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On Normed Spaces and Modulared
Semi-ordered Linear Spaces

Koji Honda™

Abstract

To investigate the problems as to what normed spaces become modulared semi-ordered linear
spaces, the present writer defines, as his first attempt, the constant modular of which the topology
is equivalent to the norm topology in the original normed space I by the family of some operators
in &.

§

§ 1. Intoduction. The theory of modulared semi-ordered linear spaces have
been discussed by H. Nakano**, as the abstract theory of a function spaces inclu-
ding Orlicz spaces® and I, spaces, and also discussed by many others. The spaces
are condisered as normed spaces, but it is not always true that normed spaces are
modulared spaces. Accordingly, we have the problems as to what normed spaces
become modulared spaces. '

In this paper, to prove the above-mentioned problem we will consider the family
of some operators, acting in the normed space R with a complete element, by which
it becomes modulared space conforming to Orlicz space which is topologically
equivalent to the original space.

From this point of view, the preliminaries and definitions shall be described
in §2. In §3 we will give the family §¥ of the operators which answer our pur-
pose, and investigate its properties. In § 4 we will construct the modular of which
the topology is equivalent to the original topology in the space. In §5 we will
give the example of the space which has the family .

Most of the same notations and terminologies as those in [MSLS] are used
in this paper.

In conclusion, the present writer wishes to express his sincere thanks to Prof.
S. Yamamuro for his kindly encouragement and advice.

§ 2. Preliminaries and definitions. Let R be universally continuous semi-
ordered linear spaces, namely conditionally complete vector lattices in the sense of
G. Birkhoff?, which have a complete element* s.

Many important result$ on R, especially the spectral theory, are discussed by
H. Nakano®.

* OARHEZ
#%  Modulared semi-ordered linear spaces®, {Tokyo, 1950).
In the sequel, this book is written by the symbol [MSLS].
#¥#¥% s~z£0if 0Zx€ R.
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280 Ko6ji Honda

First, preparatory to the next discussion, we will restate some definitions and re-
sults in [MSLS].
For a subset M of R, the set

M*t = {z;|z|~|y|=0* for all ye M}

is called the orthogonal complement of M.
Theorem 1. For any subset M of R, we have the following property :
for any ac R, there exist x and y uniquely such that

a=z+y, xe€M and ye M*

proof. Cf. Th. 410, 4.3 and 4.4 in [MSLS].
For any subset N, we define a projection operator [N| by

[INla=zx, a=x+y, xeN'"' and ye N' for all ae 1.

In particular, when N consists of only an element p, [p] is called a projector.
A set p of projectors is called an ideal, if

1) p30,
2) ba[pl<lg] implies p>[qg],
3) pa[pl, [q] implies pa[p]lq].

An ideal p is said to be maximal, if every ideal containing p coincides with p.
The set € of all maximal ideals becomes a compact Hausdorff space with the
neighborhood system {U;,;} defining by U= {p;[pl2p>E}, and each U, is
open and closed. '

For a set N in R, we put

Uni= 2, L U
xeN

Then we have
Theorem 2. Uy s also open and closed.
proof. Cf. Th. 811 in [MSLS].

For any elements a and b, we define the so-called relative spectra’®®

/2 if pe 1—_[ (AZ‘FS_-AZ—E)

§2>0

<%,p>: +oo if pe I[ (Uny—A,)

oA + 0

—oo if pe 3, A,

=00 A< oo

where .
A= Uga-ntrat1+ Urga-» 101 (—o0 <A< + 00).

Then the following properties become known well.

* zt=p0, x7={—2)~0 and |x|=x++2".
#*% Ul for a complete element s € B coincides with &.

(280)



On Normed Spaces and Modulared Semi-ordered Linear Spaces 281

Theorem 3. <i, p) is almost finite in U,y and continuous in the ex-
a

tended sense®. Moreover, we have the following relations :

(S92, 1) a2 ) os(2 )
E= ) Max{( ) <y— p)}
(x“y { p)}

if those on the right hand have sense, and

(Plesiply. if (2 p)=(L.v) for all peUpnS U

For any almost finite and continuous function ¢(p) on Uy, we can find a
sequence of projectors [p,115-.[IN] such that ¢(b) is bounded on each Uf, ; since
R has the complete element s.

