

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-06-04
	キーワード (Ja):
	キーワード (En):
	作成者: 中村, 作太郎
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3270

中村作太郎

On the Exact Solution and the Calculating Method of the General Truss Bridge with Special Reference to the Rigidity of its Panel Points and the Deformation of its Members (No. 2)

Sakutaro Nakamura

Abstract

The present writer induced the fundamental solution of truss on the theory of deformation including the overloading case, taking into consideration the rigidity of its panel points and the deformation of its members in the Report (No. 1) already published.

This paper is written regarding the fact that he has simplified the equations of the displacement of panel points, the stress, the end moment, and the shear of any member and induced the new general solution of deflection at any point of truss by the virtual-work's law of deformation, referring to the exact method of calculating them.

At the same time, he has introduced not only the connecting coefficient of panel points into the general equation of truss, but also the rigid coefficient of panel points and the deformed coefficient of members into the deflection formula of truss induced by the virtual-work's law of deformation.

He has devised the exact calculating method of the truss shown in the following order:

(1) Calculating the exact deflection in the centre of the span.

(2) Inducing the simulaneous equations on the displacement of panel points by applying the general solution and calculating every displacement of panel points by use of the electronic digital computer.

(3) Calculating the ratio of the common and exact deflections in the centre of the span and multiplying the values of (2) by its ratio so as to get the exact displacements.

(4) Calculating strictly the end moment, the shear and the stress intensity of every member by use of the above-mentioned exact displacements of every panel point and the exact general equations.

By the above-mentioned exact calculating method, the present writer calculated the deflection in the centre of the span, the displacement of every panel point and the end moment, the shear and stress intensity of every member of seven truss models (span length, about $1 \rightleftharpoons 80 \text{ cm}$) —three through Warren truss models (the panel points welded, riveted and pinned), two deck Warren truss models (the panel points welded and pinned) and two deck Pratt truss models (the panel points welded and pinned).

Also by the same calculating method he has exactly calculated the deflection in the centre of the span, the displacement of every panel point, the end moment, the shear and stress intensity of every member of the two tentative truss bridges— the Double Warren truss bridge (span length 1=62.0 m, uniform load w=100 kg/cm) and the three continuous Warren truss bridge (span length

1=3@ 78 m=234 m, uniform load w=97.9 kg/cm), in which the panel points are mixedly welded and riveted.

As the result of the preceding calculation, it is obvious that the new exact calculating method is far more suitable than the old inexact one as regards the calculation of truss, because the former is much nearer to the experimental values than the latter.

1. 緒 言

先に著者は、"節点剛性と変形の影響を考慮せる一般トラス橋の厳密解法とその計算方法について"と題し、その第1報¹)において節点剛性と変形の影響を考慮し、相対変形理論によってトラスの一般基礎方程式をたて、部材応力、材端曲げモーメント、セン断力などを求める解 式を誘導し、部材応力、材端曲げモーメント、セン断力、タワミなどの厳密計算方法について 発表した。

その後,著者は各種の模型トラスについて数多くの基礎的実験^{2),3)}を行ない,従来のトラ ス理論による計算結果と測定値とでは,その節点の接合条件によりかなり異なることを指摘し た。いまやこの節点の接合条件については各方面^{4),5)}において論議せられているところであり, これはトラスにおける重要課題であるといえる。

著者の本文における研究目的は、如何にすれば節点剛性と変形の影響が加味され、測定値 に近い計算結果が正確、迅速に得られるかということにある。研究報告第1報の解式¹⁾は理論 としては万全であると思うが、式の形が非常に繁雑であり、しかも函数方程式を繰返し計算法 によって解くことがかなり難解であるので、解式の簡易化と計算方法の合理的な組合せによっ て、迅速、正確に計算出来る実用的な計算方法⁶⁾を提案し、数種の模型トラス^{2),3),7)}および試案 の実物トラス橋について計算を試みた。

