、空間速度、理論空気量比を変えて 求めた。やや良好な結果を得たので、それについて報告すると共に、キナルジンの気相酸化に よるキノリアルデヒド、キノリン-2-カルボン酸、キノリン等の生成の可能性を Nernst の近似 式りを用いて平衡恒数を計算し示した。その結果についても報告する。

$\lceil 2 \rceil$ 実験の部

(1) 装 置

実験装置は第1図に示される。すなわち試料溜に試料を恒温に保ち、とれに直接乾燥空気

- (1) Blower
- ② Manometer
- 6 Sample ③ Flowmeter
- ⑦ 水銀温度計 ④ 乾燥管 (CaCl)
- ⑤ 加熱浴(恒温) ® Thermocouple (グリセリン)
 - ⑨ 水 (水蒸気発生) (恒温)

 - Volt stat
- ④ 反 応 管 ⑤) 吸収瓶 (16) (硫酸溶液)
- 氷冷却装置
- ⑨ ガス分析装置 (CO_2, CO)

第1図

²⁾ Wilhelm Mathes und Walter Sauermilch: Chem. Ber. 87, 1179 (1954). 石黒武雄・内海 勇: 薬誌. 72,861~865 (1952).

³⁾ Wilhelm Mathes und Walter Sauermilch: Chem. Ber. 87, 1179 (1954).

⁴⁾ 小泉正夫: 化学平衡原論. 160 頁.; 清浦·佐藤·永廻共著: 工業化学計算 上巻. 146 頁.

を通して空気と試料蒸気とを、または更にこれに水蒸気を通して、反応管 (直径 2.5 cm、長さ 100 cm、磁製管) にて反応させる。生成物および未反応物の大部分は吸収瓶 (30% 硫酸) に捕集され、更に氷冷却吸収瓶で捕集される。また一方気体はガス分析装置において適宜分析される。

(2) 実験試料および触媒

(イ) 実験試料

試料キナルジンは特級合成品のもの、および高沸点タール塩基溜分より、精製分離 9 した溜分すなわち b.p. $247.0\sim247.6^{\circ}$ C のものを用いた。

(口) 触 媒

使用した触媒は V_2O_5 , $MoO_3+V_2O_5$ およびメタバナデート塩である。

1. V_2O_5 はバナジン酸アンモンを水に熔解し軽石に附著させ、灼熱して 400° C 附近の温度でアンモニアおよび水分とを完全に除去して作つた。 MoO_3 も同様、モリブデン酸アンモンを水に溶解、軽石に附着し、アンモニアおよび水分を除去させるため、約 400° C に灼熱させたものを用いた。

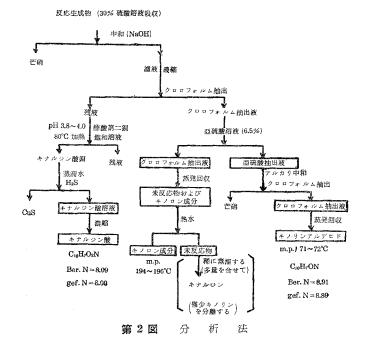
2. Cd(VO₃)₂·H₂O⁶)

20gのメタバナジン酸アンモンを沸騰水 500 cc に溶解した溶液に, 20gの $Cd(NO_s)_2$ を 500 c.c. の温水に溶解した溶液を加え、生ずる黄白色のバナジン酸カドミウムの沈澱を約 20 ℓ の蒸溜水で洗滌濾過し、100°C に乾燥し、 $10\sim20$ mesh にして用いた。

3. $Ca(VO_3)_2^{7}$

12 g の CaCl₂ 無水物を 500 c.c. の蒸溜水に溶解し、 20 g のメタバナジン酸アンモンを蒸溜水 500 c.c. に溶解した溶液にこれを加え、生じた白色沈澱物 Ca(VO_3)₂ を蒸溜水 20 ℓ で濾過洗滌し、 100° C に乾燥して $10\sim20$ mesh にして用いた。

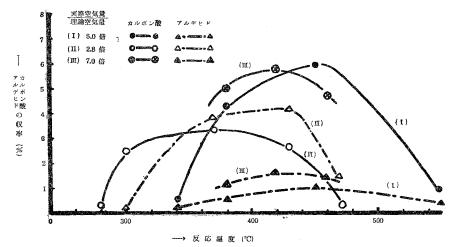
(3) 分 折 法


30% 硫酸に吸収された反応生成物および未反応物の分析は第2図に示される。得られるものの大部分は未反応キナルジンおよびキナルジン酸, キノリンアルデヒドおよび CO_2 , CO_3 , CO_4 CO_5 CO_5

⁵⁾ 小松藤男: 室工大研報. 2 (1957) 投稿中.

