

充填塔による石炭酸ソーダ水溶液に対する炭酸ガス の吸収について

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-05-28
	キーワード (Ja):
	キーワード (En):
	作成者: 向井田, 健一, 宇野, 克志, 竹内, 隆男, 米沢, 健次,
	木村, 一
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3180

充填塔による石炭酸ソーダ水溶液に対する 炭酸ガスの吸収について

向井田健一*・宇野克志**・竹内隆男*** 米沢健次****・木村 一

Studies on the Gas Absorption and Chemical Reaction in a Packed Columns

-The Absorption of Carbon Dioxide in Sodium Phenolate Solutions-

Ken-ichi Mukaida, Katsushi Uno, Takao Takeuchi, Kenji Yonezawa and Hajime Kimura

Abstract

Experiments in chemical absorption of carbon dioxide in aqueous solutions of sodium phenolate were carried out in several columns packed with 10 mm ceramic Rashig ring, in order that we might obtain the correlations of characterisities between industrial packed column and laboratory packed column, and correspond the theories of chemical absorption for this system.

The present writers calculated the film coefficients of physical absorption, kaa and k_La , from the previous report and suitable experimental equations, and investigated the effects of the several variables on the over-all coefficients K'_{Ga} : rate of liquid flow, gas velocity, liquid concentration and liquid temperature.

We obtained the over-all coefficients, K'_ga, may be expressed by the following equations,

 $K'_{Ga} = (1.2) (10^{-4}) C'_{B}^{0.376} L^{-334/T+1.815} \cdot G^{0.8}$

Furthermore, the value of experimentally corresponds to the theoretical values, apploximately.

§1. 緒 言

「石炭酸ソーダ溶液分解塔の化学工学的研究」の一連の研究の中,タール酸ソーダ溶液分 解塔として現代既に化成工場で使用されている充填塔の諸特性の関係を得るためと,現在まで 使用されている化学吸収の理論に,石炭酸ソーダ水溶液一炭酸ガス系がいかなる対応を示すか を追究する目的で,各種の実験室的小規模の充填塔で実験を行なった。

実験は既報で得た炭酸ガス一水系で物理吸収を行ない基礎的数値を用い且つ今回石炭酸ソ

^{*} 北海道大学工学部応用化学科

^{**} 姫路工業大学助手

^{***} 北海道炭砿汽船株式会社

^{****} 苫小牧市役所水道部

向井田健一·宇野克志·竹内隆男·米沢健次·木村一

ーダ水溶液一炭酸ガス系で化学吸収を行なってそれらを比較検討した。その結果から,総括容量係数に及ぼす諸因子(反応温度,溶液濃度,液質量速度など)の関係式を求めるとともに,反応係数に対する実験値と理論値とを比較した結果略,満足する一致が得られた。

§2. 実験装置および実験条件

実験装置: 使用した装置の概略を図-1 に、また使用した充填塔の種類,特性値は表-1 に 示す。塔頂の液分布器はノズルと開放口の両者を用い、これをガラスサドル、硝子綿、金網な どにより均一に分布する様に工夫した。液は定水位槽を経て、流量調節弁、加温槽、液分布器 を通じて充填塔の頂部で分配され上昇ガスと接触しながら流下、塔底部より排出される。液の 排出には溢流形式をとり、塔内の圧力に応じて溢流部を上下し塔下部水面を一定位置(充填 層下の距離)に保った。また、充填物は 10 mm 磁製 Rashig ring を用い、これを不規則充填し た。更にガス供給部(塔底)の静定部として内径 0.3 cm または 0.5 cm、長さ 10 cm の硝子管を 充填塔に垂直に保持しその上に Rashig ring を充填した。

吸収液は市販の一級水酸化ナトリウムを蒸溜水に溶解し,濃厚溶液をつくり,不純物を濾 過除去した後脱炭酸ガス蒸溜水にて稀釈した。これに市販の蒸溜石炭酸を当量溶解して調製し た石炭酸ソーダ水溶液を24時間放置して液体試料とした。 吸収ガスは市販炭酸ガスをボンベ からニードルバルブ,洗気瓶,流量計を通した後,同様に洗気瓶,流量計を通った空気と混合