2. 節点変位補正法によるトラスの迅速計算法

A. 厳密節点変位の計算表示式

トラスの厳密計算方法は,結局その節点変位を研究報告第1報に掲載したところの繁雑な る函数方程式を繰返し計算法によって解き,それらの節点変位を用いて部材回転角,節点回転 角,部材端モーメント,部材一次応力度,部材二次

応力度などを厳密に求めるにある。 いま,一般トラスの任意の節点 i における微小 変形を考慮した 垂直と水平の厳密節点変位を ð_i, ¶_i

$$\delta_i = v_i + \Delta v_{i(1)} + \Delta v_{i(2)} + \dots + \Delta v_{i(r)} + \dots$$

 $\eta_i = u_i + \Delta u_{i(1)} + \Delta u_{i(2)} + \dots + \Delta u_{i(r)} + \dots$

ここに,

*Δv*_{*i*(*r*)}, *Δu*_{*i*(*r*)}: 微小変形の影響を考慮した場合の節点変位方程式より求 めた *i* 節点における第 *r* 回目の垂直, 水平追加変位 (cm)

(1) 式における第1項 v_i , u_i の値に比べ,第2項 $Av_{i(1)}$, $Au_{i(1)}$,第3項 $Av_{i(2)}$, $Au_{i(2)}$ などの 値は加速度的に減少して行くことが計算結果より明らかなところである。 すなわち, $Av_{i(r)}$, $Au_{i(r)}$ の値はrの増加にともない, 0に接近して行き ∂_i , η_i の計算値は段々と収歛することが 明らかである。

実際問題として必要なのは第2項目位までであり、特に第1項目が殆んど決定的な値を示 すことが多い。しかるに、v_i, u_i の値を従来のトラス理論によって計算すれば、実験値とはか なり懸け離れた値となることが度々あり、節点の接合条件と変形の影響を考慮した特別の計算 方法が必要となって来る。

著者はこの意味において節点剛性と変形の影響を加味した厳密タワミ解式の誘導とその計 算方法⁶⁾を提案した。

B. 節点剛性と変形の影響を考慮せる厳密タワミ解式とその計算法

いま、可能変形法則において仮想荷重 $P_i=1$ および実際変位状態をとれば、任意の節点 iにおけるトラスのタワミー般式は、図-1を参照し次のように表わすことが出来る。

$$1 \,\delta_{i} = \sum \bar{S}S\mu \frac{s}{\alpha EA} + \sum \bar{M}M\nu \frac{s}{\beta E_{b}I} + \kappa \sum \bar{Q} \cdot Q\lambda \frac{s}{\tau GA} + \sum \bar{S}\varepsilon t\mu s + \sum \bar{M}\varepsilon \frac{\Delta t}{h}\nu s$$

$$(2)$$

ここに, t: 温度変化 (°C), 4t: 断面上,下端の温度差 (°C),ε: 伸縮係数 (0.000012/°C), h: 断面高さ (cm),そのほかの記号については (4) 式参照のこと。

$$1\,\delta_i = \sum \bar{S}S\mu \frac{s}{\alpha EA} + \sum \bar{M}M\nu \frac{s}{\beta E_b I} + \kappa \sum \bar{Q}Q\lambda \frac{s}{\gamma GA} \tag{3}$$

(3) 式における各記号は次の通りとする。

- δ_i : 任意の点 i における垂直変位 (cm)
- s: 部材長(節点間距離) (cm)
- *E*: 引張 (または圧縮) 弾性係数 (kg/cm²)

 E_b : 曲げ弾性係数 (kg/cm²)

G: セン断弾性係数 (kg/cm²)

A: 部材の断面積 (cm²)

I: 部材の断面二次モーメント (cm⁴)

S: 部材の実軸力 (kg)

- Ŝ: i 点に P=1 kg が作用するときの部材の仮想軸力 (kg)
- M_{mn}, M_{nm} : 部材の左,右節点における材端実モーメント (kg-cm)
- $\overline{M}_{mn}, \overline{M}_{nm}$: i点に $P=1 \, \text{kg}$ が作用するときの部材における左,右 材端仮想モーメント (kg-cm)