W. A. Van Dorp and S. Hoogewerff: Rec. d. Trav. Chim. d. Pays-Bas. 3, 344 (1885).

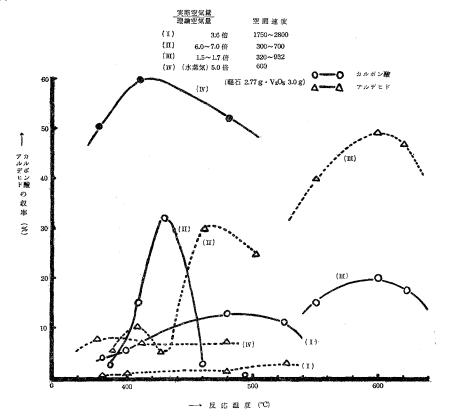
⁶⁾ J. J. Berzelins: Acad. Handl. Stockholm 1 (1831).


A. Scheuer: Zeit anorg. Chem. 16, 304 (1898).
 Comprehensive Treatise on Inorganic and Theoretical Chemistry (J. W. Mellor) IX. 767.

[3] 実験結果

(イ) 無触媒の場合

無触媒の場合において、キナルジン酸を得るために必要な理論空気量に対して色々と空気量を変えて、すなわち、理論空気量比を変えて、反応温度と収率との関係を示せば、第3図の如くなる。 カルボン酸の収率は最高6%、アルデヒドは約4% であつた。また理論空気量比小


第3図 無触媒における反応温度と収率

のとき、すなわち 2.8 附近では、反応温度 370° C のとき、カルボン酸の収率は最高であり、との場合アルデヒドの生成は割合に容易であり、 420° C でアルデヒドの最高収率を示す。理論空気量比増大と共に、すなわち約 5.0 附近のとき、カルボン酸の最高収率を示す反応温度は高温に移動し、約 450° C 附近である。しかし理論空気量比 7.0 附近 では、カルボン酸の最高収率を示す温度が 420° C となり低下する。 従つて理論空気量比が 7.0 以上では最高収率はあまり変化せず、かつ生成物が捕集されず逃散する可能性があり、また捕集するに更に装置を必要とするためあまり効果的ではない。またアルデヒドは空気量増大と共にあまり生成しないことが分つた。

(ロ) V₂O₅ 触媒

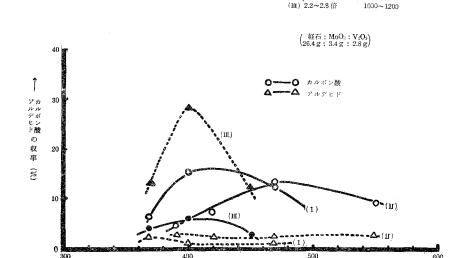
軽石 10 mesh 程度のもの 2.74 g に V_2O_5 3.0 g 附着させたものを用いた。軽石はあまり粒度の小のものでは,タール状のものが触媒に附着し活性化が低下するので,10 mesh 附近のものを用いたわけである。

実際空気量/理論空気量が $1.0\sim7.0$ 倍附近,空間速度 $320\sim2500$ 附近までのものについて行

第 4 図 V₂O₅ 触媒における収率と反応温度

なつた結果は第4図の如くである。空気量比1.7倍,空間速度320の条件の場合の如く,空気量の少ない場合に高温 600° C 附近で約20%のカルボル酸の最高収率を,約58%のアルデヒドの収率を示し(III),遂次空気量増大と共に,反応温度が低温部 430° C に移り,7倍位でカルボン酸の最大収率32%,アルデヒドはカルボン酸収率最大のときに最小収率を示し,また増大する傾向を示し(II),カルボン酸の良好条件の領域が狭く,排ガスの組成が約14.2%の CO_2 , 15.5%のCO および N_2 その他であり,カルボン酸,アルデヒドの分解が激しいことを示し,従って,との激しい発熱反応を水蒸気を通し除熱稀釈させてやると,(IV)の如く,カルボン酸の収率最大60%程度で,アルデヒドの収率は $7\sim8\%$ 附近のものが得られ,よい結果を示している。との場合は空気量比5倍,水蒸気(水に換算) 0.1ℓ 低温 410° C 附近で行なわれ, CO_2 約9.0%, CO_2 3.0% である。従って水蒸気により,-COOHの分解が阻止されているのがほぼ分るし,またR-COHの分解R-H+COの反応が進行されているのが分つた。

(ハ) 混合触媒 (MoO₃/V₂O₅÷⁴/₃)

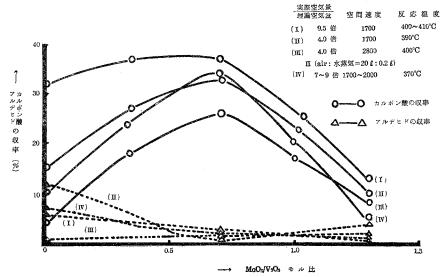

実際空気量/理論空気量が $2.2 \sim 8.5$ 倍,空間速度 $800 \sim 1800$ の範囲で,混合触媒としては, 坦体軽石: $MoO_3: V_2O_5 = 26.4: 3.4: 2.8$ (g 比) のものを用い,カルボン酸およびアルデヒドの収率と反応温度との関係を第 5 図に示す。第 5 図で分る如く,空気量小なる場合 (III) では,アルデヒドの生成の方がカルボン酸の生成より大で 400° C 附近がいずれも最高収率を示し,ガス組

