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On Complete Continnity of P. S. Uryson’s
Operator in Function Spaces

Koiji Honda™

Abstract

The purpose of this paper is to give conditions of both the continuity and compactness of Uryson’s
operator § K [s, ¢, 6 (¢)] dt which acts in modulared function spaces.

1. Introduction. In non-linear integral equations, the complete continuity
of an operator from which the equation is produced plays a very impotant role,
for example, the existence of solutions or eigen-functions in the equations. (cf. M.
A. Krasnosel’skii” and S. Yamamuro™)

A sufficient condition of the complete continuity of Uryson’s operator acting
in the space C, as the totality of all continuous functions on a compact subset in
Euclidean space, have been given by L. A. Ladyzhenskii®.

In case the operator acts from the space L, (p.>1) to the space L, (p.>1),
M. A. Krasnosel’skii and L. A. Ladyzhenskii have given some sufficient conditions
of the complete continuity, but it seems that one result has a defect, so far as we
see the fact described in [Amer. Math. Soc. Transl. Ser. 2, vol. 10, p 352].

In this paper, we will consider the operator acting in modulared function spaces
with some restrictions, which was defined by H. Nakano”, and we give some
sufficient conditions for the complete continuity of the operator. (see Theorem 4
and 5)

2. Preliminaries. In this section, we will state an outline of modulared
function spaces and fundamental definitions.

Let 4 be a bounded subset in Euclidean space and mes (4)=1.

let @ (&, x) (620, x € 4) be measurable on 4 for each £=0 and non-decreasing
convex function of £=0 for which satisfies :

1) D (0,2)=0 for all xe4d;

2) lim0 @& x)=0 (a2 for each xe4;

3) Eﬁ; B x)=+ for each x€4;

4) gf?: any x €4, there exists a=a (x)>>0 such that @ (a, x)> + co.

The modulared function space L, (4) is a totality of all measurable functions
¢ (x) on 4 such that

*AE#E=

v



796 Koji Honda

m(ad) = j (a] ¢ (x)], x) dx< + oo for some a>0.

When we define a semi-order (or partial order) in L, by the relation that

¢=¢ if and only if ¢ (x) = ¢(x) except for a set of measure zero, the space L, is
a supperuniversally continuous semiordered linear space*.

The above functional 7 (¢) on L, is called a modular on L, and satisfies the
modular conditions”

0= mig)<+oo ' for all gLy
if m(&g)=0 for all £=0, then ¢=0

w o o

for any ¢ € L, there exists >0 such that m (ag)< +oo;

O

9] < 19| implies 2 (g) < m ()
61 N 1g6]=0  implies 7 (g) + §) = m (@) +m ()
0= it 6™ implies m (g)=sup m ().

~ O

)
)
)
) for every ¢ € Ly, m(£¢) is a convex function of £€=0;
)
)
)

Writing the left-derivative of @ (& x) at & by ¢ (&, x) with ¢ (0, x)=0, we have
a measurable in x and non-decreasing function ¢ (&, x) in £=0. If we define an
inverse function ¢ (y, x) of ¢ (& x) as p=¢ (& x), such that it is non-decreasing
function of =0, ¢ (0, x)=0 and

O (p—0,2)ZE=¢ (p+0, x) for =9 (& ),
P (E—0,2)=9=Se (640, 2) for £=¢ (y, z),
then the function :

¥ l.2)= | ¢ () dy

is measurable in x€ 4 and satisfies the same conditions as @ (£, x). Furtheremore,
we have Young’s inequality

En=S@ (& x)+ ¥ (n x)
for £,7=0 and z€ 4, with equality if one at least of the relations
0(E—0,2)=9=p(E+0,2), ¢p—0,2)=E=Z¢(n+0,2)

is satisfied. By the function ¥ (7, x), the space L, which is called a conjugate
space of Ly is defined, and further a modular # (¢) on Ly, i e.

