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Orthogonal Projection of the Space X
of Univoque Functions

Yoshio Kinokuniya*

Abstract

Concerning the spatial construction of X, the space of univoque functions z(§) (¢€ ), based
on the reaxilization principle, orthogonal projection is defined in an explicit way and some problems

are solved and detailed.

1. Introduction

The space X is posited as the aggregation of functions

z() (e &),

£ being a metric space provided with a normal measure j**, by which the product
(x|y) is defined as

(zly)=Cx(E)y(&)p. .

32
The norm |jz| is counted by the formula
|ll* = (x]|2),

but, in our theory, vectors x are not always restricted to be of finite norm. x(&)
is a univoque function of the variable & which is complex-valued, but no more
restrictions are given at all. In a previous paper' it has been demonstrated that :
if a subspace XY in X is a vector space by complex coefficients, then it is a span
of the wvectors

(‘OZ)ZT—.A

which are uniquely determined for XY such that the supports 5, of 0, are mutu-
ally disjoint. This destination is called the reaxilization. The family (9,) is called
the natural basis of X and is generally denoted by

B{Y).
To make an analysis by means of an integral of the form
F=p(f)=8&/8)p

we conform it to the rule that F is regarded as effective when and only when it

*REASRE
¥ EOIDal=Spe=pn(l"); ps=p=infinitesimal.
ger
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298 Yoshio Kinokuniya

is absolutely convergent, i.e.

S1AE)] el

is convergent. If to indicate this rule specially, “Riemann law” may be the most
pertinent name, because he is Riemann who showed for the first time that a not
absolutely convergent series of real terms may be counted to take an arbitrarily
chosen value if a proper rearrangement of terms is adopted. In addition, when

S f(& pe = © (—=empty null)

and
p=p>0),
then it is thought equivalent to
&6 =
We may have an explicit course of analysis when we adopt the formula
Pz =8 x‘p 0, 1,1)

wa 10

on condition that V
(px)z@l = B(Y) s

to define (orthogonal) projection of a vector x€ X on a (vector) subspace ¥ in X.
If the operator Py, is found effective for all xe X, ¥ is said to be a projective
subspace. When the space <y » (which is generated by a single vector y) is pro-
jective, y is called a projective vector. Thus classified, linear operators are natu-
rally found to be relative to the projection. As for the case {xf = oo, the problem
is settled of itsell afterwards.

In a vector space H generated by an enumerable family of vectors, the theory
of Hilbert space offers several results obtained to build up certain models of spatial
construction, which are applicable to our analysis if we make any modification for
parts of enumerable generation.

2. Projection and Orthogonal Supplements.

When a vector g is projective, by definition it is demanded that

By yEe yEe
Booe =y =Nyt VT Gyl Y e
_fiy({:) 9
T Syl Y- 2.1)

So, if y+0, we may have

*  3: is the characteristic function of the single point set {3¢}.
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0<Slyly)'<eo (2,2)
because then there must exist at least one & for which
P, o+ 0*
in order that
01 (£) PR
SR = Syl Lty =Ly =y 0

and because it should not be that

Syl =0

in order that FP,d.7oc0. We see directly from (2,2) that such values that y(»)0
make at most an enumerable set, so that we may write as

(8
Syl ¥

P,o. = (2, 3)

In case y=0, we have naturally
FP,5.=0 for all ce&.

To define a projective subspace there may be another way from that shown
in Introduction. If

B(Y)= (‘01>2’:A

and each 0, is a projective vector, then ¥ is a projective subspace. By (2,1) we

then have
Prx =8P, x=E8x()F,0: = CSx(g) p- ]0;,(61)2 0,
_ O Y, _ e Sx@e@)p
= (St rn) e = e T,
_ ezl
=S e

which gives us an induction of (1,1) from (2, 1).
Now, in view of (2, 3) we may write as
(z]0,) ;x(fz/c)pz<$zk)

el T T (2, 4)

where &5,=(£,,, &2, -++) (1€ A) are respectively the supports of £,, When ¥ is pro-
jective (2,4) is demanded to be finite, so that in view of (2,2) which gives us

0<;IP2($M)IZ<OO 5

* This induces that &|y(n}]|2<co,
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the sum
> -:C(Ez/c)toz(fzk)
must be convergent. Then, by the Riemann law

Z lx(&kﬂ ‘pz (Eu)l

is convergent for all z€ X. DBesides, by Holder’s inequality

Tla@a)l 10 (&) =V Dz P V210 ERT -
So, it must be that

2lxEn) <oo for all ze X,
whereas, from our standpoint, we may take a vector x such that
1
T =
S = e
whenever
(&) # 0.