(I)

4.0 倍

空間速度 800

2100


第5図 混合触媒収率と反応温度 (MoO₃/V₂O₅÷⅓)

--- 反応温度 (°C)

成は CO_2 10.0%, CO 18.3% を示している。しかし空気量がやや増大するにつれて,(II) の如く,空気量比 4.0 では, 470° C 附近でカルボン酸の収率が最大となり(約 13%),(III) よりも急激に増大し,アルデヒドの生成は逆に小となり,ガス分析の結果も (III) に比較し, CO_2 8.9%,CO 23.5% の如く,-COOH の分解は阻止され,-COH の分解が増大している。また空気量比 8.0 の如く大にし,空間速度を大にすれば,カルボン酸の良好収率(約 15%)は低温部 $400\sim410^{\circ}$ C 附近に移動するが,アルデヒドの収率は (II) よりも僅少となる。ガス組成も CO_2 5.4%,CO 22.1 % 程度に止まる。従つて,混合触媒によつて空気量を $4\sim8$ 倍にすれば,反応温度が低下し,カルボン酸の収率が上昇されてくることが分つた。

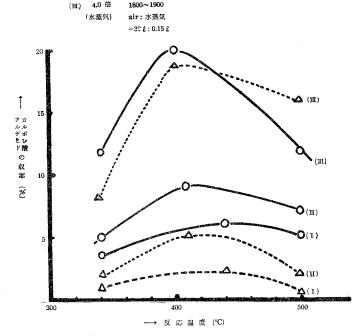
(二) MoO₃/V₂O₅ 比と収率

空気量比は(ハ) の結果より, $4\sim9.5$ 程度で,空間速度 $1700\sim2800$,反応温度 $390\sim410$ °C 附近の範囲で $MoO_3: V_2O_5$ のモル比を変えて行なつた結果,そのカルボン酸およびアルデヒドの収率と MoO_3/V_2O_5 のモル比との関係を第6 図に示す。

第6図 MoO₃/V₂O₅ 比と収率

(木) Cd(VO₃)₂ 触 媒

空気量比 $4.0\sim6.0$ および水蒸気添加の場合, 空間速度 $550\sim1900$ の範囲の場合において $Cd(VO_3)_2$ 触媒を用いた場合の反応温度と収率との関係を第 7 図に示す。坦体は用いず,粒度は 10 mesh のものを用いた。この粒度は前記坦体を用いた場合と同様タール状のものが附着し,活性化を妨げるため,細粒度のものは用いなかつた。その結果 (I) (II) (III) いずれも,カルボン酸の最高収率は反応温度 $400\sim420^{\circ}$ C であること,また (III) は水蒸気を特に添加した場合で,カルボン酸およびアルデヒドの生成が (I) (II) より比較して非常に大である。またガス分析の結果


	CO_2	CO	(平均値)
(I)	13.3%	21.4%	
$(\mathbf{\Pi})$	10.2%	22.7%	
(\mathbf{III})	8.5%	20.0%	

(III)は(I)に比較しカルボン酸の分解阻止の結果があらわれている。

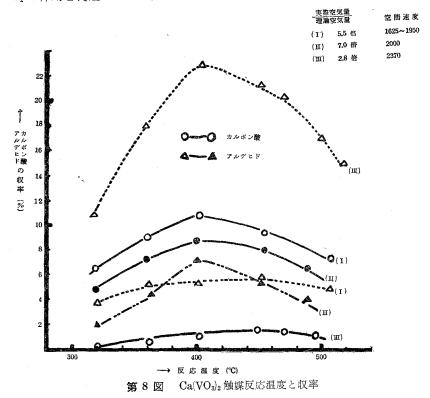
6.0 倍

空間速度 550~660

800~1000

第7図 Cd(VO₃)₂触媒反応温度と収率

(へ) Ca(VO₃)₂ 触 媒


坦体を用いず、10 mesh 程度の粒度にして用いた。 $Ca(VO_3)_2$ 触媒の場合、空気量比 $2.8\sim7.0$ 空間速度 $1980\sim2370$ の領域で、 カルボン酸、 アルデヒドの収率と反応温度との関係について

は第8図で示される。

空気量比小 (2.8 倍) の場合 (III) には,カルボン酸の収量悪く,最高 1% 附近で反応温度は $400\sim410^\circ$ C であり,またアルデヒドは最高 23% を示す。空気増大と共と,漸次,カルボン酸の収率が増大し,アルデヒドが減少し,その収率の関係が (III) の場合と (II) (I) の場合と反対になつてくるが, その良好な収率を与える反応温度は 400° C 附近であることが分る。 しかし, V_2O_5 単元触媒, V_2O_5 および MoO_3 の混合触媒に比較し,カルボン酸の収率は大分落ちるのはガス分析結果からも

$${\rm CO_2}$$
 CO $_{\rm (III)}$ 30.0% 2.5%

 CO_2 が非常に増大し,-RCOOH の分解を促進しているととが分る。すなわち $Ca(VO_3)_2$ は O_2 V_2O_5+CaO によって, V_2O_5 は $R-CH_3\longrightarrow R-COOH$ の作用を促進し,CaO は $R-COOH\rightarrow R-H+CO_2$ の作用を促進している様に堆察される。