i g)=| (g @) 2 dx

#* A semi-ordered linear space R is said to be supperuniversally continuous if for any system ;=0

(i € 4) there exist countable @, (1 € 4) and a € R for which a= ﬂa; = ﬂ a,, where N @; means
y=1
a infimum of a;.
%% g)t044 means that for any A, u € 4 teere exists # € 4 such that ¢,U g, = ¢, and ﬂA

=U N =g, where U #1 is a supremum of g,
WAz p

(218)



On Complete Continuity of P. S. Uryson’s Operator in Function Spaces 797

is defined as follows :

() =sup | ¢ (@) g (a)dx—m(g)]

where m is called a conjugate modular of .
In the space L, defining two kinds of norms:

ille = inf Los gl =inf LEmED)
nepzt | £>0 3
we have [l¢lls < |¢lls < 2 |Idlls, and their norms are both monotone complete norms™,
so Lg is Banach space, because the above modular on L; is monotone complete*.
As examples of such spaces, we can denote the well-known following spaces.
Orlicz space},®, i. e, for a non-decreasing left-continuous function ¢ (&) on
[0, o0} with ¢ (0)=0, putting

0 )= v (w=0)

0

the totality of all measurable functions ¢ (x) on 4 such that

L@ (alpp(x)| dx< + 00 for some a>0.

Space L,q, i.e., for a measurable function p (x)=1 (x€ 4), the totality of all
measurable functions ¢ (x) on 4 such that

" Hlx_)laéé(x)lpm dr < + oo for some a>-0.

o

A modular 7 (¢) on L, is said to be upper bounded modular, if there exist
a, ¥>>1 such that

D (al, x) <7D (£, x) for all €20, xe 4,
And, m is said to be lower bounded modular, if there exist a>7>1 such that
D (aé,x) =270 (& x) for all €20, ze 4.

If m is lower (upper) bounded then its conjugate modular 7 is upper (lower)
bounded.

m is said to be bounded modular if it is upper and lower bounded modular.
If m is a bounded modular, then L, is reflexive as Banach space with the above
norms®, for instance, L, (p>>1) and Orlicz spaces defining by complementary Young’s
functions @ (z) and ¥ (v) for which satisfy both (4*)-condition.

* A norm | g| is called to be monotone complete if 0<54,4,%; and sup,z: || g} <H+oo  implies
the existence of an element ¢ such that ¢, 1,=1 ¢. A monotone completeness of a modular
implies a monotone completeness of a norm, and a monotone completeness of a norm implies
a completeness in ussal sense.t.!®,

*#%  QOrlicz spaces are modulared function spaces with constant modulars®,

(219)



798 Koji Honda

Throughout this paper we assume that the modulared function spaces Ly, and
their conjugate spaces Ly, (/=1, 2) have the bounded modulars, and the functions
o, (1, x), &, (1, x) are integrable on 4, where ¢; and ¢, are the left-derivatives of @,
and ¥, respectively.

The integral operator :

Apl)=| Kls g (0] de

is called the operator of P. S. Uryson, where the function K [s, ¢, «] is defined for
(s,2) € 4x 4 and for real number .

In this paper, we will deal with the case which K [s, ¢ u] is continuous in
for fixed (s, #) and measurable in the remainder of the variables for fixed .

A subset F of Banach space E is called to be compact (weakly compact),
if every infinite subset contains a subsequence converging (weak converging) in E.

An operator is called to be bounded if it transforms every bounded (in the
norm) subset of Banach space E, into a set which is bounded (in the norm) in
Banach space E..

An operator A, acting from E, into E,, is called to be continuous at the
point ¢, € E, if, for every sequence {¢,} converging to ¢é,, {A¢,} converges to
A¢, in E,. An operator is called to be continuous on E if it is continuous at
each point of E.

An operator A is called to be compact if it transforms every bounded set into
a compact set.

An operator A is called to be completely continuous if it is continuous
and compact.