Tower No.	Diameter D (m)	Height z (m)	Strainer m (m)	Dry Void (%)	Liquid Distributer
B1	0.037	0.8	0.1	65.9	nozzle
B 2	0.037	0.8	0.1	65.9	open
C1	0.024	0.8	0.075	69.8	nozzle
C_2	0.024	0.5	0.075	69.9	nozzle
C ₃	0.024	0.3	0.075	70.2	nozzle
D_1	0.0547	0.8	0.035	61.8	open
D_2	0.0547	0.5	0.035	61.3	open
D_3	0.0547	0.3	0.035	60.2	open

表—1

瓶で混合させ,溶液温度に調温して塔下部に送入し,塔頂より排出したが,この際送入炭酸ガ スは塔内での吸収量より稍々過剰に送り,この過剰分はガス溜に付設したガス放出管中に気泡 として放出した。また系内の圧力を大気圧以上に保って系外からの空気の混入を防いだ。実験 の操作は,ガス循環を行なわず,先ず液および,ガスの流量を任意に調節し一定時間後に定常 状態に達せしめ,液およびガスの温度,流量,充填塔内の圧力を測定し,両者の分析を行なっ た。ガス分析方法はOrsat 法で,液分析方法は既報¹⁾のごとき総合分析法を用いた。

また,実験条件は

ガ	ス 流	量	23.0~160	kg/m²hr	ガ	ス温	度	17 ~ 20°C
液	流	量	700 ~ 20.000	11	液	濃	度	0.1~20%
ガ	ス 濃	度	約20%		液	温	度	15 ~ 70°C

で,実験は主として試料溶液中のアルカリ濃度,液質量速度,液温度を広範囲に変化させるようにし,ガス流速および入口ガス中の炭酸ガス中の炭酸ガスの濃度は工業的操作条件近い範囲 でほぼ一定に保った。

§3. 理論および計算

吸収が化学反応を伴う場合には吸収速度は拡散の他に反応速度に影響される。多くの場合 は液相反応で、被吸収成分はまずガス境膜を拡散して液に溶解し、液側では拡散とともに反応 が起ると思われる。この場合の吸収速度は次式で与えられる。

(331)

$$N_A' = K_G' a \cdot z \, (\varDelta p)_{
m lm}$$

また物質移動係数については次の関係が成立する。

$$1/K_{G}'a = 1/k_{G}a + 1/H_{0}\beta_{L}k_{L}a$$
(2)

(1)

)

吉田ら²⁾の理論によれば反応係数βは次式で導かれる

$$\beta = \left(\gamma + \frac{\pi}{8\gamma}\right) \operatorname{erf}\left(\frac{2\gamma}{\sqrt{\pi}}\right) + \frac{1}{2}e^{-\frac{4\gamma^2}{\pi}}$$
(3)

また,八田³)の理論によればβは次のようになる。

$$\beta = \gamma / \tanh \gamma$$
 (4)

$$\tau t t \ \ \ \tau = \sqrt{k_{\rm H} \cdot C'_B \cdot D'_{AL}} / k_L \tag{5}$$

(4),(5)両式の差があらわれるのは, 7<5 の範囲である。 いづれにしても,上の両式を導くに 当って次の3つの仮定が前提となっている。

1) 液本体は層流で炭酸ガスが分子拡散によって移動すること。

- 2) 気液界面の液側炭酸ガス濃度 C_i が塔内において一定
- 3) 塔内の液中苛性ソーダ濃度が一定

これらの仮定は

 Higbie の不定常拡散説¹ からの k_La と Sherwood ら⁵ の求めた k_La が共に拡散係数 の平方根に比例する事実

2) 総括抵抗からガス境膜抵抗を差引いたということが液面に純ガスが触れている場合と 同様の条件を意味すると考えること (*C*^{*i*} は溶解度と等しくなる)。