[4] 反応機構 (熱力学的考察)

無触媒および V_2O_5 , $V_2O_5+MoO_3$, メタバナデート塩触媒によるキナルジンの空気接触酸

化は、種々の条件を変え、選択的酸化によつて、キナルジン酸およびキノリン-2-アルデヒドが得られたので、これらの反応の起きる可能性を、Nernst の近似式によつて平衡恒数を計算し、示した。

キノリン-2-アルデヒドの得られる場合

(1)
$$CH_3 + O_2 = CH_3 + O_2 = COH + H_2O$$
 $2H_{288}^0 = -96100 \text{ cal/mol}$

キナルジン酸の得られる場合

(II)
$$N - CH_3 + \frac{3}{2}O_2 = N - COOH + H_2O$$
 $2H_{298}^0 = -165900 \text{ cal/mol}$ $+165.9 \text{ kcal/mol}$

キノリンの得られる場合

完全酸化の場合

(IV)
$$\bigcirc$$
 CH₃+ $\frac{49}{4}$ O₂ = 10 CO₂+ $\frac{1}{2}$ N₂+ $\frac{9}{2}$ H₂O $\Delta H_{298}^{0} = -1277100$ cal/mol +1277.1 kcal/mol

(I)(II)(III)(IV) の平衡恒数は Nernst の近似式すなわち

$$\log K_P = -\frac{\Delta H_{298}^0}{4.573 T} + 1.75 \sum n_j \cdot \log T + \sum n_j C_j$$

 $egin{bmatrix} K_F\colon ext{平衡恒数} & \Delta H_{298}^0\colon ext{熱含量} & \sum n_j\colon ext{生成系と原系との mol 数の差} \ T\colon ext{絶対温度} & C_j\colon 常用化学恒数 \end{bmatrix}$

を用いて平衡恒数と温度との関係を示せば

$$(I) \log K_{P} = \frac{96100}{4.573 T} + 0.73, \qquad K_{P} = \frac{P_{\text{QA}} \cdot P_{\text{H}_{2}} \circ}{P_{\text{QD}} \cdot P_{\text{O}_{2}}}$$

$$(II) \log K_{P} = \frac{165900}{4.573 T} - 0.875 \log T - 0.67 \qquad K_{P} = \frac{P_{\text{QC}} \cdot P_{\text{H}_{2}} \circ}{P_{\text{QD}} \cdot (P_{\text{O}_{2}})^{3/2}}$$

$$(III) \log K_{P} = \frac{154300}{4.573 T} + 0.875 \log T + 2.54 \qquad K_{P} = \frac{P_{\text{QL}} \cdot P_{\text{CO}_{2}} \cdot P_{\text{H}_{2}} \circ}{P_{\text{QD}} \cdot (P_{\text{O}_{2}})^{3/2}}$$

$$(IV) \log K_{P} = \frac{1277100}{4.573 T} + 3.94 \log T + 15.2 \qquad K_{P} = \frac{(P_{\text{CO}_{2}})^{10} (P_{\text{N}_{2}})^{1/2} (P_{\text{H}_{2}} \circ)^{9/2}}{P_{\text{OD}} \cdot (P_{\text{O}_{2}})^{1/2} (P_{\text{H}_{2}} \circ)^{9/2}}$$

となる。P は蒸気圧を示し、添字はその物質を指し、QD: キナルジン、QL: キノリン、QA: キノリンアルデヒド、QC: キナルジン酸を意味する。

平衡恒数を工業的または研究的に用いられる温度範囲で求めると, 第1表となる。

		T°										
$\log K_P$	300	400	500	600	700	800	900					
(I)	70.7	53.7	42.6	35.7	30.7	27.8	24.0					
$(\mathbf{\Pi})$	118.1	88.2	69.9	57.8	48.8	42.0	39. 3					
(111)	116.6	89.0	72.3	61.3	53.3	47.2	43.5					
(IV)	957.9	725.4	585.8	492.1	426.4	376.6	336.8					

第 1 表

この表で分る如く, $\log K_P$ は $300\sim900$ °K 程度の温度では (+)で十分大であり,この反応が熱力学的に可能であることが分る。しかし低温では平衡恒数は大となるが,一方反応速度が小となるので,この点については,更に一層の活性度を増す様な触媒を用いて出来るだけ低温で行ないうる様にすべきと推察される。

また V_2O_5 触媒作用としては、 V_2O_5 触媒層上を 400° C 附近で空気なしで、キナルジンを通しても、アルデヒドおよびカルボン酸が僅かながら出来る点を考えても、次の平衡が存在するものと考えられる。

$$V_2O_5 \longrightarrow V_2O_4 + \frac{1}{2}O_2$$

またメタバナデート塩についても, たとえば Ca 塩を例にとると

$$Ca(VO_3)_2 \longrightarrow CaO \cdot V_2O_5 \rightleftharpoons CaO \cdot V_2O_4 + \frac{1}{2}O_2$$