The integral

$ipa o) dps
is defined by the limit of the following partial sums :

§MMM$

where 9.6 Usppas 3 Uty = Uin and o (pl—g (9] <e for b, p'e Unyp
If

}zif?o im0 (b)dps

exists, the limit is denoted by
S o(p) dps .
Furthermore the following relation :
z={ g pp)dpa is equivalent to go(p):<—”zli, p> on Up,, is known in [MSLS].

R is said to be a modulared space, if it has a functional on m(z) (called a
modular) satisfying the following conditions :

M1) O0=Zm(x)Z +0 (xe R),
M2) if m(éx)=0 for all £=0, then =0,
M3) for any x€ R there exists a >0 such that m(ax)< 4+ oo,

* @{p) is said to be almost finite, if ¢(p) is finite on some dense set D in Upe;. Moreover, ¢ (p)
is said to be continuous in the extended sense, if ¢(p) is continuous in D.
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282 Koji Honda

) m(éx) is a convex function of £=0,

) lxi=ly| implies m(x)=m(y),

M6) z—~y =0 implies m(x+y)=m{x)+mly),
)

0 £ ;1 eax implies m(x) = sup m(x;)
264

The modulared space is a normed space, namely, we can define two kinds of func-
tionals :

the first norm i, = inf Lrmi§x) and
>0

§

the second norm \|zll,= inf  1/|¢|
mEX)E

which satisfy the relations |z|,= |z, <2||x|. (x€ R) and the norm conditions

) 0=lxl, <+oo0,

N2) Jxl;=0if and only if x=0,
) laxl|; = |al|x||; for a real number «,
) Nty s+ lyl.

N5 |z[=ly| implies |z, =yl -

A normed space R is called a continuous normed space, if it has a continuous
norm, i.e., x,}n.,0 implies im |x,|=0.
7% »00

R is said to be regular, if it has a complete linear functional ¢e R (con-
Jugate space* of R), ie., ¢(x)=0 implies x=0 (x€ R).

Theorem 4. If a continuous normed space B is semi-regular,* then it
is superuniversally continuous.

Proof. Cf. Th. 30. 7 in [MSLS].

In the sequel, let R be a continuous normed space with a norm |-||, and be
regular. :
Let f18)=0 be non-decreasing and continuous in £=0 with f{0)=0, and U be
a complete system of enumerable number of orthogonal elements of I, ie., for
any 0<x € R there exists a u2U such that u—~x+#0.

B is called the O-space, if there exists a family © of operators, H, acting
from U into R*={x;0=x€ R}, which satisfy the following conditions : -
(I) for some fixed constants 0<A<1<B, if
A conjugate space B of R is a set of universally continuous linear functionals # for which
;gj |#(z2)| =0 if x2l2e40.

** R is said to be semi-regular, if, for any p € R, a(p)=0 for all a € R implies p=0. Also R
is said to be superuniversally continuous, if, for any orthogonal system 0=a; (A€ 4) and for
any p=0, such relations as aa~p=0 are obtained except for at most enumerable 2.
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c=33 a [N, Ju, where a,,>0, [N,JIN,,* =0 (k7)) and |c]|=1, then

v=1Fk=1

we have
0= H,u,€ B;* where  J={u, uy, -+, u,} (1,eU)

and

AZE S Sl )o (N, A Hae)< B,

w=1

(L) for H,, H,e$9 there exists a H,€9 such that
Hyuw—~H,u<H;u Sor uEU,‘

where J,(i=1,2) are finite subsets of U and J,=J,+J,.

§3. The family ¥ of the operators in R.

In this section, we will deal with the family ¥ of the operarors which are
constructed by H, in §2.

For each finite subset J={u,, #,, ---, u,,} of U, we put

D(S) = {x:

xl~u,=0 for all v=1, 2, ---, m}

+ {i‘ i‘ BilP.slu, s n, B, and [P, ,] are ‘any} .

Then, we will make the operator S on D(S) in the following manner :

£y

(1) for v =3 Ya.Ndu,

)I[N,,zl <%JL’ p)dps

where the sign =+ coincides with the sign of B,
(2) S(—y) =—Sy Jor  yeD(S),
(3) Sz =0, if |x|~u,=0 Jor all v=1,2,---,m.