Therefore, we may conclude :
Proposition 1.  In order that a vector subspace X may be projective, it

is necessary and sufficient that each vector 0,(2e¢ A} of B(X) has its support 5,
as a finite set.

Corollary.  In order that a wvector y may be projective, it is necessary
and sufficient that the points y for which

Yyl #0

make at most a finite set.
When Y is a projective subspace, let us take

z=x—P,x

for any vector x€ X, then we have

e1Pr) = 88 (wle— 5k 0,0) L B

el EAR
_ o xle) el
-&( D T o)
e lxlo)F (z]e)]
=&(L )
so that
2| Prx.

Hence the aggregation
Yit={2: re X and 2 =2—Prx}

(300)
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coincides with the orthogonal (or projective) supplement of ¥ ir.t. the product (|).
Proposition 2. If Y is a projective subspace, its orthogonal supplement
X' is projective, too.
In effect, as ¥ is a vector subspace, so is ¥'*. Let it be that

B(X) = (0)ies and B(Y™) = (8,),ecx

*
and let the supports of ©, and ©, be denoted by

respectively. Then we see that
’ * *
(VA (&N 5, =void) >(d¢) (¢,=3,)

which means

and
% . X -
E:NE,+# void >E,C&,,
because

&e 5,[>(the support of 9.—Py0:C5,).

Consequently all ;7,, (re M) are finite sets.

The cases ||yy|| =00 or [|0,|=0c0, are left out of what have been dealt with
hitherto, but they may be treated in a simple way. In effect, such vectors may
not be allowed to be projective ones on the point that their supports are infinite
sets. So, they should be classified in the genre of non-projectivity.

3. Projective Operators

A linear operator L is understood as
Lzxe X {for each xe X,
1e.
LIX)C X,
If Lz is found to be a projective vector whenever x is so, then L is said to be

a projective operator.
When L is a projective operator and

Lo.=d,(t€ &),
we have

V Ko:> S L(X)=R;

feg
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(R, being the range of L). Hence, if
B(Rz) = (€)1
and
5, = the support of ©,,
it must be that
(VA (2e 4) Hxp,) (€ £ and &, C the support of 4,).

Besides, as each 9, is a projective vector, by the corollary of Proposition 1, the
support of d, is at most a finite set. Therefore it follows that 5, is a finite set,
sc that £, is a projective vector. Thus we have :

Proposition 3.  When L is a projective operator, its range R, is a pro-
jective subspace of X.

Let [ denote identity, i.e.

Ir=x for all zxzeX,

then it is evident that
Py'l‘PyJ_ = I .

4. Proper Spaces and L-Span

Let it be denoted as
Z,={x: xe X and Lz = oz}
and
ZL =V Z(.»

€2

where © is the spectrum of L; then Z, is the proper space of w; Z; shall be
called the spectral span with respect to L or simply L-span. Naturally we have

Z,.CcX
but the equality is not always promised. If Z, is projective and such that

B<Z(u) = (0 )ers L(X)=R;;

and (4,1)
.. B(BR;)=(0)ics;

then Lo, is expressed in the form

Z;ﬂx == @5 Gx(l)pz

€A
= wa,
where

A= 1{2: 0. (2)#0}. (4, 2)

(302)
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So, we have the representation

with
/ __ 0, (l)
O-)F (2) - m -
This means that
Z(u g RL

and moreover that

U &, = the support of o,
2&4r

&, being the support of #;,. By the reaxilization law 5, are mutually disjoint and
since Z, is projective the support of ¢, is a finite set. It follows, therefore, that
both 4, and £, are finite sets. Thus we have :

Proposition 4. When Z, is a projective subspace, on the notations (4, 1)
and (4,2) both A, and &, (the support of 0,) are finite sets on condition that
A€,

When

LiY)=Y

Y may be said to be precisely invariant under L, but we will then simply say :
Y is L-invariant. Since
2 € 71, >Jwze .Zw
Z. is L-invariant in any case, the following formula (4,3) seems to be possibly
verified in some way. Neverthless, in view that we may not be infatuated with
a bulky volume of arguments, we will pass by here simply positing it as an axiom,
le: ’
Axiom 1. L be a linear operator of X and X, (p€ M) vector subspaces
in X, then
L(VY,)=VL(Y,). (4,3)
rEM reM
In using this formula we have :
Proposition 5. For any linear operator L, the L-span is L-invariant.
By a similar way to the proof of Proposition 4 we can prove :
Proposition 6. When Z, are projective for each w€ 2, the L-span Z, is
projective, too. ‘

5. Hilbertian Interpretation
If

(303)
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B(Y) = (y)ex
and
ly.] <o for each re K,
the product of two vectors
‘ x=0Cx(k)y, and =2z=06z2(k)y,
is proved to be written in the form
(x]2) = Sxlr)2(x)y.|* - (5,1)
And if Y is invariant under L, ie.
LY)cY
and L is a normal operator of X, L may be evidently thought as a normal oper-
ator of ¥ w.r.t. the formula (5, 1).

