

Formulas of Frenet for a Vector Field in a Finsler Space

メタデータ	言語: eng
	出版者: 室蘭工業大学
	公開日: 2014-05-27
	キーワード (Ja):
	キーワード (En):
	作成者: 永田, 幸令
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3141

Formulas of Frenet for a Vector Field in a Finsler Space

Yukiyoshi Nagata

Abstract

T. K. Pan¹⁾ demonstrated the generalized formulas of Frenet for a vector field in a subspace of a Riemannian space. This paper extends his investigation to a hypersurface and a subspace of a Finsler space.

1. Formulas of Frenet for a Vector Field in a Hypersurface.

Let F_{n-1} be a hypersurface given by the set of equations $x^i = x^i$ $(u^i, u^i, \dots, u^{n-1})$ $(\lambda = 1, \dots, n)$ in a Finsler space F_n the fundamental quadratic form of which is $ds^2 = g_{i\mu}(x, x^i) dx^i dx^\mu$. F_{n-1} to which the element of support is tangential has the fundamental quadratic form $ds^2 = g_{ab}du^adu^b$. Let v^i be an arbitrary but fixed unit vector field defined at every point of F_{n-1} such that $v^i = v^a B_a^i$, $g_{ab}v^a v^b = 1$. Let $C: u^a = u^a(s)$ $(a = 1, \dots, n - 1)$ be a curve on F_{n-1} and let N^i be a unit vector normal to F_{n-1} . We define n vectors along C by the following equations:

$$\eta_{(1)}^{\lambda} = v^{\lambda}, \quad \eta_{(2)}^{\lambda} = {}_{v}kN^{\lambda}, \cdots,
\eta_{(r+1)}^{\lambda} = D\eta_{(r)}^{\lambda}/ds \qquad (r = 2, \cdots, n-1),$$
(1.1)

where ${}_{i}k=g_{\lambda\mu}N^{\lambda}Dv^{\mu}/ds$ and $Dv^{\mu}{}^{2-3)}$ denotes the absolute differential along C of the vector field v^{μ} at P of C. When $\eta_{(\beta)}{}^{\lambda}$ $(\beta=1,\cdots,n)$ are linearly independent, the following n vectors $\sigma_{(p)}{}^{\lambda}$ $(p=1,\cdots,n)$ which are expressed linearly with the components $\eta_{(j)}{}^{\lambda}$ for $\gamma=1,\cdots,p$ form a set of mutually orthogonal vectors:

$$\sigma_{(p)}^{\ \ \ \ \ } = \left(\frac{f_p}{f_{p-1}}\right)^{\frac{1}{2}} \eta_{(r)}^{\ \ \ \ \ } F_p^{r} \qquad (r, \ \epsilon = 1, \cdots, p)$$
 (1.2)

where

$$egin{align} f_{\scriptscriptstyle 0} = 1 \,, & f_{\scriptscriptstyle 1} = 1 \,, & f_{\scriptscriptstyle p} = |f_{\scriptscriptstyle 7}^{\scriptscriptstyle 6}| \,, \ & f_{\scriptscriptstyle p}^{\scriptscriptstyle 6} = f_{\scriptscriptstyle 7}^{\scriptscriptstyle 7} = g_{\scriptscriptstyle 1d}\eta_{\scriptscriptstyle (7)}{}^{\imath}\eta_{\scriptscriptstyle (6)}{}^{\imath} \,, & f_{\scriptscriptstyle 7}^{\scriptscriptstyle 6}\,F_{\scriptscriptstyle 7}^{\scriptscriptstyle 7} = \delta_{\scriptscriptstyle 8}^{\scriptscriptstyle 6} \,. \end{array}$$

Putting

$$\frac{D\sigma_{(q)\nu}}{ds}\sigma_{(p)}^{\nu} = \alpha_{qp} \qquad (p, q = 1, \dots, n), \qquad (1.3)$$

from $\sigma_{(q)\nu}\sigma_{(p)}^{\nu}=\delta_q^p$ we have

$$-\alpha_{qp} = \alpha_{pq}, \qquad (1.4)$$

$$\frac{D\sigma_{(p)}^{\mu}}{ds} = \sum_{q} \alpha_{pq} \sigma_{(q)}^{\mu} \tag{1.5}$$