(4)

- M: 部材における左,右材端実モーメントの平均値=1/2
 (M_{mn}±M_{mn}) (kg-cm)
- \overline{M} : *i*点に P=1 kg が作用するときの部材における左,右材端仮想モ -メントの平均値=1/2 ($\overline{M}_{mn} \pm \overline{M}_{nm}$) (kg-cm)
- Q: 部材の実セン断力 (kg)
- **Q**: *i* 点に *P*=1 kg が作用するときの部材の仮想セン断力(kg)
- κ: セン断弾性補正係数の逆数
- μ,ν,λ: 節点剛性の影響による部材の軸力,曲げモーメント,セン 断力に関するトラスとしての補正係数
- α, β, 7: 節点剛性の影響による部材の変形度合を考慮した引張(または圧縮)弾性係数,曲げ弾性係数,セン断弾性係数に関するトラスとしての補正係数

(2), (3), (4) 式における E, E_b , G などはトラス部材の素材試験によって厳密に求める必要 があり, μ , ν , λ および α , β , τ などの係数は, トラス全体としてのタワミに及ぼすそれぞれの 影響係数にて, 純理論的に決定することは仲々困難であり, 実際問題としては, 相似形の模型 実験を行なうか, または数多くの基礎的な模型実験の結果を参考資料として決定 すべきであ る。この意味においてもトラス橋を設計する際には, 必ず相似形の模型実験を行なうべきであ り, また橋梁の研究部門では, 各種の影響係数を求めるため, 率先して数多くの基礎的な模型 実験を行なうべきであると思う。

C. 厳密節点変位の迅速計算法

著者はトラスの弾性限度以内における荷重と変形の範囲に対し,節点剛性と変形の影響を 考慮せる厳密節点変位と微小変形を無視せる一次的の節点変位との比は,各節点とも一定であ ると仮定し,節点変位補正法によって充分実際に近い節点変位を迅速,確実に求める方法を提 案した。

すなわち,その計算方法をあげれば次の通りである(計算解式の各記号は研究報告第1報¹⁾ 参照のこと)。

i. (1)~(4) 式を用いて、トラスの中央節点における厳密垂直変位を計算する。

ii. 微小変形を無視せる節点変位方程式を誘導し,電子計算機にかけて総べての節点変位 を求める。

いま,節点変位方程式を求めるに必要な基礎解式をあげれば,セン断力の影響を無視し, 次の通りになる。

剛節と仮定する場合

圧縮材に対し

$$\frac{EF}{l'} \sum_{k'} \left\{ (u_{k'} - u_{i'}) \cos \alpha_{i'k'} + (v_{k'} - v_{i'}) \sin \alpha_{i'k'} + \sum_{i'} P_{xi'} = 0 \\
\frac{EF}{l'} \sum_{k'} \left\{ u_{k'} - u_{i'} \right\} \cos \alpha_{i'k'} + (v_{k'} - v_{i'}) \sin \alpha_{i'k'} + \sum_{i'} P_{yi'} = 0 \\
\sum_{k'} \frac{6EK}{4\varphi^2 - \varphi^2} \left[\left\{ \theta_{i'k'} - (v_{k'} - v_{i'}) \frac{\cos \alpha_{i'k'}}{l'} + (u_{k'} - u_{i'}) \frac{\sin \alpha_{i'k'}}{l'} \right\} (2\psi) \\
+ \left\{ \theta_{k'i'} - (v_{k'} - v_{i_*}) \frac{\cos \alpha_{i'k'}}{l'} + (u_{k'} - u_{i'}) \frac{\sin \alpha_{i'k'}}{l'} \right\} \varphi \right] + \sum_{i'} M_{i'} = 0$$
(5)