Su=3 3 (=11

B

We will denote by & the family of such operators S corresponding to every
element of .

Here after, we will give the properties of $.

[1]. For any Se, D(S) is dense in R with respect to the order topology.

proof.  First, for fixed ue U, we will show that if 0ZaeBu, ie.,, 0<a<Ku
for some constant K, then there exists a sequence {z,} such that 0= x,1.2,a

putting

* [N.,z] are projection operators.
#* By, ={x; [z| Sasut, for some az>0} is called the relative segment of ..
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# Uiy = {25 5 K< p)< K]
we have
é[Nﬁ"’H:;l[u] (cf. §8 in [MSLS]).
Now, we put
z.= 5 2L KINeu

Then we have, from (%),

lim (5, p) =sup(2-, ) = (4 »)

for some g-open dense set in U,

Furthermore we can find x such that x,47.,x, because 0=x,<a by Theo-
rem 3.

On the other hand, since R is totally continuous** by Theorem 4, we have

. [z, _{x,
lim (5, ») = (5 )
for some g-open dense set in Up,;. (ef. Th. 16.7 in [MSLS])
Thus we have

<—?7, p) = ( ‘2’ , p> for some g-open dense set in U,.

Therefore, by Theorem 3, we have x,=a and hence x,13..a.
Next, for any yelu)lR*={[ulx; xe¢R.}, putting

U[Nj]: {‘p) (%/t'—’ p><J}7,
we have
lim y; =9y where yj:j <_@L, p)dpue B, ~R".
J»oo i\ U .

Finally, when S corresponds to H,e® where J={u,u,, -, u,}, [JIR 2z

is uniquely expressed by the form: x= ) x, where z,€[u,] R*

v=1

* M- means a ordered-closure of a set M.
The existence of a projection operator [N] satisfying U[N]={P; a<(—Z—, p)<(§}f has
been shown by Th. 11.6in [MSLS].

# R is said to be totally continuous, if for any double sequence of projectors [pu,ultnei[p] (v=
1,2, ) there exist sequences [p,]lo=1[p] and ., (v=1,2, ) such that [p]<[ P ] (v, 0=
1,2,-). If B is superuniversally continuous, then it is also totally continuous. {cf. Th. 30.11
in [MSLS]})

(284)
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Therefore, the positive part of D(S) is dense in B* and consequently by (2),
the proof is completed.
[2]. For any S€$, we have the properties :

(i) D(S)sx,y implies x—yeD(S),
i) 0ZxZyeD(S) implies 0ZSx<Sy.

Proof. (i) is easily seen. To show (ii), expressed
p= 5 addde (.20
and
y=5% 8NAe (B..20),

we have a,;=<p,, and hence the required relation is obtained from the fact that
J1&) is non-decreasing.
[3]. For any S€%, we have

S[N]x =[N1Sz, Sxe B, and Sx=Sx*—Sx”

for all xeD(S) and all projection operators [N].
Proof. let S be an element of $§, corresponding to H, where 1= {u,, u,
- t,t, and x be expressed with the form :

w= 5% N ..
Then, by (I}, there exists a number 7 such that
Hu,<ru, foral v=1,2,---,m.
Therefore, from the definition of the relative spectra, we have
[Sz|<7,s where 7, =Max {7, flla,s])} -
Other relations are obvious from the definition of S.
[4]. For any Se€q, we have
SO=0 and Sla=<b)=Sa><Sh.
Furthermore, |a|~|b|=0 (a, beD(S)) implies
|Sa|~|Sb|=0 and hence S(a+b)=Sa+Sb.

Proof. SO=0 is obvious. Putting p={(a—b)*,
we have

[Plla~b) =[pla~[plb =[pla and (1—[p])la~b)=(1—[p])]
and hence
Sla—b)=[p]Sa+(1—[p])Sb .

(285)



286 Koji Honda

On the other hand, we have
[#)(Sa~— Sb) = [p]Sa and (1—[p])(Sa~—Sb) = (1—[p])Sb

Therefore we have S{a—b)= Sa—.5Sb.
The relation : S{a—~b)= Sa~Sb is proved similarly.
[5). For any Se$, a, acD(S) and

0=Za,tena implies sup Sa, = Sa .