In this section we take the special case where ¥ is a projective subspace,
invariant under L. and K is an enumerable set. Then, if

B(Y)= (?//c)/pw

it may be wriiten as

n g

Lys = L6l Ys,) s,
with the condition that
O<m, <o (k=1,2, ).
Moreover, |l4,]]* is representable in the form

2 2
:C]C/,l

with the condition that
0<ci<oo (k=1,2, ).
Now, let it be posited so that
Yu=Yrlcrd 1 ;

ij

c:

Wik by = $lyas )
and
Y= Vi
and for any two vectors

T=xa'(k)y, and &= Y 2 (k).
let it be denoted as
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[2]] = 2 2/ (k)2 (£).

Then we have :

. Yo \ G Yy
Ly, = L< i ﬂ) ~J§1¢(’ym ’Z/kj) v
o Cr Yr; \
L
™
= Elw(k’ kj)y'/cj
ie.
Ly, = jZJIW(k, k)Y, - (5,3)

If we introduce a correspondence between the spaces ¥ and Y such that
Yexe—geY (5, 4)
z=Nzkly., and 7z = z'(k)y:,
by the relation

(k) = celh), 5,5
then
(al2) = S xRz Iy = D ()2 L
— T B =8,
le.
(ale) = 2181,
so that

lxll*=[[x]]* 2
on condition that [[Z]|*=[#|#]. In addition, we have
(Lacl2) = (2|T2) D> (La1#) = (@ T%)

L being the adjoint of L w.r.t. (]).
Y will be called the Hilbertian interpretation of X with respect to the op-
erator L. It is remarkable that

g:dl=1 forall k=1,2, -

and when L is a normal operator of X, so is on ¥. It is greatly different from
the others that

lyl*
(305)
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is an infinitesimal quantity when ¥ is a projective subspace. But, by means of
the Hilbertian interpretation, the topological structure of Y is made to be an or-
dinary object for the theory of Hilbert space.
When Z, is projective, by Proposition 2 Z} is projective, too, so that if
Z L #void
(ly) (ye Zt and y is projective).
Then, for the space

Y= {7 < Ly> (5, 6)

B(Y) is an enumerable set when I is projective, because then each L™y are pro-
jective vectors so that all of their supports are finite sets; hence ¥ has its Hilber-
tian interpretation Y effective. As above remarked, a normal operator L of X is
thought so on Y, too. Now, if L is proved to have at least ome proper vector

g =20 (k)Y
and
Lp=wp,
then by (5, 3) and (5, 2)
2 U (k1) (k) = 0r'(1)

%

ie.
o' (f o1
so that
Loy y:) k)= 0P (1)
where

O (k) =ck) (k=1,2, ).
Hence, for the vector

0 =730k Yz

we have
Lo=owp. (5,7)
Since by (5,5) and (5, 4) 0 is the corresponding vector to g,
PEY. (5, 8)
In addition
veZ, (5,9)

hecause by (5,7) £ is a proper vector of L in X.

(306)
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On the other hand :

Proposition 7. If L is a normal operator and %, is projective, then we
have: (i) L(Z,)CZ., ) L(ZHCZE, (i) L(Z,)CZ;, and (iv) L(ZE)CZ}E.

(i) is involved in Proposition 6, but it is remarkable that this relation can be
proved without Axiom (4, 3), whereas its inversive relation may not be so. Let @
be a proper vector which belongs to the proper value w, then

LLp =TLe =T (w0)=wle,

hence Tp is also a proper vector which belongs to w. Since Z, is the span of

proper vectors, (iii) is directly gained from this. Next, let € Z, and y € Z}, then
as LzeZ,

(=|Ly) = (Lzly) =0
ie.
LycZ},
which verifies (ii). And, by the same ©
(0|Ty) = (LPly) = o (Ply)[>Lyc Z} for any ye Z}
so that (iv) is verified.

By (ii) we see that the subspace ¥ defined by (5,6) is included in Z;, then
(5, 8) is contradictory to (5,9). So we may consequently have

Z } = void
that means
Z,=X.
Finally, it is to be remarked that after the above-stated reasoning the following

problem is left over : whether-is L completely continuous® (on Y) or not 2.

Mathematical Seminor in the Muroan Inst. Tech., Hokkaido
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