3. In this section, we will consider a sufficient condition of both the bounde-
dness and continuity of Uryson’s operator which acts from the space L, with a
modular , into the space L, with a modular ..

Lemma 1. If Kls,t,u] (s,2€ 4, —oo<u< + o0) is measurable on dx 4 for
fired u and continuous in u for fixed (s,t), then for any a <b there exists a
bounded measurable function h{s,t) on 4= 4 such that

sup |K s, ¢, ull = |K s, ¢, A (s, 8] Jor each s and i

asusd

Proof. First, we shall show the measurability of the function

ks, t)=sup |Kls, ¢ u]l|.

GEUSD
When we put, for any positive number a,

E.={(s,8; k(s,t)Sa, F, ,={(s,0); |KIs, t, u.]|<a+1[n}

and E, = F} F; %,

n=1 2,

* ) means the intersection of sets.

(220)
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where {u,} is a totality of all rational numbers in the closed interval [a, ] and =
is a natural number, we get a measurability of subset F, of 4x 4. Furthermore,
we can see easily an equality E,=F, so that E, is a measurable subset of 4x 4.
Thus £ (s, #) is measurable on 4x 4.

Next, we define the function 4 (s.t) as, for each (s,#), a maximum value of
u’s for which hold the relations % (s, £) = | K [s, ¢, u]]|.

For any f (a < =b), putting

E,={(s,2); hi(s, t)< 8}
Fr=1{(s,2); sup [KIs, ¢ u]| <s<ugﬁlK[S,t,u]f}

aZp+1/n<d

and F,= n Fp

asf+1/nsd

where 7 is a natural number, we have also a measurable subset F, of 4x 4 and an
equality E; =F,, and hence 4 (s, ) is measurable on 4x 4. It is obvious that A (s, £
is bounded on 4x 4. We state the following :

Theorem 1. Let Kls, t,u] (s,ted, —oco<u< +o0) be continuous in u for
Jized s and t, and measurable on 4x 4 for fixed u.

If it satisfies the following conditions :

a) for every bounded measurable function h(s,t) on 4dx 4

mq Kls, ¢, h(s,t)a’t) < oo
4
b) for any ¢>0 there exists 6=0(c)>>0 such that |¢—¢l|ls <0 implies

m (| 4K 15,8, 01— K [s, 6,01} de) <

Sor mes (F)<d(FC4), then Uryson’s operator A¢ acts from L, into L, , and is
bounded and continuous.

Proof. We prove at first that A¢ acts from L, into L, and is bounded.
For any ¢ (¢) € L,, taking e=1 in b) there exists =0 (1)>0 such that

- ([{K [5, 4, 61K [s. £, g1} de) <1

Ve

for |¢p—¢)s <6 and mes (F}<d. Since we can select ¢, € L, (i=0,1,---, %) such
that go=e¢, |ps—Ps—ills, <0(i=1,2,---, k) and ¢,=0, where k=[] ¢|s/6]* + 1, we
have, by the convexity of @.,

m, k+1]K[st¢]dt>

= ]:Z:_: mz <J,{K [s, 2 @l —K s, £, pssil} dt)
'kﬂ JK[stO]dt>§]zi‘f <1+A

* x] is the symbol of Gauss.

(221)



800 Ko6ji Honda
where A=m, q K s, £, 0] dt) , and
Vi

me J Klstgld) < Bom (g LK I5, 4, 1 dt)

where B is only dependent on %, because m, is the upper bounded modular. There-
fore, for a patition {4, 4,, --+, 4;} of 4, which satify mes (4;) <6 for i=1,2, ---,j
where j=[1/6] + 1, we have

m, <Jl L'K I5, 4,91 dr) = z% m {K [5, 4, 61 )
1

and hence it follows that, by the upper boundedness of 7z,

m, <LK [s, z, 6] dt) =C-m, <% LK [s, 2,¢] dt;)

< CB(1+A)

where C is only dependent on j. Thus, it is shown that A¢(s) € L,, and further
lplls <7 implies m, (Ag) <CB(1+A), that is, [Ag|s <2CB(1+A)*, where
k=[r/0] +1.