引張材に対し

$$\frac{EF}{l'} \sum_{k'} \left\{ (u_{k'} - u_{i'}) \cos \alpha_{i'k'} + (v_{k'} - v_{i'}) \sin \alpha_{i'k'} \right\} \cos \alpha_{i'k'} + \sum_{i'} P_{xi'} = 0$$

$$\frac{EF}{l'} \sum_{k'} \left\{ (u_{k'} - u_{i'}) \cos \alpha_{i'k'} + (v_{k'} - v_{i'}) \sin \alpha_{i'k'} \right\} \sin \alpha_{i'k'} + \sum_{i'} P_{yi'} = 0$$

$$\sum_{k'} \frac{6EK}{4\Psi^2 - \Psi^2} \left[\left\{ \theta_{i'k'} - (v_{k'} - v_{i'}) - \frac{\cos \alpha_{i'k'}}{l'} + (u_{k'} - u_{i'}) - \frac{\sin \alpha_{i'k'}}{l'} \right\} (2\Psi) + \left\{ \theta_{k'i'} - (v_{k'} - v_{i'}) - \frac{\cos \alpha_{i'k'}}{l'} + (u_{k'} - u_{i'}) - \frac{\sin \alpha_{i'k'}}{l'} \right\} \Psi \right] + \sum_{i'} M_{i'} = 0$$
(6)

圧縮材,引張材とも

$$\frac{EF}{l'}\sum_{k'} \left\{ (u_{k'} - u_{i'}) \cos \alpha_{i'k'} + (v_{k'} - v_{i'}) \sin \alpha_{i'k'} \right\} \cos \alpha_{i'k'} + \sum_{i'} P_{xi'} = 0
\frac{EF}{l'}\sum_{k'} \left\{ (u_{k'} - u_{i'}) \cos \alpha_{i'k'} + (v_{k'} - v_{i'}) \sin \alpha_{i'k'} \right\} \sin \alpha_{i'k'} + \sum_{i'} P_{yi'} = 0$$
(7)

以上の式において微小変形の影響を無視する場合には、各記号に代入する数値に載荷前の ものを用いればよいので極めて簡単である。なお、一次計算には、材端モーメントの影響を無 視し(7)式を用いて各節点変位を計算しても、あとで影響係数をかけて補正すれば充分な精度 が得られる。

iii. i と ii の二つの方法によって求めた支間中央節点における垂直変位の比率を求める。 著者はこの比率のことを節点変位補正係数と名付けた。

iv. 微小変形を無視せる節点変位方程式を用いて求めた各節点変位に上述の節点変位補 正係数をかけ,各節点の厳密節点変位を迅速に決定する。 D. 部材軸力,部材端モーメント,部材応力度などの厳密計算法

上述の計算方法によって求めた厳密節点変位を用い,次にあげる諸解式と撓角分配法⁸⁾な どの併用によって部材軸力,部材端モーメント,部材応力度などを計算すればよい。

部材軸力

$$S = \frac{EF}{l'} \left\{ (u_b - u_a) \cos \alpha + (v_b - v_a) \sin \alpha \right\} \pm EF\omega t$$
(8)

(8) 式において温度変化の影響を無視すれば二項目 EFwt をとればよい。 部材端モーメント

圧縮材に対し

$$\begin{aligned}
M_{ab} &= \frac{6EK}{(2\psi + 6EKZ_{ab})(2\psi + 6EKZ_{ba}) - \psi^{2}} \left[\left\{ \theta_{ab} - (v_{b} - v_{a}) \frac{\cos \alpha}{l'} \right. \\
&+ (u_{b} - u_{a}) \frac{\sin \alpha}{l'} \right\} (2\psi + 6EKZ_{ba}) + \left\{ \theta_{ba} - (v_{b} - v_{a}) \frac{\cos \alpha}{l'} \right. \\
&+ (u_{b} - u_{a}) \frac{\sin \alpha}{l'} \right\} \varphi \right] \\
M_{ba} &= -\frac{6EK}{(2\psi + 6EKZ_{ab})(2\psi + 6EKZ_{ba}) + \psi^{2}} \left[\left\{ \theta_{ab} - (v_{b} - v_{a}) \frac{\cos \alpha}{l'} \right. \\
&+ (u_{b} - u_{a}) \frac{\sin \alpha}{l'} \right\} \varphi + \left\{ \theta_{ba} - (v_{b} - v_{a}) \frac{\cos \alpha}{l'} \right. \\
&+ (u_{b} - u_{a}) \frac{\sin \alpha}{l'} \right\} \varphi + \left\{ \theta_{ba} - (v_{b} - v_{a}) \frac{\cos \alpha}{l'} \right. \end{aligned}$$
(9)