Proof. By Theorem 4, there exists a sequence {a;} such that
0=a17.a.
From the monotony of S, it is enough to show

sup Sa;, = Sa.

iz1

Let J={u,, uy, -+, u, } be a finite set of U corresponding to .
We put, on account of 0=Za,, a€ D(S),
a= Zl Zﬂ:}a» k[M /c] U, [M,/c]aﬂz = b, [Nv,k]a =b
and
z+1 Z,Bwlz[PHm]u + Z .Bz+1 Z[Pz+1,<]u + - 'l'hZ‘P{BHm[PzH z]u
where
Zifk«m .
\ ZZ} [Pi+1,1]:[blc+1]—[bk] (k: 1,2, -, 1—“1),
=Lpaptt
li+1ro
Z [Pi—H,Z] = [bﬂ-l]_[bi] and ﬁz’zé‘@i+l,z (Z:L 2, Zm) .

A=1lz,7+1

Putting lim Sb,=c, if ¢<.Sh then there exists a Uj,; such that

¢ -»00

(o w)=( v)<,imt (57

Therefore, for some small enough ¢>0 we have
1p1Sb;<[p1Sb—clp]u, {by Theorem 3)

and hence by the construction of S

#2  {fla =SB [Pl >elplh, for [P JIpl#0  (i=1,2,-),

JP) =12 andv=1,2, - )

where

b P e

On the other hand, from 6,176, for any >0 we can find a Uj,; and 7 such that

(286)
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U Ui and (2, p)ea<( L p) for all peti

u,
and hence

0={a, B} lglu,<d[qlu, for all (£, q1lg]# 0

and consequently
0=a,;—p,,,<0 for all 2 which [P, ,][¢]#0.

Therefore (£%) contradict the continuity of f(&).
Thus we have

lim [N, ]Sa; =[N, :]Sa {or each v and %,

and the required result

lim Sa, = Sa .

£»>00

[6]. § is a directed set with respect to the usual order.

Proof. The so-called usual order in % is defined by the relation: S,<.S.,
if and only if DSYZD(S,) and Sx=S,x (xe D(S)) for S5, S, €F.

Let S; be operators corresponding to H,, (=1, 2).

Putting J,;=J,+J;, for S corresponding to F, we have

D(S) = D(S: )~ DS)* -+ D(S)) +D(S)

and hence S;=<.S (i=1, 2), because H,, H, <H, by (I).
[71. We have, for any Se$ and for ¢ in §2,

H(Seu,) S f8) Sfor wu,eU, v=1,2,-+ and £=0.
Moreover,

2eD(S) and |x| <1 implies Lﬂ(ii, b)g(dpa/*<B.

Proof.  This relation is obvious from (I), the definition of S and Theorem 3.

§4. The construction of the modalar on R.

In this section, we will construct a modular of which the topology is equiva-
lent to the norm topology of R. For this purpose, we consider a functional :

AT AT TR
for Se® and ac D).

The existence of the integral of (1) is shown in the following process. From

Séa € B,, we have

¥ MwN={r—y: x€M, yEN?} for sets M and N.
*%  This is a Radon integral with a measure g{[plz) to Urp

(287)
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0= (EE—SI‘Z—I, p)gK (pe @ and 0=£=<1) for some constant number K.

Then we get a bounded* linear functional @, on R as

at@={ (FEL p)giap)

s >

for x€ R and 0<¢&<1, and denote it

a = |(ZLL, v)ang.

N

Furthermore, we get

0= 3(a,—~a,, ) (al) (6.6, )

<2K3plla)e—& )0 as e—0,

where , ‘
O:$O<El<<€x:1 and 0<$»_"E»~1<5-

Therefore, we have

[ atalds ~inf 3 a (la]) e.—¢. )

= sup Z}l a.,_,(la]) (&,—&,)

for all partitions 0=§,<¢ < - <& =1
On the other hand, it is obvious that

| a:tial)ds = 4sta),

because

SElal la| _[ (Stla) .
LK s ><T p>¢<d¥’s)—fm(~s—, p)p(dplal) = &(lal)
Next, we will show that for any Se$® and x>0, there exists a sequence 0=<x,¢
D(S) such that

(2) Xy, Tf=1x .