Next, we prove the continuity of the operator A¢.

If 1/Lim [pr—¢oller=0 (Prs ¢ € Lyg,) then {|¢p—%|} converge to O weakly and

hence lim j [ (£)—, (t)] d2=0. Accordingly, we can select a subsequence {¢,(#)}
& oo 4

converging to ¢, (¢) for almost all

Since ¢, (£) is almost all finite on 4, for any natural number v there exist
M, >0 and a subset E,C 4 such that mes(E,)) = 1--1/v and |¢, (£)] < M, for all £€ E,.

Furthermore, by Egoroff’s theorem, for any ¢>>0 there exists a subset X C 4
such that

mes (4—X)<e and {¢,} converge to ¢, uniformly on X.

Putting X, =XNE, we have mes (4—X,)<e+1/v and for all of sufficiently
large =,

UXK[S’L%“)]“”‘ éj sup |K[s, ¢, u]| di< + 0

X, |M,—u|se

for almost all s, beacause, by Lemma 1, the assumption a) implies

e <J sup_ K [s, 2, u]| dt) < o0,

4 |M,—u|<e

and hence

* This is obtained from the fact that =, (x)=<1 implies fjo{|s,=<1.
*#%  The step function f{#=1 on 4 belongs to the conjugate space Ly, of Lz, because

gd 0, (¢ (1, @), @) dos -+ L 0. (1, %) do = L‘”* (1, 2) dw <00,

(222)
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J sup |K[s, t,u]|dt €L,

4 |M,~u|<e

Therefore, by Lebesgue’s theorem, we have

7 »00

1imj Kls, 4, ¢.] di = j K52, 6] d

for all v and almost all s, since Ks, ¢ ¢,] converge to K [s, ¢, ¢,] for almost all ¢
s, and consequently it follows that

lim o, ( Ux {K s, £, 61— K [s, 2. ¢0]} dt; 5) =0

for almost all s.
And, we have for all of sufficiently large »n

o.(3] et st

9

<lo JXK [s, 2, 0] dt% , s)

2

LVK [s: 2, gl dt|, s) + %@2 <

g@z([ sup ]K[s,t,u]}di,s,),
€

VJx, 13, —ul£

and the last term is integrable by a) and Lemma 1, so that, by Lebesgue’s theorem,

fim J @, (IL {K s, £, 31— K Is, £, ¢U]} dz}, ) ds=0,

700

because 2, is upper bounded.
Now, for any ¢>-0, when we select v, ¢, in the above as which satisfy ¢,+ 1/v<¢
where §=4 () is the number in the assumption b), there exists 7,==#n,(c) such that

[}¢n"~¢0”¢1<5 and J @2< ,S> ds<e,
4

[ Kb zg1-Kls gl @
x| J
and consequently, it follows that, by the convexity and upper boundedness of .,
. (Ag, (5)—Ag ()< N s
where N is a constant for which satisfies
D,(26,5)<N-@,(&5) for all £=Z0 and s. -
This shows that {A¢,} converges to A¢, by the modular® and hence it follows that

hgl HASZSn—Aﬁstngg:O-

If we suppose that lim ||¢—olls, =0 and
k—»o0

* If a modular m is upper bounded, then lim (€ (xr — ) =0 for all £ > ( is equivalent to lim

n->c0 700

m (%n — o) =0, and that the modular convergence coincides with the norm convergence. (cf. H.
Nakano™)

(223)
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) [Agi—Adlls=e for some ¢>0 and £2=1,2,.--,

then we can find a subsequence {¢, (£)} converging to ¢, (¢£) in almost all £ € 4 and
hence it follows, as is shown above, that ’
lim [ Agu— AP, =0.
This is contradiction to (¥). Thus the operator is continuous.
Remark. In the operator of Hammerstein type, i.e.