であると推察される。

[5] 結 論

- (1) 無触媒では,カルボン酸の生成良好条件は 420~450°C, 理論空気量の 5~7 倍, アルデヒドの良好収率条件は, 420°C 附近, 理論空気量 2.8 倍程度である。
 - (2) V₂O₅ 触 媒
- (4) カルボン酸は 410°C 附近, 水蒸気を用い, 理論空気量の 5 倍程度, 空間速度 600 の場合が良好収率を与える。
- (ロ) 420° C 以上の高温では、理論空気量の $7\sim8$ 倍であつても、アルデヒドが増大する傾向がある。
 - (3) MoO₃と V₂O₅との混合触媒
 - (4) 400℃ 附近, 理論空気量の 2 倍程度では, アルデヒド生成が大である。
 - 四 400℃附近,理論空気量8倍附近では,カルボン酸の生成が大である。
 - (4) MoO₃/V₂O₅÷ モル比, 空気:水=20:0.2, 410~400°C の時, カルボン酸は良好な収

率を示す。

- (5) $Cd(VO_3)_2$ 触媒では 410° C 附近,空間速度 1800 理論空気量比 4 倍のとき、カルボン酸の 収率が良好である。
- (6) $Ca(VO_3)_2$ では,(イ) 空気量小では,アルデヒド生成が 400° C 附近で最高であり,カルボン酸は小となる。(ロ) 空気量大では,逆の関係となり,(ハ) 極端に空気量大であれば,カルボン酸の分解を伴なり。
- (7) 熱力学的にキナルジンの酸化によつて、キノリン、キナルデヒド、キナルジン酸生成の可能なることが分る。

最後に色々と分析に御援助戴いた東工大有機化学教室、松本基太郎氏、実験の一部を担当 した金津普二君に感謝の意を表し、最後に本研究につき終始御指導戴いた室工大教授佐藤久次 氏に深甚なる感謝の意を表す。

> (昭和32年4月日本化学会十年々会講演) (昭和33年4月30日受理)

									夏
	キナルジン 滴下速度	時間	触媒種類	坦体容積	水(水蒸気) 滴下速度	反応温度	使 用空気量	空間速度	ーCOOH生 成に対する 使用空気量/
	(g/hr)	(hr)	(モル比)	(c.c.)	(c.c./hr)	(°C)	(l/hr)	(hr)(c.c.)	理論空気量
1	3.4	1	MoO ₃ :V ₂ O 3:2) ₅ 80		370	50	625	12.50
2	6.2	1	MoO ₃ :V ₂ O 3:2) ₅ 112		400	67.5	575	8.85
3	4.8	1	MoO₃:V₂C 3:2) ₅ 105 . 7	_	400	40	378	7.08
4	11.0	1	MoO₃:V₂C 3:2) ₅ 30.9		450	30	969	2.32
5	11.8	1	MoO ₃ : V ₂ O 3:2			410	40	1290	2.76
6	7.4	1	V ₂ O ₅ 4 . 14g 軽石 4. 78g	3 138	_	460	65	472	7.47
7	5.3	1	V ₂ O ₅ 4.14g 軽石 4.78g	(2	_	425	40	289	6.42
8	7.8	1	V₂O₅ 2.36g 軽石 2.08g			410	55	932	5.99
9	11.1	1	V₂O₅ 2.36g 軽石 2.08g	5) 59.0		600	20	340	1.52
10	4.6	1	V₂O₅ 2.05g 軽石 1.74g	g) 40 0	100	410	30	602	5.50
24	5.1	1	V ₂ O ₅ 0.46g 軽石 0.49g	$\{14.3$	_	480	25	1750	4.16
25	10.0	1	V ₂ O ₅ 0.46g 軽石 0.49g			370	40	2800	3.50
26	10.4	1	V₂O₅ 0.46g 軽石 0.49g	5)140		400	40	2800	3.28
41	4.6	1	V₂O₅ 1.35g 軽石 1.59g	g \ 45.4	100	380	27 . 8	612	5.00
42	4.6	1	V₂O₅ 1.35g 軽石 1.59g	S 45.4	98	480	27.8	612	5.00
43	11.1	1	V ₂ O ₅ 2.30g 軽石 2.00g	58.8 £	_	550	20	340	1.52
44	11.0	1	V ₂ O ₅ 2.30g 軽石 2.00g	§ }58.8		620	20	340	1.52
45	5.1	1	V₂O₅ 0.37g 軽石 0.43g	g) g) 12.3	_	525	21.6	1756	3.60
46	7.8	1	V ₂ O ₅ 2.31g 軽石 2.08g	59.0	_	390	55	932	5 . 99
59	4.6	1	V ₂ O ₅ 0.37g 軽石 0.43g	${rac{g}{g}}$ 12.3	200	370	20	1620	9.48
15	5 . 3	1	MoO₃: V₂C 4:3) ₅ 15.4	208	390	25	1620	4.00
16	1.8	1	MoO₃:V₂C 2:3) ₅ 15.4	174	370	20	1620	9.48
17	8.4	1	MoO ₃ :V ₂ C 3:4) ₅ 13.8	184	380	25	1815	2.53

表 No. 1.