Let S be the operator corresponding to J={u, t,, ---, 2,}.
Putting

Iyl U,

o5 (F2 )],

*  sup |ds(x)|<<4+co for each a€ER.
{1

0EX 5

(288)
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_fy,. =1 [ulNi]x 741"
U, o =175 l<< Ta *’>< |
and
Vo= 0L UIN, Ju (0=1,2, 0 and 4 p=1,2, )
we have
y;,/sz:l[N?] [uu]x (D:l, 27 L, K and l:172> )
and

INWNwJxe e, la)x (v=1,2, -, k).

Therefore, by the total continuity of R, there exists a subsequence {z,} of {u}
such that

< <o, %im pe= +oo and y 15w (v=1,2,-, k).

3 fd *
Thus x, = Xy, +[ 2 u,]:c are the requirements.
y=1

v=g+1

Now, we will consider a functional on R :

(3) As(x)= sup sup Ag(x;) (xe R).
ngig‘r(]?l nzl

Then we have

Theorem 5. The functional Ag(x) (x€ R) defined by (2) satisfies the
modular conditions except for M2).

Proof. M1) is obvious. For any a€ B, putting a=1/]al, M3) is obtained
by the property [7] and the definition of .S. M4) is obtained by the monotony of
S. Mb5) is obvious from the property [2]. MS6) is shown in the following process.

For x~y=0, we have, by the property [4],

Aglxz+y)= sup sup Ag(z,)

et @) nzit
022,EDH(S)

= sup lim {Asx]z,)+4ds(lyl=z,)}
e

< Ag(x) + As(y) -

On the other hand, if 0=z, 152, 0=5y,10..y and z,, ¥,€ D(S), then we have
2, =L+ Yn€ D(S) and z,15.,(x+7), and hence

As(x) +/1s(y)§/1s(x+y) .

Thus the orthogonal additivity of A¢(x) is proved. M7) is obtained from the pro-

©o i
* > u,,] means the projection operaior [{uc+1, #e+z, -}
v=g+1

(289)
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perty [5]. The theorem is proved.
Moreover, considering a functional m(x):

(4) m(x) = sup Adg(x)  (xe R),

we have

Theorem 6. m(x) is a modular on R, of which the topology is equiva-
lent to the original topology, namely, the norm topology on R.

Proof.  From the previous theorem and the definition of mfx), it is obvious
that m(x) satisfies the modular conditions except for M2) and M6). But M6) is
easily derived from the orthogonal additivity of Ag{x) and the property [6].

Now, To show M2), if, for all £>0, m(éx)=0 and x>0, then we have
Agléx)=0 for all £>0 and all Se$.
And also there exists a uc U such that [«]x0. By (2) and (3), for Se§ cor-
responding to J={u} we can find a sequence {y,} such that
0=y, tmoy=[ulx and y,= /Zn i—1

$=1 n

n|N, . due DS)*

putting z,=z,x, where ¢,=1/|x,|, we have, on the assumption (I),

0<Az Bo " Luf(6, 2 1) g1V, Hod
2, S T () (5 v)pians
< As(22,) = Ag(22)=0.

This is a contradiction. Thus M2) is proved.
Finally, the topological equivalence is shown in the following process.
We have already described the two norms:

1+m(&x) 1

ll = inf e )
and the relations of the equivalence: |2l,= x|, £2||x|..

On account of the property [7] and (4), we get easily that if |z||=<1 then
m(x)<B for B in (I} and hence |z|[,<1/C** and consequently |xl.<|x|/C for
all ze R.

We put y.=[w]x for all w,e U (v=1,2,---). Then we can find 0=y, . 1%-.9.
which satisly 9, ,€D(S,) where S, e correspond to u, for each v. Furthermore,

putting x, ;= X 9, Wwe have
=1

lim xnk = Zn]y and lim}nj Y, =2x.
k>0 y=1

nrcop=1

* Projection operators [Np,,,,:] are those used in the proof of (2).
¥ m(x/B)£C=Max {1/B, 1} by the convexity of m(£x) in £.