From (1.1) and (1.2) it follows that $D\sigma_{(p)}{}^{\mu}/ds$ is at most a linear expression in $\eta_{(1)}{}^{\mu}$, \cdots , $\eta_{(p+1)}{}^{\mu}$ and therefore in $\sigma_{(1)}{}^{\mu}$, \cdots , $\sigma_{(p+1)}{}^{\mu}$. Consequently, $\alpha_{kh} = 0$ (k+1 < h). Combining this result with (1.4), we have

$$\alpha_{pp+1} = -\alpha_{p+1p} = {}_{v}K_{p}$$

$$\alpha_{pq} = 0 \qquad (q \neq p \pm 1),$$
(1.6)

where $_{v}K_{p}$ is defined by the first of these equations. Hence equations (1.5) are reduced to

$$\frac{D\sigma_{(p)}^{\mu}}{ds} = - {}_{v}K_{p-1}\sigma_{(p-1)}^{\mu} + {}_{v}K_{p}\sigma_{(p+1)}^{\mu}, \qquad (p=2, \cdots, n-1), \qquad (1.7)$$

where ${}_{v}K_{p}$ for $p=1, \dots, n-1$ are called, respectively, the associate curvatures of order $1, \dots, n-1$ of the vector field v for the curve C. (1.7) may be considered as a generalization of the Frenet formulas for a curve and hold except the case p=1. And (1.7) apply to the case p=n with the understanding that ${}_{v}K_{n}=0$. We call these the formulas of Frenet of the second kind for v along C in F_{n} .

In the following, we shall derive the formulas of Frenet of the first kind for v along C in F_n . We put

$$\xi_{(1)}^{\lambda} = v^{\lambda}, \quad \xi_{(2)}^{\lambda} = D\xi_{(1)}^{\lambda}/ds = {}_{v}Kw^{\lambda}, \cdots,
\xi_{(r+1)}^{\lambda} = D\xi_{(r)}^{\lambda}/ds,$$
(1.8)

where $_{v}K$ is the absolute curvature of v at P with respect to C and the sense of w is chosen in such a way as to make $_{v}K>0$. If these vectors $\xi_{(\alpha)}{}^{2}$ ($\alpha=1,\cdots,n$) are assumed to be linearly independent, the following linear combinations of them for $p=1,\cdots,n$ form a set of n mutually orthogonal vectors:

$$\mu_{(p)}^{2} = \left(\frac{y_{p}}{y_{m,r}}\right)^{\frac{1}{2}} \xi_{(p)}^{2} Y_{p}^{r} \qquad (7, \epsilon = 1, \dots, p)$$
 (1.9)

where

$$oldsymbol{y}_{\scriptscriptstyle 0}=1$$
 , $oldsymbol{y}_{\scriptscriptstyle p}=|oldsymbol{y}_{\scriptscriptstyle au}^{\scriptscriptstyle arepsilon}|$, $oldsymbol{y}_{\scriptscriptstyle au}^{\scriptscriptstyle arepsilon}=oldsymbol{y}_{\scriptscriptstyle arepsilon}^{\scriptscriptstyle arepsilon}=oldsymbol{y}_{\scriptscriptstyle arepsilon}^{\scriptscriptstyle arepsilon}+oldsymbol{y}_{\scriptscriptstyle arepsilon}^{\scriptscriptstyle arepsilon}oldsymbol{y}_{\scriptscriptstyle arepsilon}^{\scriptscriptstyle arepsilon}+oldsymbol{y}_{\scriptscriptstyle arepsilon}^{\scriptscriptstyle are$

And we have $\mu_{(1)}^{\lambda} = v^{\lambda}$, $\mu_{(2)}^{\lambda} = w^{\lambda}$.

Putting $(D\mu_{(h)\nu}/ds) \mu_{(k)}^{\nu} = \beta_{hk} (h, k=1, \dots, n)$, from $\mu_{(h)\nu}\mu_{(k)}^{\nu} = \delta_h^k$ we have

$$\beta_{kh} = -\beta_{hk} \tag{1.10}$$

$$\frac{D\mu_{(k)}^{\nu}}{ds} = \sum_{h} \beta_{kh} \mu_{(h)}^{\nu}. \qquad (1.11)$$

(1.11) are reduced to

$$\frac{D\mu_{(k)}^{\nu}}{ds} = -_{\nu}L_{k-1}\mu_{(k-1)}^{\nu} + _{\nu}L_{k}\mu_{(k+1)}^{\nu} \qquad (k=2,\cdots,n-1)$$
 (1.12)

where $_{v}L_{k} = \beta_{kk+1} = -\beta_{k+1k}$.