3) 塔内濃度変化が小さい実験事実

などで、以上の仮定が略々是認されると考えてよい。

数値の取扱いについては液ガス分析結果より生成アルカリ量を求め、この生成アルカリ量 が時間的に増加していく線図より吸収速度を求めた。 この吸収速度より、(1)式より K₀a を計 算し、この K₀a に対する液流量、濃度、温度などの影響を追究して 設計資料となる実験式を 求めた。また一方 K₀a と既報⁶ の物理吸収で求めた k_La と、Fellinger⁷ の結果よりの値を換 算して用いたガス側境膜係数 k₀a より (2) で β を算出し、これを 7 に対して点綴し (4)、(5)式 と比較した。 このとき 7 を求める場合の k_L は藤田の方法⁶ と吉田一三浦の方法⁹ によって求 めたものである。 また、k₁₁¹⁰、H₀¹¹、 μ 、 ρ_L 、 D_{AL}^{12} は著者らの実験より求め、H₀、 D_{q} その 他の物性値は I, C, T より引用した。

§4. 実験結果と考察

実験結果の一部を表-2に示す。

充填塔による石炭酸ソーダ水溶液に対する炭酸ガスの吸収について

総括容量係数 Kaa

 ガス流速: 図-2 のごとく K'a 対 G を点綴した結果,温度,濃度により K'a は変化 を受けほぼ次の実験式が得られた。

$K'_{Ga} \propto G^{0.73}$

(6)

厳密に検討すると、濃度が 1 kgmol/m^3 以上になると K_{6a} は濃度、温度の影響はほとんど受けなくなるが、濃度の小なる場合には両方の影響が現われた。 また $G=200 \text{ kg/m}^2 \cdot \text{hr}$ より大きくなると、 K_{6a} は G の増加につれて極く僅か減少する傾向も見受けられた。

この附近は所謂 Loading point に相当し, k_{Ga} に対する G の影響を求めた Houston¹⁸, 藤 田¹⁰ の実験と一致する。しかして K_{Ga} に対する k_{Ga} の影響は本実験のようにガス境膜抵抗が 充分考えられるため,相対的に K_{Ga} は k_{Ga} と同様 G の影響を受け,結果として K_{Ga} に対し て G 以外の他の因子 (L, N, t など) が作用をおよぼすものと考えられる。

2) 液流速: 図-3 に K₆a と L との関係を示す。 各線はそれぞれの液濃度,温度について (液流量一定における前述のような K₆a と G の関係を求め), $G = 60.7 \text{ kg/m}^2 \cdot \text{hr}$ における 値である。一定温度の場合,各線は大体平行な直線で次の関係式が成り立つ。

 $K_{G}'a = \alpha L^{0.65}$

(7)

Káa が L に比例して増加するのは、液流量が増すと充填物上の液層の厚さが増して、塔

(333)