30	110. 1.								
-COH生	丰豆ch	-COOH	-соон	-COH	-сон	(30 /	分後)		Table of the second
成に対する 使用空気量/	未反応物	(キナル)	収率(理論)	キノリン アルデヒド	収率(理論)	CO_2	CO	備	考
理論空気量	(g)	(g)	(%)	(g)	(%)	(%)	(%)		war-na arrena
18.70	0	0.206	4.80	0.024	0.64	15	6. 5	軽 石 MoO ₃ V ₂ O ₅	19.36 (g) 2.52 (g) 2.09 (g)
13.25	0	0.338	4.20	0.015	0.24	2.5	15	軽石 MoO ₃ V ₂ O ₅	27.60 (g) 3.46 (g) 2.86 (g)
10.62	0.050	0.890	15.00	0.005	0.95	5.4	22.1	軽 石 MoO ₃ V ₂ O ₅	26.4 (g) 3.46 (g) 2.86 (g)
3.47	0.080	0.252	1.90	1,551	12.90	7.5	16	軽石 MoO ₃ V ₂ O ₅	5.32 (g) 0.70 (g) 0.577 (g)
4.32	0.396	0.874	6.10	3.723	28.90	8.5	15	軽石 MoO ₃ V ₂ O ₅	5.32 (g) 0.70 (g) 0.577 (g)
11.20	0.041	0.209	2.30	4.119	31.80	8.05	20.0		
9.60	0.035	2.100	32.80	0.294	5.05	10	20		
9.00	0.962	1.350	14.30	0.947	11.20	14.2	15.5		
2.30	1.236	2.710	20.20	6.300	52.20	15.4	11.6		
8.35	0.035	3.290	59.30	0.385	7.60	9.0	23.0		•
6.25	0.050	0.720	11.70	0.090	1.76	6.7	20.0	į	
5.10	0.020	0.480	3.97	0.010	0.09	7.05	18.50		
4.90	0.010	0.540	4.64	0.020	0.17	9.0	13. 5		
7.72	trace	2.780	50.00	0.379	7.50	11.0	17.5		
7.72	trace	2.920	52.50	0.374	7.40	14.0	10.0	in the state of th	
2,30	trace	2.090	15.50	4.870	40.00	14.7	10.0		
2.32	trace	2.180	18.00	5.680	47.00	10.0	12.5		
5.40	trace	0.680	11.00	0.140	2.50	12.5	10.0		
8.94	0	0.230	2.50	0.420	5.10	7. 5	12.5		
14.15	trace	0.550	10.00	0.302	6.00	7 . 5	15.0		
6.05	0.070	0.354	5.40	0.233	4.00	7.0	1 9. 5	軽石 MoO ₃ V ₂ O ₅	3.32 (g) 1.52 (g) 1.40 (g)
14.20	0.023	0.748	34.40	0.002	0.10	6 . 5	21.5	軽 石 MoO ₃ V ₂ O ₅	4.7 5 (g) 1.0 7 (g) 2.0 5 (g)
3.80	0.104	0.192	1.90	0.042	0.46	8.0	20.0	軽石 MoO ₃ V ₂ O ₅	2.37 (g) 1.07 (g) 1.02 (g)

Difference of the Control of the Con	覧

								<i>5</i> 2
	キナルジン 滴下速度	時間	触 媒 坦 体 種 類 容 積	水(水蒸気) 滴下速度	反応温度	使 用空気量	空間速度 c.c. /	ーCOOH生 成に対する 使用空気量/
	(g/hr)	(hr)	(モル比) (c.c.)	(c.c./hr)	(°C)	(2/hr)	(hr)(e.e.)	理論空気量
20	21.1	1	MoO ₃ :V ₂ O ₅ 14.3		400	84	5880	3.40
21	7.9	1	MoO ₃ :V ₂ O ₅ 14.3	_	470	30	2100	3.22
22	3.3	1	MoO ₃ : V ₂ O ₅ 15.9		370	30	1880	7.72
23	2.4	1	MoO ₃ :V ₂ O ₅ 12.3	_	370	25	2030	8.85
47	11.8	1	MoO ₃ :V ₂ O ₅ 31.0	_	375	40	1290	2.76
48	7.9	1	MoO ₃ :V ₂ O ₅ 14.2		410	30	2100	3.22
49	7.9	1	MoO ₃ :V ₂ O ₅ 14.2		470	30	2100	3.22
50	7.9	1	MoO ₃ :V ₂ O ₅ 14.2		550	30	2100	3.22
51	11.8	1	MoO ₃ :V ₂ O ₅ 31.0		400	40	1290	2.76
52	11.0	1	MoO ₃ :V ₂ O ₅ 30.8	_	450	30	969	2.32
53	1.8	1	MoO ₃ :V ₂ O ₅ 12.3	200	400	20	1620	9.48
54	1.8	1	MoO ₃ :V ₂ O ₅ 12.3	200	370	20	1620	9.48
55	5.3	1	MoO ₃ :V ₂ O ₅ 8.9	250	400	25	2800	3.28
56	5.3	1	MoO ₃ :V ₂ O ₅ 15.4	250	390	25	1620	4.00
5 7	7.9	1	MoO ₃ :V ₂ O ₅ 14.3	300	400	30	2100	3.22
12	8.1	1	無触媒	_	370	25		2.62
13	8.1	1	無 触 媒	_	420	25		2.62
14	9.9	1	無触媒		470	25	_	2.15
27	3.2	1	無 触 媒		450	20		5.32
28	3.5	1	無触媒		380	20	_	4.85
29	6.6	1	無触媒		300	25		3.22
30	4.5	1	無 触 媒	_	530	25	_	4.72
37	3.5	1	無触媒		380	28.8	_	7.00