引張材に対し

$$M_{ab} = \frac{6EK}{(2\Psi + 6EKZ_{ab})(2\Psi + 6EKZ_{ba}) - \mathscr{Q}^2} \left[\left\{ \vartheta_{ab} - (\upsilon_b - \upsilon_a) \frac{\cos \alpha}{l'} + (u_b - u_a) \frac{\sin \alpha}{l'} \right\} (2\Psi + 6EKZ_{ba}) + \left\{ \vartheta_{ba} - (\upsilon_b - \upsilon_a) \frac{\cos \alpha}{l'} + (u_b - u_a) \frac{\sin \alpha}{l'} \right\} \mathscr{Q} \right]$$

$$M_{ba} = -\frac{6EK}{(2\Psi + 6EKZ_{ab})(2\Psi + 6EKZ_{ba}) + \mathscr{Q}^2} \left[\left\{ \vartheta_{ab} - (\upsilon_b - \upsilon_a) \frac{\cos \alpha}{l'} + (u_b - u_a) \frac{\sin \alpha}{l'} \right\} \mathscr{Q} + \left\{ \vartheta_{ba} - (\upsilon_b - \upsilon_a) \frac{\cos \alpha}{l'} + (u_b - u_a) \frac{\sin \alpha}{l'} \right\} \mathscr{Q} + \left\{ \vartheta_{ba} - (\upsilon_b - \upsilon_a) \frac{\cos \alpha}{l'} + (u_b - u_a) \frac{\sin \alpha}{l'} \right\} (2\Psi + 6EKZ_{ab}) \right]$$

$$(10)$$

(8), (9) 式における各記号ならびに関連解式は研究報告第1報¹⁾参照のこと。

また (10) 式を剛節トラスに用いる場合は、 $6EKZ_{ab}=0$ 、 $6EKZ_{ba}=0$ を代入し、式を簡易 化すればよい。次にこれらの軸力と材端モーメントから部材応力度を求める解式をあげる。

節点剛性と変形の影響を考慮せる一般トラス橋の厳密解法とその計算方法について(第2報) 689 部材の一次応力度

$$\sigma_1 = \frac{S}{F} \tag{11}$$

部材の二次応力度

$$\sigma_2 = \frac{M}{I} \eta \tag{12}$$

部材の合成応力度

$$\sigma = \sigma_1 + \sigma_2 = \frac{S}{F} \pm \frac{M}{I} \eta \tag{13}$$

(11), (12), (13) 式において、S: 部材の軸力 (kg), F: 断面積 (cm²), I: 断面二次モーメント (cm⁴), M: 部材の材端モーメント (kg-cm), 7: 断面の中心軸より縁維面までの垂直 距離 (cm)。

3. 模型トラスの厳密計算

著者が実験に用いた 図-2, 図-3, 図-4の模型トラス^{2).3).7)}の中,表-1に示すような部材断 面の模型トラス7種類(模型1,3,5,6,7,8,9)について,著者提案の方法により厳密計算を 試みた。

以下、模型トラスについての計算手順と方法を実例によって示す。

図-2 下路式ワーレントラス橋の模型図 (模型1~模型5)

(模型8,模型9)

(184)