		Mean	Liq.		Sec.		Liquor Conc.		а	kīa
E:	xp.	Water Temp	Rate	$(R_{a})r$	Area	Height	equil.	Outlet		at 15(°C)
N	lo.	t(°C)	$\left(\frac{kg}{m^2hr}\right)$	(1.6)12	(m ²)	(m)	$\left(\frac{kg}{\ kgH_2O}\right)$	$\left(\frac{\mathrm{kg}}{\mathrm{kgH_2O}}\right)$		$\left(\frac{1}{hr}\right)$
В	01	24.75	519	19.7	13.82	0.8	1,521	0.651	32.7	0.293
	02	24.75	1623	40.8			1.521	0.887	49.4	1.2
	03	24.0	3243	65.2			1.542	0.921	60.8	2.75
	04	23.05	5450	90.5			1.561	0.817	72.2	4.2
	05	21.25	12050	155.2			1.669	0.934	88.4	8.0
В	01	12.0	825	21.2	13.82	0.8	2.205	1.470	34.8	1.18
	02	8.0	1670	31.4			2.537	1.728	43.2	2.65
	03	9.65	5780	74.9			2,375	1.759	65.2	10.2
	04	9.0	11420	118.7			2.442	1.715	79.6	17.5
	05	7.5	16720	151.7			2.580	1.672	88.2	24.8
С	01	17.0	1780	38.6	5.71	0.8	1.890	0.988	47.5	1.5
	02	17.0	3990	65.6			1.890	1.048	61.8	3.8
	03	15.5	13440	149.0			1.976	1.152	87.2	14.0
	04	15.0	17500	181.0			2.015	1.129	94.2	17.5
С	01	19.0	2360	48.4	5.71	0.5	1.782	0.774	52,3	2.6
	02	19.0	3760	64.7			1.782	0.851	61.8	4.4
	03	18.5	8820	118.0			1.807	0.925	78.8	12.7
	04	16.0	20350	204.4			1.948	0.935	98.9	25.2
С	01	16.5	1780	37.6	5.71	0.3	1.888	0.919	47.5	3.0
	02	16.5	3810	63.9			1.948	0.946	60.8	8.0
	03	17.0	7980	113.4			1.890	0.956	72,0	17.3
	04	17.0	18100	187.0			1.948	0.894	96.0	34.8
D	01	14.0	896	22.9	30.15	0.8	2.075	1.285	36.7	0.9
	02	14.0	1235	28.0			2.075	1.145	41.3	1,31
	03	12.0	2110	38.4			2,208	1.380	49.0	2.45
	04	11.5	6620	84.5			2.241	1.194	69.0	6.75
D	01	11.5	718	19.0	30.15	0.5	2.244	1.158	33.4	1.02
	02	13.0	1095	25.6			2.120	1.166	39.0	1.70
	03	11.0	2990	49.1			2.277	1.252	53.2 62.0	5.4
	04	8.0	4930	161.5	 		2.537	1.314	62.0	0.0
D	01	12.5	876	22.2	30.15	0.3	2.172	1.145	35.5	1.85
	02	9.7	1542	30.5			2,382	1,099	42.6	3.35
	03	9.2	4230	64.8			2.422	0.943	01.0 70.7	8.2 19.2
	04	8.5	7580	87.9			2.482	1.222	70,7	18.2

表—2

の各断面において液がガスを吸収し易くなり、このため、液中の遊離炭酸ガスの濃度匂配が大

きくなり,その結果吸収速度が大となるものである。また液流量の小さい場合には上述とは反 対に有効接触面積が減少するためである。

 K'_{6a} に対する液流量の影響については,苛性アルカリー炭酸ガス系で Tape & Dodge¹²) が $L^{0.28}$ に比例することや,炭酸アルカリー炭酸ガス系で Furnas-Bellinger¹³) が $L^{0.64}$ に比例する という報告があるが,この石炭酸ソーダー炭酸ガス系も $L^{0.55}$ と後者の系に類似の傾向が得ら れた。なお直線の傾斜 m は,温度の関数であり,αは温度,液濃度の関数である。 さらに濡 壁塔実験¹ の場合と対比すると, $K'_{6a} \propto (R_e)_L^{1.02}$ となり $(R_e)_L$ の指数が大体同じ値をとること は濡壁塔実験の裏付をしたことにもなる。

3) 反応温度: 図-4 に吸収液温度の関係を示す。 すなわち,前項の Káa∝L^mの直線の 傾斜 m は,温度のみの関数であり、この m を温度に対して点綴したもので、次式のような実 験式を得る。

$$m = -\frac{334}{T} - 1.815 \tag{8}$$

(335)

反応温度の影響は, 諸研究者^{14),15)}の苛性 アルカリ, 炭酸アルカリ溶液の炭酸ガス吸収の 実験で,反応温度 70~80°C の間に吸収速度の 最大の点があると報告されているが,本反応の 場合は 65°C 附近に最大点が見出された。

4) 溶液濃度: 前出の実験式のαは温度,
 試料溶液濃度の関数であるから,実験条件を統
 一してαを求めれば図-5のように直線となる。

しかしてαは温度の影響は極めて小さいゆ え,試料溶液濃度のみの関数としてαを求めれ ば次の関係式を得る。

$\alpha = 0.0032 C_B^{\prime 0.376}$

(9)