Hols)= | Kis.o0f (g 0d

it is known that the operator H¢ is continuous (moreover, it is compact) in Orlicz
space Li* if it satisfies the following conditions :

1) [ (] v.((Kis0))de) ds>+oo;
2) | fltu)l =alt)+ @7 (0@ (Jul)

where a(¢) € Lj, b0 and @, @, and their complementary Young’s functions ¥, ¥,
satisfy the (4,)-condition.>"%*®

Those conditions satisfy the condtions in Theorem 1, because the condition
2) implies the boundedness of the operator f :

L 2>¢(t) > flt,¢(t)e L3,

and also the bounded set 9l in L} is the absolutely equi-continuous integrals®, since
| fla)- o (/@) de s M < 4o for all f(a) e 9,

where ¢, is a left-derivative of ¥, consequently, the condition b) is satisfied.

4. In this section, we will consider the compactness of Uryson’s operator.
L. A. Ladyzhenskii” given a sufficient condition of the compactness of the operator
acting in the space C, which it is proved by use of Ascoli-Arzela’s theorem. V. V.
Nemyckii” shown a sufficient condition of the compactness of the operator in the
space: C and his proof is placed on the basis of Kolmogoroff’s criteria concerning for
a compactness of a set. Those conditions have been established under the assump-
tion that 4 is bounded closed set in n#-dimensional Euclidian space R, with Lebesgue
measure.

We will give a theorem concerning for the compactness of the operator which
acts in modlared function spaces defining on a bounded set in R,

Throem 2. Let the operator A¢ be the bounded operator which acts from
the unit sphere S, of L, into Ls. Further, if it satisfies the condition

# | Kl U)=Kls 66 @) de =76 p ) (ges)

% L& means the Orlicz space satisfying (d,)-condition. cf. A. C. Zaanen'®

(224)
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Jor llx—s|=h (llx|| is the usual norm in R,), where f(s) € Ly, and p (h) is some
real function tending lo zero as h—O0, then A¢ is the compact operator from
S, into L,

Proof. Putting

(Ag(s) = —Vl(—a) [, Adlwde

where V(§) is the volume of Ufs,d) which is the sphere with the center s and
the radius §, we have, by (ﬂﬁ),

P, (Ag—(Ag)], 5

j {K[s, £, 61—K [z, ¢, ¢]} dt|dz,s )

and the last term is integrable on 4.
On the other hand, we have obviously

lim @,(f(s)p (8),s)=0 for almost all se 4.

50

Therefore, we have
lim 72, (Adp—(Ag@))=0 uniformly on §,,

8->0

i.e., for any ¢>>0 there exists §=0(¢)>>0 such that
[Ag—(Ad)lls,<e for all ¢€8,.

Accordingly, if it is shown that {(A¢)} (¢€S,) is compact set in L, then the
compactness of the operator A¢ is obvious.

Since L, is reflexive as Banach space, the boundedness of {Ag¢} (¢¢8,) implies
the weak compactness of {A¢} ($€8,). Therefore, for any infinite sequence in
{Ag} ($€8) we can find a subsequence, such that for every >0

lim (A, (s))=(¢, (s))"* for almost all se 4,

72 ->00

where ¢, (s), (¢ (5)) € Ly . Also, we have

|<A¢n<s>>5—<¢o<s>>ﬁ|g—lﬂ Lalle, - | Aga—golla,
1
@)

for almost all se 4, where M=sup [|Ad|,,
$ES, )

< 1% 4w, M + 1 lls,}

* Weakly convergent sequence {4 gx} is the requirement, because all step functions belong to Lu,.