(1.12) apply to the case k=1 with the understanding that $_vL_0=0$ and $_vL_1=_vK$. Also, we have (1.12) for k=n with the understanding that $_vL_n=0$. $_vL_k$ (k=1, \cdots , n-1) are called, respectively, the associate curvatures of order $1, \cdots, n-1$ of the vector field v for the curve C. We call (1.12) the formulas of Frenet of the first kind for v along C in F_n .

2. Extension.

We consider a subspace F_m (m < n) given by $x^2 = x^2$ (u^1, \cdots, u^m) $(\lambda = 1, \cdots, n)$ in a Finsler space F_n . The element of support is tangential to F_m . Let N_p^2 $(p = m+1, \cdots, n)$ be n-m mutually orthogonal unit vectors normal to F_m with respect to the metric of F_n . Let v^2 be an arbitrary but fixed unit vector field defined at every point of F_m such that $v^2 = v^a B_a^2$, $g_{ab} v^a v^b = 1$ and $C: u^a = u^a(s)$ $(a = 1, \cdots, m)$ be a curve on F_m .

We denote the absolute differential of v^i with respect to C at P by Dv^i and define the following vectors:

$$\eta_{(1)}^{\lambda} = v^{\lambda}, \quad \eta_{(2)}^{\lambda} = {}_{v}k_{1}N_{q}^{\lambda}, \cdots,
\eta_{(r+1)}^{\lambda} = \frac{D\eta_{(r)}^{\lambda}}{ds} \qquad (r = 2, \cdots, n-1),$$
(2.1)

where $_{v}k_{1}=g_{\lambda\mu}N_{q}^{\lambda}Dv^{\mu}/ds$.

If $\eta_{(\beta)}^{(\beta)}$ ($\beta=1,\dots,n$) are linearly independent, the following linear combinations of them for $p=1,\dots,n$ form a set of n mutually orthogonal vectors:

$$\sigma_{(p)}^{\lambda} = \left(\frac{f_p}{f_{p-1}}\right)^{\frac{1}{2}} \eta_{(r)}^{\lambda} F_p^r \qquad (\Upsilon, \in =1, \cdots, p)$$
 (2.2)

where

$$egin{aligned} f_{\scriptscriptstyle 0} &= 1 \;, \quad f_{\scriptscriptstyle 1} &= 1 \;, \quad f_{\scriptscriptstyle p} &= |f_{\scriptscriptstyle r}^{arepsilon}| \;, \ f_{\scriptscriptstyle r}^{arepsilon} &= f_{\scriptscriptstyle
ho}^{\scriptscriptstyle r} &= g_{\scriptscriptstyle \lambda\mu} \eta_{\scriptscriptstyle (\gamma)}{}^{\lambda} \eta_{\scriptscriptstyle (\mathfrak{S})}{}^{\mu} \;, \quad f_{\scriptscriptstyle r}^{\epsilon} F_{\scriptscriptstyle
ho}^{\scriptscriptstyle r} &= \delta_{\scriptscriptstyle
ho}^{arepsilon} \end{aligned}$$

Therefore putting $(D\sigma_{(q)\nu}/ds) \sigma_{(p)}^{\nu} = \alpha_{qp}$, we have

$$\frac{D\sigma_{(p)}^{\mu}}{ds} = - {}_{v}K_{p-1}\sigma_{(p-1)}^{\mu} + {}_{v}K_{p}\sigma_{(p+1)}^{\mu} \qquad (p = 2, \dots, n-1), \qquad (2.3)$$

where $_{v}K_{p}=\alpha_{pp+1}=-\alpha_{p+1p}$.

We call (2.3) the formulas of Frenet of the second kind for v along C in F_n . ${}_vK_v(p=1,\cdots,n-1)$ are called, respectively, the associate curvatures of order $1,\cdots,n-1$ of the vector field v for the curve C. (2.3) hold except the case p=1 and apply to the case p=n with the understanding that ${}_vK_n=0$.

While, the formulas of Frenet of the first kind for v along C in F_n may be derived in the same way as is mentioned in 1.

(Received Jan. 26, 1960)

References

- 1) Pan, T. K.: Proc. Amer. Math. Soc. 8, 294 (1957)
- 2) Davies, E. T.: Proc. London Math. Soc. 49, 19 (1945)
- 3) Cartan, E.: Les espaces de Finsler P. 40 (Paris Hermann 1934)