表 No. 2.

-COH 生		-соон	-соон	-СОН	-сон	(30 5	分後)		
成に対する 使用空気量/ 理論空気量	未反応物	(キナル)ジン酸)	牧率(理論)	キノリン アルデヒド	牧率(理論)	CO_2	CO	備	考
生删至 八基	(g)	(g)	(%)	(g)	(%)	(%)	(%)		
4.98	0.050	1.420	5.58	0.140	0.59	6.1	20.3	軽石 MoO ₃ V ₂ O ₅	2.37 (g) 1.07 (g) 1.02 (g)
4.85	0.010	1.240	13.00	0.020	0.23	6.6	22.5		
11.55	trace	0.240	6.00	0.150	4.26	6.0	24.0		
13.25	trace	0.320	11.00	0.160	6.18	7.5	16. 0		
4.12	0	0.640	4.50	1.615	12. 50	7.0	11.5		
4.81	0.010	0.700	7.50	0.216	2.50	9.0	19.5		
4.81	0.020	1.240	13.00	0.217	2.50	6.5	20.0		
4.81	0.010	0.860	9.00	0.226	2.60	9.0	21.5		
4.12	0.030	0.855	6.00	3.640	28.00	8.0	18.0		
3.46	0.020	0.331	2.50	1 . 510	12.50	7.5	17.0		
14.15	0.010	0.817	37.50	0.049	2.50	6.5	20.0	軽石 MoO ₃ V ₂ O ₅	4.75 (g) 1.07 (g) 2.05 (g)
14.15	trace	0.739	34.00	0.039	2.00	7.0	25.5	, 200	
4.64	trace	1.666	26.00	0.116	2.00	8.0	26.5		
5.65	trace	0.641	10.00	0.232	4.00	8.5	17.5	軽石 MoO ₃ V ₂ O ₅	2.37 (g) 1.07 (g) 1.022 (g)
4.81	trace	0.76	8.00	0.867	1.00	10.0	18.4		
3.95	0.158	0.298	3.30	0.319	3.80	8.0	20.0		
3.95	2.319	0.272	2.76	0.537	4.17	8.5	21.0		
3.21	1.718	0	0	0.192	1.77	7.0	19.5		
7.95	0.010	0.23	5.95	0.04	1.21	7.1	27.9		
7.26	0.010	0.17	4.02	0.02	0.53	6.0	24.5		
4.85	0.020	0.20	2.50	0.03	0.41	5.4	18.1		
7.10	trace	0.03	0.56	0.01	0.21	5.4	21.6		
10.80	trace	0.217	5.00	0.040	1.20	8.5	19.0		