*% It follows that
Ly, and Ly,

S”( o () doe | < |12 e, 1 &5 lls, and all step functions on 4 belong to the spaces

(225)
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Therefore, we have

n »o0

lim (A, (5))—(¢s (5)°]l4,=0,

namely, {(Ag¢)} (¢€8S,) is compact in L, by the definition.

Theorem 3. When L,, (i=1,2) are Orlicz spaces satisfying the (d,)-condi-
tion, we can replace the condition (%) by the waeker conditions :
Sor almost all s

x-»38
z,8€4

() lim L K[z, t, ] — K [s, 2, ¢]] dt=0 uniformly on S, ;

(&) sup |A @ (s)|=f(s) € Ly,
Proof. Since we know easily

@, (|Ag—(Ag)])<C {@2 (Agl+0.(

j (Kl tgldz dtm

JU(S,B)

1
Vo)
gof«bz(lf(s)l)H)( (5)‘760\\\17 ‘IA¢H¢>}

<ch> (/)| + 0, (a- M) € Ly,

]
)
where a=Iim ¥;* (&) [ <+ oo*, M= sup |Agls and C is some constant, the

Ero0

theorem is proved by the same method as the proof of Theorem 2.
Lemma 2. If L,(4, y)is a modulared function space, defining on a bounded
set 4 in R, with the upper bounded modular, then for any ¢¢€ L, we have
lim [ (- h)—® (@)]a=0

lirl]»>o

where ¢ (x+h)=0 if x+hed and |h| is the usual norm in R,,.

Proof. For any >0 and ®€L,, there exists a closed subset G of 4 such
that [|?—%sll<e where

p(2)if zeG

|
eal)=1"0" i seG

and ¢ € L.
Therefore, we will prove the lemma for a function on G.
(i) Putting, for x€ G

n i glx)jzn
on(x)={plx) i —n=pl@)=n

—n fi glx)<—n,

we have lim | ¢, (x)—¢(x)|=0 for almost all x€ G and |g.(x)—p(2x)] Z2|p(x),

7 >0

* lim P, (E)/E <-oo is equivalent to lim /¥, )=0 and ||xvlls. < 1/¥:1/V(3).
£-r00

7 >00

(226)
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therefore, it follows that
lim Jo,—¢|s=0, i. e., for any ¢>0, there exists 7,=n,(c)>0 such that
[¢n,—0lls<e and |@, (x)| is bounded on G.

(ii) Let f(x) is bounded on G, i.e. |f({x}) <M on G. For any >0 and
o>-0, there exists a continuous function ¢ (x) on G such that |g(x)|<M on G
and

plz; |flx)—glz)l Zz o} <e

This statement is proved by the same method as the proof of Borel’s theorem
which is stated for G=[0, 1] (cf. I. P. Natanson®).
Namely, for such nutural number / as M/l< ¢, putting

B, {x; (i—1) Ml f(2) < iMJl and 2€G} (i=1—1,2—1, -, [—1)
and E={x; (1) M/I< flx)< M},

we get a partition {E;} ((=1~[,2—[,---,]}) of G.
Since E, are Lebesgue measurable sets, we can select closed sets F, such that
p(F)>pn(E)—e/2] and F, C E,
Z
Defining a continuous function g, (x) on F= U F, such as
Z=1-1

g (x)=iMJl if xeF, (i=1—12—1 -, 1),

we have |f(x)—g.(x)] =M/l<o for zeF.
Further, we get a continuous function g(x) on G such that it is a extension
of g,(x) on G, for which satisfies

lglx)| €M and g{x)=0 if xeG—F.

The function g(x) is the requirement.
(iii) By (ii), there exists a sequence {g,(z)} of continuous functions on G such
that it converges in measure on G. Therefore we have, by Lebesgue’s theorem,

lim | @,(17(@)=gs, ()], @) da=0

koo

for some subsequence of {g,.(x)}. Accordingly, we have
lkifli [ f~Gn, =0,
and hence there exists a continuous function g (x) on G such -that
IS —glls<e.