苛性アルカリー炭酸ガス系で, Dodge ら¹²⁾ は C'_B の増加につれて K'_da は減少し,また八田ら¹⁶⁾ は C'_B の増加につれ変化はほとんど認められないと報告している。しかし本実験の場合

は矢木ら¹⁷⁾の垂直管内気液二相流動の場合と同様, C'_B の増加とともに K'_{Ga} が増加する傾向が認められた。濡壁塔の場合も K'_{GG} は C'_B に比例して増加し、その増加の影響もほぼ類似している¹)。しかして K'_{Ga} の C'_B について追究すれば、今反応速度定数 k_{II} を既知と考えても反応係数 β は C'_B に正比例しなければならない。 すなわち、藤田⁸⁾の理論では $\gamma = \sqrt{k_{II}C'_B} D'_{AL}/k_L$ で表わされるが、 $\gamma > 5$ であれば、 $\beta \propto \sqrt{C'_B}$ となり、実験と理論の一致が見出される筈である。

5) 実験式の作製: 以上の結果より次の実験式が得られる。

$$K'_{Ga} = (1.2)(10^{-4}) C'_{B^{0,376}} L^{-\frac{334}{T}+1.815} G^{0,8}$$
(10)

この式は誤差 ±20% の範囲内で良く実験結果と一致する。

なお、本実験の K'_{6a} と濡壁塔実験の K'_{6a} との関係を考察してみると、今藤田¹⁰ にならい、 $L/a_t \cdot \mu_L$ 対 a/a_t の線図より充填塔の気液の有効接触面積 a を求める。 つぎに本実験より求め た K'_{6a} を先に求めた a で除し、これより (K'_{66})ealc. を計算し、これと濡壁塔実験の (K'_{66})obs. を 点綴する 図-6 のごとく、ほぼ 45° の直線となる。特に温度の高い時の数値においてはよく一致 する。この値は G=50 kg/m²·hr、(R_e) $_L>100$ の場合の数値である。

また、気液の有効接触面積については最近吉田ら⁹によって明らかにされてきたが、その 方法を本実験にあてはめてみると、 $C'_B>1 \text{ kgmol/m}^3$ 、 $(R_e)_L=100$ で始めて k'_La が $C'_B^{1/2}$ に比例 する。この時 k'_La 対 $\sqrt{k_{II}}C'_B D'_{AL}$ を点綴すると直線になり、かっ $a_{et}=k'_La/k'_L$ となるが、これ

(337)

を濡壁塔の K'_{0L} と組合せれば、 $K'_{0L} \times a_{et} = k'_{La}$ となることが判明した。

しかして本反応系において溶液濃度の高い場合の実験は正確な結果を得ることは困難であり、また (*R_e*)*_L* も 300 以下で行なったものであるから明確な結論は得られなかったが、一応定性的には吉田らの理論によく合うように思われる。

反応係数β

前述のごとくして横軸に r' すなわち $a_t\sqrt{k_{II}C_bD_{AI}}/k_ta$ をとり、縦軸に (3) で表わされる β をとって点綴すれば 図-7 のごとくなる。図には苛性ソーダー炭酸ガス系の藤田ら¹⁴)の 1" Rashig ring, Dodge ら¹²)の 1/2" Rashig ring の数値を併載した。 結果は理論式より小さい値が得られ、温度の高い場合には藤田, Dodge の値に近いが、温度の低い場合は少し小さい値が得られた。この点については同じ β に対する $r \ge r'$ との比が a/a_t に相当するものであるという考え方、および理論式に対する仮定の影響などによることは明らかで今後の追究が必要である。

§5. 結 言

充填塔による石炭酸ソーダ溶液に対する炭酸ガスの吸収実験を行ない,総括物質移動係数 に対して液質量速度,溶液濃度,反応温度の影響を表わしたつぎの実験式を得た。

 $K'_{Ga} = (1.2)(10^{-4}) \cdot C'_{B} L^{-\frac{334}{I'}+1.815} G^{0.8}$

実験条件は大体現代の工場操作の範囲で行なったが、塔径や塔高については限定されるた め、この式を直ちに装置設計にスケールアップすることは無理であるが、適当な資料の不足し ている現在、一応の目安として報告した。