									見
	キナルジン 滴下速度 (g/hr)	時間 (hr)	種 類	坦 体 容 積 (c.c.)	水(水蒸気) 滴下速度 (c.c./hr)	反応温度 (°C)	使 用空 気量	空間速度 c.c./ (hr)(c.c.)	ーCOOH 生 成に対する 使用空気量/ 理論空気量
	(8/41/	(111)	(9 7 30)	(0.0.)	(0.00,111)	. (0)	(0)111)	(1117/(0101)	
38	8.1	1	無触	媒	_	420	68.5	_	7.00
39	8.0	1	無 触	媒	_	460	67.8		7.00
40	3.5	1	無触	媒		340	21.2	_	5.00
11	6.4	1	Cd (VO ₃) ₂ 3.9 g	16.0	115	400	30	1875	3.98
34	5.2	. 1	$\operatorname{Cd}(\operatorname{VO_3})_2 \ 3.5\ \mathrm{g}$	45 . 5	_	340	25	550	4.82
35	6.1	1	Cd (VO ₃) ₂ 3.5 g	45.5	_	500	30	660	4.18
36	4.1	1	Cd (VO ₃) ₂ 3.5 g	37.8	_	410	30	795	6.21
60	6.4	1	$Cd (VO_3)_2 \ 3.9 g$	16.0	115	340	30	1875	3.98
61	6.4	1	$\begin{array}{c} \operatorname{Cd}\left(\operatorname{VO_3}\right)_2\\ 3.9\mathrm{g} \end{array}$	16.0	115	500	30	1875	3.98
62	4.1	1	$\begin{array}{c} \operatorname{Cd}\left(\operatorname{VO_3}\right)_2\\ 3.5\mathrm{g} \end{array}$	37.8	· —	340	30	795	6.21
63	4.1	1	Cd (V ₃ O) ₂ 3.5 g	37. 8		500	30	795	6.21
64	5.2	1	$\mathrm{Cd}(\mathrm{VO_3})_2 \ 3.5\mathrm{g}$	45.5	-	440	25	550	4.82
65	11.0	1	$\mathrm{Ca}(\mathrm{VO_3})_2 \ 7.2\mathrm{g}$	15.4	_	320	35	2370	2.61
66	11.0	1	${ m Ca(VO_3)_2} \ 7.2{ m g}$	15.4		52 0	35	2370	2.61
67	5.0	1	$\begin{array}{c} \operatorname{Ca}\left(\mathrm{VO_3}\right)_2 \\ 5.0\mathrm{g} \end{array}$	15.4		3 2 0	25	1625	5.50
68	5.0	1	$\begin{array}{c} \operatorname{Ca}\left(\mathrm{V_{3}O}\right) _{2} \\ 5.0\mathrm{g} \end{array}$	13.7	_	320	27.4	2000	7.00
69	5.0	1	$\begin{array}{c} \operatorname{Ca}\left(\mathrm{VO_3}\right)_{2} \\ 5.0\mathrm{g} \end{array}$	13.7		400	27.4	2000	7.00
70	5.0	1	$\begin{array}{c} \operatorname{Ca}\left(\mathrm{VO_{3}}\right)_{2} \\ 5.0\mathrm{g} \end{array}$	13.7	_	490	27.4	2000	7.90
19	11.0	1	$\mathrm{Ca}\langle\mathrm{V_3O} angle_2 \ 7.2\mathrm{g}$	15.4	_	400	35	2370	2.61
31	5.0	1	Ca (VO ₃) ₂ 5.6 g	15.4	_	300	25	1625	4.25
32	4.2	1	Ca (VO ₃) ₂ 5.6 g	15.4	_	400	30	1950	6.08
33	4.4	1	${ m Ca}({ m VO_3})_2 \ { m 6.4g}$	15.4	<u>.</u>	510	30	1950	5.80
18	5.9	1	Cu (VO ₃) ₂ 7.9 g	15.4	_	430	35	2370	5.05

表 No. 3.

ax.	110. 0.								
-COH 生 成に対する	未反応物	-COOH	-СООН	-COH	-сон	(30 5	分後)		
成に対する 使用空気量/ 理論空気量		(キナル)	牧率(理論)	キノリン アルデヒド		CO_2	CO	備	考
-1,7114 .1.71(8)5	(g)	(g)	(%)	(g)	(%)	(%)	(%)	1	
10.80	trace	0,568	5.80	0.143	1.60	9.0	16 . 5		
10.80	trace	0.446	4.60	0.114	1.30	3.5	10.0		
7.72	trace	0.620	0.60	0.057	0.15	10.0	14 . 2		
6.00	0.1089	2.170	28.00	1 . 343	19.70	8.5	23.0		
6.13	0.010	0.24	3.82	0.050	0.88	8.0	18.2		
6.27	trace	0.36	4.90	0.020	0.30	10.3	15. 6		
9.30	trace	0.41	8.28	0.220	4.91	7.4	18.2		
5.64	trace	0.926	12.00	0.562	8.00	8.0	19.5		
5.64	0.010	0.930	12.00	1.120	16.00	7.7	20.0		
8.80	0.010	0.298	5.00	0.090	2,00	7.0	17.5		
8.80	trace	0.347	7.00	0.090	2.00	7.0	18.0		
6.80	trace	0.378	6.00	0.119	2.10	7 . 5	14.5		
3.69	0.010	trace	_	1.330	11.00	2.9	5 . 0		
3.69	trace	trace		1.800	15.00	12.5	15.2		
7.80	trace	0.394	6.50	0.209	3.80	10.0	18.5		
9.90	trace	0.30	5.0	0.109	2.0	10.5	19.0		
9.90	trace	0.53	8.8	0.385	7.0	7.0	17.5		
9.90	trace	0.39	6.5	0.219	4.0	10.0	15 . 0		
4.05	0.5012	0.055	0.41	2,804	23.20	30.0	2 . 5		
6.37	trace	0.290	4.80	0.150	2.76	10.3	18.6		
9.10	trace	0.540	10.70	0.260	5 . 41	8 . 5	16.2		
8.70	trace	0.390	7.32	0.240	5.02	7.4	18.6		
7.18	0.1670	0.061	0.87	0.010	0.15	_			
			<u> </u>				:	l	