(iv) If we assume that f(x+h)=g(x+h)=0 for z+h & G, then we have,
for enough small |2, [|g(x+h)—g(x)[s<e and | f(x+h)—g{x+h)|s<e, which
implies the required fact, 1. e.

lplx+h)—plz)ls <5e.

227
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Remark. Suppose 4 is a bounded set in R,. Let @, ¥, (i==1, 2) be Young’s
functions satisfying the (d4,)-condition.

It L L W (R (s, 1)) ds dt< + oo

where =@, [¥,], then the linear operator j R(s, #) ¢(#) dt satisfies the conditions
4

in Theorem 3, and hence the operator is a compact operator from S, CLg into Lg.

(cf. A. C. Zaanen™, Krasnoselskii and Ya. B. Rutitskii ; Dokl. Akad. Nauk SSSR

(n.s) 85(1952), 33-36. Russian)
Because, by Lemma 2, we have

lim \ S W (|R(s+h,t+k—R(s, 1]) ds dt=0
Hnll, [k]|>0J 444
and hence

lim j W (IR (s+h, )—R|s, )| dt=0 for almost all se 4.
4

1a]]-0

And, we have also

L]R(s—kh, f)—RIs, |- |¢(6)| dt < |R(s+h, )—R(s, Ay, for $eS.

1

Namely, the assumptions of Theorem 3 are satisfied.

5. Combined the results in the section 3 with those in the section 4, we get
the conditions of the complete continuity of the operator.

Theorem 4. Let L,, (i=1,2) are modulared function spaces with the boun-
ded modulars, defining on a bounded set 4 in R,. Let Kls, t, u] be continuous
in u (—oo<Lu< +o0) for fixed (s, t) and measurable on 4% 4 for fixed u satisfying
the follywing conditions :

a) for every bounded measurable function h(s,t) on dx 4

o

b) for any e>0 there exists 6=0(¢)>0 such that ||¢g—¢lig < implies

o

Jor mes(F)<d (FC 4);

¢) jdl‘K[x, t, ()] —Kls, ¢, ¢(t)]\ dt< Fs)plh) (#eS)

,5><+OO’

L KIs,t, h(s, )] dt

,5> e

L{K[s, t, 61— Kls, £, ¢]} d

Sor |lx—s|<h, where f(s)€ Ly, and p(h) tends to zero as h—>0, then the operator
A¢(s) acts from S, C Ly, into Ly, and is completely continuous.

Theorem 5. In Theorem 4, if L,, are Orlicz spaces, the condition c) is
replaced by the following condition :

/) for amy bounded set 9| in Ly and almost all sc 4,
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limj
28 J 4

and sup [Ag(s)|= S(s) €Ls.

Kz, t, 6 (6)]—Kls, ¢, ¢(8)]| dt==0 uniformly on Y|

Remark. Under the assumptions in the remark of the section 3, we obtain
that the operator of Hammerstein type He(s) acts in Orlicz space L and is
completely continuous in the unit sphere S, of LZ. Since it is shown that the
operator acts in L and is continuous, it is sufficient to show the compactness of
the operator.

Putting

Kls, t,u]l=R(s, t) f{t, u)

we have for any ¢ €S,

n

)

Kle, 4, ¢1—KTs, £, ¢]‘dt:L’R(x, H—R(s, t)i[ ’f(t, ¢)’a’t
SRz, ) —R(s, t)|lw, | [ (2 @)lle, = | R (2, £)—R(s, lly,- M

and

[R(s, t)ly, € L from the assumption 1), where sup || f (¢, ¢)lly, =M< oo,
]

P8y
because the operator f: L3 €¢(t)— f(t,¢)e L} is bounded”. Therefore, on the
assumptions 1), 2} and Lemma 2, we will know that the conditions (£) and (Z£) in
Theorem 3 are satisfied, namely the operator He(s) is compact.

(Received Apr. 26, 1961)
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