又,反応係数βを算出して,理論式との検討を加えた。

なお、大型吸収塔の場合の Káa, β と良く一致したゆえ、この実験結果は装置設計および 工場作業条件の指針を与え得ることを付記する。

(本研究に当り,終始御懇篤な御指導を賜った京大,吉田文武先生,水科篤郎先生に厚く感謝の意を表し ます。また,実験を担当下された,工学士・宮城宏吉,工学士・岡 宏,工学士・我妻孝俟の諸君に感謝致 します。) (昭和 37 年4月 30 日受理)

引用文字

а	:	気液有効接触	面積 [1	m²/m³]		
a_t	:	充塡物の全乾	燥面積	[m²]		
C_B	:	吸収中の溶質	Bの濃度	[kgm	ol/m³]	
D_{AL}	:	被吸収ガス A	の液中にお	おける拡替	 教係数	$[m^2/hr]$
D_{G}	:	気相中におけ	るAの拡	散係数	[m²/h	r]
G	:	ガス質量速度	[kg/m	²•hr]		
H_0, I	H':	純水および溶	液に対する	ヘンリー	定数	[kgmol/m³•atm]
$K_{^0G}$:	ガス分圧差基	準の総括物	質移動係	数	[kgmol/m ² •hr•atm]
Kga	:	"	総括容	量係数	[kgn	nol/m³hr•atm]
kga	:	"	境膜容	量係数	[kgn	nol/m³hr•atm]
K_{0L}	:	液濃度差基準	の総括物質	移動係数	[m	/hr]
K_{La}	:	"	総括容量	係数	[1/hr]	
kla	:	"	境膜容量	係数	[1/hr]	
k_L	:	"	物質移動	係数	[m/hr]	
L	:	液質量速度	[kg/m²•h	ır]		
N_A	:	被吸収ガス A	の実験吸収	又速度	[kgmo	ol/m²•hr]
$(R_e)_I$:	レイノルズ数	[—]			
T	:	絶対温度	[°K]			
z	:	充塡層高さ	[m]			
α, m	:	実験定数	[—]			
β	:	反応係数	[]			
μ_L	:	液 粘 度	[kg/m•h	r]		
ρ_L	:	液密度	[kg/m³]			

,印のついたものは化学吸収,,印のつかないものは物理吸収の場合を表す。

文 献

- 1) 木村: 学位論文(京都大学) 昭和 37 年
- 2) 吉田, 小柳: 化学工学協会研究発表会(於秋田)1958, 11月
- 3) 八田: 工化, 35, 1389 (1932)
- 4) Higbie: Trans. A. I. Ch. E., 31, 365 (1935)
- 5) Scherwood & Holloway: Trans. A.I. Ch. E., 36, 39 (1940)
- 6) 木村, 岡: 室工大研報, 3, 267 (1959)
- 7) Fellinger: Chem. Eng'r's Handbook (1950)
- 8) 藤田, 谷本, 土方, 中根: 化工, 18, 73 (1954)
- 9) 吉田, 三浦: 三浦学位論文(京都大学) 昭和 36 年
- 10) 木村: 室工大研報, 3, 587 (1961)
- 11) 木村,竹内: 化工投稿中,学位論文(京都大学) 昭和 37 年
- 12) Tape & Dodge: Trans. A. I. Ch. E., 39, 225 (1943)
- 13) Fudsas & Bellinger: Chem. Eng'r's Handbook (1950)
- 14) 藤田, 丹羽: 化学機械, 16, 399 (1952)
- 15) van Krevelen & Hoftijzer: C. E. Progress, 44, 529 (1948)
- 16) 八田: 工化, 37, 280 B (1937); Tech. Report. Tohoku Imp. Univ., 10, 119 (1932)
- 17) 矢木, 佐々木, 小野, 森: 化工, 18, 216 (1954)
- 18) Houston & Walker: I. E. C., 42, 1105 (1950)