					斜	材
種	别	上弦材	下弦材	垂 直 材	中間材	端材
模型1	(溶接 No.1)	0.60×1.80	0.60×1.80	0.30×1.80	0.30×1.80	0.60 imes 1.80
模型3	(ピン)	$(0.30 \times 1.80) \times 2$	$(0.30 \times 1.80) \times 2$	0.30×1.80	0.30×1.80	$(0.30 \times 1.80) \times 2$
模型 5	(リベット)	0.60×1.80	0.60×1.80	0.30×1.80	0.30×1.80	0.60×1.80
模型 6	(溶 接)	$(0.60 \times 4.20) \times 2$ $(0.60 \times 2.20) \times 2$	$(0.60 \times 4.20) \times 2$ $(0.60 \times 2.20) \times 2$	0.60×2.20	0.60×2.20	
模型7	(ピン)	$(0.60 \times 4.20) \times 2$ $(0.60 \times 2.20) \times 2$	$\begin{array}{c} (0.60 \times 4.20) \times 2 \\ (0.60 \times 2.20) \times 2 \end{array}$	0.60×2.20	0.60×2.20	
模型8	(溶 接)	$(0.60 \times 4.20) \times 2$ $(0.60 \times 2.20) \times 2$	$(0.60 \times 4.20) \times 2$ $(0.60 \times 2.20) \times 2$	0.60×2.20	0.60×2.20	
模型9	(ピ ン)	$(0.60 \times 4.20) \times 2$ $(0.60 \times 2.20) \times 2$	$(0.60 \times 4.20) \times 2$ $(0.60 \times 2.20) \times 2$	0.60×2.20	0.60×2.20	

表-1 各種模型の部材断面寸法 (cm×cm)

(注) 模型1,3,5は下路式ワーレントラスで部材断面は矩形断面の単か複よりなり、模型6,7は上路式ワ ーレントラス、模型8,9は上路式ブラットトラスで、上弦材、下弦材は何れも箱断面よりなり、垂直 材、斜材はどれも矩形断面よりなっている。なお、鋼材の種別はSS41であり、溶接は総べて隅肉溶 接よりなっている。

A. 係数 μ, ν, λ および α, β, r の算定

各模型のタワミ,部材応力度の測定結果を参照し,厳密タワミ解式 (2), (3), (4) に含まれる 係数 μ , ν , λ , および α , β , τ などを 表-2 の通り算定した。

	模	型	種	別		μ	ν	λ	α	β	r	$\mu/lpha$	ע/β	2/1
模型	1 (下器	各式ワー	- レン,	溶接♪	No.1)	0.500	0.650	0.650	1.0	1.0	1.0	0.500	0.650	0.650
模型	3 (下聞	各式ワ・	- レン,	ピ	ン)	0.935	0.050	0.050	0.850	0.850	0.850	1.100	0.059	0.059
模型	5 (下聞	各式ワ・	- レン,	りべ	ット)	0.734	0.518	0.518	0.900	0.900	0.900	0.815	0.576	0.576
模型	6 (上译	各式ワー	- レン,	溶	接)	0.700	0.850	0.850	1.0	1.0	1.0	0.700	0.850	0.850
模型	7(上部	各式ワー	- レン,	Ŀ°	\sim)	1.0	0.050	0.050	0.204	0.204	0.204	4.900	0.245	0.245
模型	8 (上跆	各式プラ	ラット,	溶	接)	0.850	0.950	0.950	1.0	1.0	1.0	0.850	0.950	0.950
模型	9(上路	格式プラ	ラット,	۲°	ン)	1.0	0.050	0.050	0.196	0.196	0.196	5.100	0.255	0.255

表-2 係数 μ, ν, λ および α, β, Γ の値

(注) 模型 1~5 では荷重 300 kg, 模型 6~9 では荷重 1.0 t の場合の係数を示す。

B. 各種模型トラスの支間中央節点における厳密タワミ計算

セン断力によるタワミは極めて小さいのでこれを無視し、軸力 S と材端モーメント M に よるタワミを求めこれらを加算する。特にピントラスでは、S によるタワミだけでよい。