(290)
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Moreover, there exists a subsequence {%,} of {%} such that
ktyat+co and  x,. Mnaz

by the total continuity of R.
Now, using z, instead of z,, for the sake of the symbols, and considering
S e @ which correspond to J,= {u,, u,, -+, u,}, we put

s e S, 1) (NG, Houe)

kf( a,, %) ([va] HJ,ZU»)

uMs ‘:‘MS

n 1
where z,/|lx,|= % /;av,k [N, Ju, and «,.>0.
Then ¢,(§) are non-decreasing and continuous in =0 with ¢,(1)=1. And, for
Fn(S)zfgn(t)dt, we have
1+F,(8)A=¢A for all £¢=1.

Because, putting

we have
Gol)=1—A=0 (v 0<A<1)
and
4 G ) (g (8—1} A=0 for £>1
dé gn : = .
Accordingly, by (3), (4), (5) and (I) we have
(el ) Z Ason e I) = Gule)| 5] s Sl BN, 21 Hy )
=G, 8A for &>0.

And it is also obvious that
L+méx,/|lz.l)=1=£A for 0<&<1.
Therefore, we have

all _ o LrmiEz iz

el o 13

(6)

=z A

e, llzalli= Al
Furthermore, by the continuity of the norm || on R we have
|zl =A-{z| -
Thus we get the inequalities :

(291)



292 Koji Honda

Izl =] zl/C<A-|zll,/C=2A]| z]|./C

which show the equivalence. The proof is completed.
Theorem 7. The modular m(x) defined by (4) is a constant modular®.
Proof. By the definition of m(x), we have

m{EINTe) = sup Asl¢[N]u)

= sup rdtjm] <—§§—u, D> (*? , D) $(dps)

Seea 0
= sup F(& ¢(IN]Hu) for £>0,

where

Therefore we have

m(E[N]u)
m([N]u)

Since U= {u’s} is the complete manifold of R, Theorem 7 is proved.

§5. The examples.

In this section, we give the examples of the spaces which satisfy the assump-
tions (I) and (II), i.e., Oy-spaces.

Let R be a conjugately similar space, with its conjugately similar correspond-
ence T between a universally continuous semi-ordered linear space R and its con-
jugate space R, namely, the space satisfying the following conditions :

R

_Flg) for all [N1[u]£0 and &>0.

) =R, ie., reflexive space,
T2) T(—a)=—Ta,
) TaLTh, if and only if a<b,
T4) (Ta,a) *=*0 is equivalent to a=0.
Then we can define a modular m(x) by 71 as
7) miz) = f(Tsx, x)de (xeR).
The following theorems are well known in [MSLS].

Theorem 8%  The modular m(éx) by (7) is finite and strictly convex
Sunction of & Furthermore, it is simple and monotone complete.

* m(x) is said to be constant, if there exists a complete manifold U in B such that m(&§[N]a)/
m{[Nla)=m(a)/m(a} for all €>0, a€ U and [N]lal=0.
** (Ta,a) means the value of Ta at a. And the definition is made in § 60, of [MSLS].
%% m(x) 15 said to be simple, if m(x)=0 implies x=0. It is said to be monotone complete, if
aties and sgp mlai)<+oo there exists a such that aifiesa. (cf. Th. 60.10 in [MSLS])
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Theorem 9. If m(x) is finite, then the first and second norm by m are
continuous norms on IR.

Now, we assume that the modular by 7" is a constant modular, ie., there
exists a complete system U of orthogonal elements in & such that

(8) m(E[N]u) _ m(Su)

m([N]u) m(u)
for all €20 and projection operators [IN][u]#0. And the element z holding
equality (8) is called a constant element in 2.

Conjugately similar space R is semi-regular by T1), because correspondences
Rsa—>ac R: ala)=a(a) for all ae B: is oneto-one. Therefore, by Theorem 4
and the footnote in p. 6 we get the superuniversal continuity and total continuity
of B and hence we can set U={wuy,u, -, u,, *--}. Accordingly, when we put

oo

ul)
S = ——
Z Tl
where |||, is the second norm by the modular m, s is a complete element in R

by the monotone completeness of 7, because 0=z, 1;>, and sup |z,[,< + oo implies
sup m(x,)< +oo. (cf. Th. 40.7 in [MSLS]) ‘

Theorem 10.  Conjugately similar spaces I which have the constant
modular by the conjugately similar correspondence are O,-spaces.

To prove this theorem. we set the three lemmas.