i. 模型1(下路式ワーレン,溶接 NO.1)のタワミ δ₈

部	材								
稀酒	部材名	断面積	部材長	s/A	Ŝ	$ ilde{S}(s/A)$	S	$S\left(\mu /lpha ight)$	$ \tilde{S}S(\mu/lpha)(s/A) $
1997 1997		A (cm ²)	s (cm)	(1/cm)	(kg)	(kg/cm)	(kg)	(kg)	(kg²/cm)
上弦材	3~5 5~7 7~9	$1.080 \\ 1.080 \\ 1.080$	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.000 \end{array}$	9.259 9.259 9.259	$-0.723 \\ -0.723 \\ -1.446$	- 6.694 - 6.694 - 13.389	-216.960 -216.960 -433.830	-108.480 -108.480 -216.915	$^{+ 726.165}_{+ 726.165}_{+ 2,904.275}$
下 弦 材	1~2 2~4 4~6 6~8	$1.080 \\ 1.080 \\ 1.080 \\ 1.080 \\ 1.080$	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \end{array}$	9.259 9.259 9.259 9.259 9.259	+0.362 +0.362 +1.085 +1.085	+ 3.352 + 3.352 + 10.046 + 10.046	+108.480 +108.480 +325.410 +325.410	+ 54.240 + 54.240 + 162.705 + 162.705	$^{+ 181.812}_{+ 181.812}_{+ 1,634.534}_{+ 1,634.534}$
斜 材	$\begin{vmatrix} 1 \sim 3 \\ 3 \sim 4 \\ 4 \sim 7 \\ 7 \sim 8 \end{vmatrix}$	$1.080 \\ 0.540 \\ 0.540 \\ 0.540$	$\begin{array}{c} 17.067 \\ 17.067 \\ 17.067 \\ 17.067 \\ 17.067 \end{array}$	$\begin{array}{c} 15.803 \\ 31.604 \\ 31.604 \\ 31.604 \end{array}$	-0.617 + 0.617 - 0.617 + 0.617 + 0.617	$\begin{array}{r} - & 9.750 \\ + & 19.501 \\ - & 19.501 \\ + & 19.501 \end{array}$	-185.160 + 185.160 - 185.160 + 185.160 + 185.160	$\begin{array}{r} - & 92.580 \\ + & 92.580 \\ - & 92.580 \\ + & 92.580 \end{array}$	$\begin{array}{r} + & 902.655 \\ + & 1,805.403 \\ + & 1,805.403 \\ + & 1,805.403 \end{array}$
垂 直 材	2~3 4~5 6~7 8~9	$0.540 \\ 0.540 \\ 0.540 \\ 0.540$	13.830 13.830 13.830 13.830	$\begin{array}{c} 25.611 \\ 25.611 \\ 25.611 \\ 25.611 \\ 25.611 \end{array}$	$0 \\ 0 \\ 0 \\ +1.000$	$ \begin{array}{c} 0 \\ 0 \\ +25.611 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ - 300.000 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ -0 \\ +150.000 \end{array} $	$\begin{vmatrix} 0\\0\\+3,841.650 \end{vmatrix}$

表-3 模型1(溶接 No.1)の軸力Sによるタワミ (P=300 kg の場合)

(注) 荷重 300 kg, $\mu = 0.50$, $\alpha = 1.0$

 $\sum \tilde{S}S - \frac{\mu}{\alpha} \frac{s}{A} = 18,149.811 \times 2 - 3,841.650 = 32,457.972 \text{ kg}^2/\text{cm}$

故に、 $\delta_S = \sum \&S \frac{\mu}{\alpha} \frac{s}{AE} = \frac{32,457.972}{2,100,000} = 0.0154 \text{ cm}$