Lenvmna 1. If u is a constant element in I, then

(9) (T€[N]u, INTw) _ (TEu, u)

(T[NTw, [NTu)

" (Tu,u)
Jor all £=0, [N1[u]}=+0.
Proof. By the definition, we have

m(E[N]u) _ m(Su)
m([Nlu) — mu)

for £>0 and [N]u#0,
where
miEu) = f(Tsu, w)de .
Since (T¢x, x) is a continuous function of & for any x, we have
d — 2
Zfs m(éx) = (Téx, x)

and hence

E%u)ﬁ —5; m(éu) = ;Lu d m(E[N]u)

and consequently
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1
m{u)

Te[N]u, [N]u)

o
o) === N w)

for all £>0 and [N]u=£0.

Especially, for é=1 we have
(Tu,u) _ (T[N]u, [N]u)

ma) m(INT4) for [N]u=+0.

Accordingly we get the equality (9). ,
Lemima 2. If R satisfies the assumptions in Theorem 10, then there
exists a complete orthogonal system U of constant elements such that

(10) (Téu, w,) _ (TEIN]u,, [NVw) _ (Téu, u,)
(’Z’u” uv) (YT[N] uw[N] M,,) (Tula ul)
Jor all €>0, v=1,2, - and [N]u,+0.
Proof.  Let V be a complete orthogonal system of constant elements in IR.
By Theorem 55.5 in [MSLS], there exist >0 such that

m{ago,) _ miEvy) for all £>0, v,¢ V and v=1,2, .
m(a,v,) m(v,)

Therefore Lemma 2 is proved by Lemma 1.

Lemma 8. On the assumptions in Theorem 10, we have
1=D= inf (Tx,x)<B= sup (Tx,x)<+ o
Hatl,=1 [l =1

where T is the conjugately similar correspondence and ||-\, is the second norm
by the modular which is defined by T.

Proof. If m(x) is finite, simple and monotone complete, then it is uniformly
simple®, and hence one has sup m(&,x)< + oo for some &>>1". Accordingly we get

], =1

the inequalities in Lemma 3, by virture of Theorem 8, the convexity of m(éx) and

_4d C
(Tx,x)—Tsm(x)gl for [zf,=1.

The proof of Theorem 10. For U in Lemma 2, we can put

_ (T8u, u)

f(E) = (Tu :ur for all «€ U,

Obviously, f(£) is non-decreasing and continuous in £=0.
Taking Tse B as ¢, we have

6 = 3 S0/2 ) Tw,,
because
s = S/ ul.
Then I is the continuous normed space with the norm ||, and is regular.
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Now, for any finite subset J= {wy, wsy -, uynt in U, we put

HJuu = j

(_T_(ui—_g__%-___j—_um) , p)dpuy for all v=1,2,---.

[s1

Obviously, from

0=Hu,<u,ff11/2|u,],) for v=1,2,---,m

and

Hu,=0 for p#1,2,---,m,
we have

Hyu,e Bu, .
If
c= 5 a N du, el.=1 and a,>0,
v=1k=1

then

Bz % XSl ¢ (N, ] How)

=(Tec,c)=1 .

Therefore, putting A=1, {I) is satisfied. (II) is obviously satisfied by the con-
struction of H, Thus the proof of Theorem 10 is completed.

(Received Apr. 27, 1962)

References

1. I Amemiya, T. And6 and M. Sasaki: J. Fac. sci. Hokkaido univ., Ser. 1, 95, (2, 3, 4) 96-113
(1959).

G. Birkhoff: Lattice theory, p. 283 (1948).

H. Nakano: Modern spectral theory, p. 323 (Tokyo, 1950).

H. Nakano: Modulared semi-ordered linear spaces, p. 288 (Tokyo, 1950).

S. Yamamuro: Pacific J. Math., 7, (4) 1715-1725 (1957).

A. C. Zaanen: Linear analysis, (Amsterdam, 1953).

SIS N

Added reference.
7. S. Koshi and T. Shimogaki: Studia Math., 21, 15-35 (1961).
8. S. Heckscher: Koninkl. Nederl. Akademil van Wetenschappen, Proceedings, Series A, 64, 2
{1961), 229-241.
9. S. Heckscher: ibid.,, 3 (1961). 280-290.
We received them after we had prepared this paper.

(295)