部	材	断面二次	Jun Chart	/7	$\overline{M} = (1/2)$.	77 (/ 7)	M = (1/2).	3.6.1.10	
種別	部材名	モーメント	部材長	<i>S/1</i>	$(\overline{M}_{mn} \pm \overline{M}_{nm})$	M(s/I)	$(M_{mn}\pm M_{nm})$	M (μ/eta)	$(MM(\nu/\beta)(s/I))$
		$I (cm^4)$	s (cm)	$(1/cm^{3})$	(kg-cm)	(kg/cm ²)	(kg-cm)	(kg-cm)	(kg ² /cm)
上弦材	3~5 5~7 7~9	$\begin{array}{c} 0.807 \\ 0.807 \\ 0.807 \end{array}$	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.000 \end{array}$	12.392 12.392 12.392	$-0.353 \\ -0.379 \\ +0.196$	- 4.374 - 4.697 + 2.429	$-106.041 \\ -113.667 \\ + 58.830$	$\begin{array}{r} - \ 68.927 \\ - \ 73.884 \\ + \ 38.240 \end{array}$	$\begin{array}{r} + & 301.487 \\ + & 347.033 \\ + & 92.885 \end{array}$
下 弦 材	$ \begin{array}{c} 1 \sim 2 \\ 2 \sim 4 \\ 4 \sim 6 \\ 6 \sim 8 \end{array} $	0.807 0.807 0.807 0.807 0.807	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \end{array}$	12.392 12.392 12.392 12.392 12.392	$\begin{array}{r} -0.068 \\ -0.362 \\ -0.137 \\ -0.583 \end{array}$	$\begin{array}{rrrr} - & 0.843 \\ - & 4.486 \\ - & 1.698 \\ - & 7.225 \end{array}$	$\begin{array}{r} - 20.337 \\ -108.582 \\ - 41.037 \\ -175.038 \end{array}$	$- 16.266 \\ - 86.850 \\ - 32.823 \\ - 140.004$	${}^{+ 13.712}_{+ 389.609}_{+ 55.733}_{+ 1,011.529}$
	$ \begin{array}{c} 1 \sim 3 \\ 3 \sim 4 \\ 4 \sim 7 \\ 7 \sim 8 \end{array} $	$\begin{array}{c} 0.807 \\ 0.404 \\ 0.404 \\ 0.404 \end{array}$	17.067 17.067 17.067 17.067 17.067	21.149 42.245 42.245 42.245 42.245	$\begin{array}{c} +0.116 \\ +0.074 \\ +0.062 \\ -0.109 \end{array}$	$\begin{array}{r} + 2.453 \\ + 3.126 \\ + 2.619 \\ - 4.605 \end{array}$	$\begin{array}{r} + 34.695 \\ + 22.185 \\ + 18.627 \\ - 32.704 \end{array}$	+ 27.751 + 17.744 + 14.899 - 26.160	$\begin{array}{rrrrr} + & 68.073 \\ + & 55.468 \\ + & 38.976 \\ + & 120.467 \end{array}$
垂 直 材	2~3 4~5 6~7 8~9	$\begin{array}{c} 0.404 \\ 0.404 \\ 0.404 \\ 0.404 \\ 0.404 \end{array}$	13.830 13.830 13.830 13.830 13.830	34.233 34.233 34.233 34.233	+0.268 +0.395 +0.314 0	+ 9.174 + 13.522 + 10.749 0	$ \begin{array}{c} + 80.286 \\ + 118.524 \\ + 94.083 \\ 0 \end{array} $	$\begin{array}{r} + & 64.217 \\ + & 94.801 \\ + & 75.253 \\ & 0 \end{array}$	$^{+ 589.127}_{+ 1,281.899}_{+ 808.894}_{0}$

表-4 模型1 (溶接 No. 1)の材端モーメント M によるタワミ (P=300 kg の場合)

(注) 荷重 300 kg, $\nu = 0.65$, $\beta = 1.0$

$$\sum \overline{M}M \frac{\nu}{\beta} \frac{s}{I} = 2 \times 5,174.892 = 10,349.784 \text{ kg}^2/\text{cm}$$

(186)

 $\Sigma + 18,149.811$

 $\Sigma + 5,174.892$

故に, $\delta_M = \sum \overline{M}M \frac{\nu}{\beta} \frac{s}{IE_b} = \frac{10,349.784}{2,100,000} = 0.00492$ cm

総合タワミ $\delta = \delta_S + \delta_M = 0.0154 + 0.00492 = 0.02032$ cm $\div 0.0203$ cm

これに対し,実験タワミは、ð=0.0190 cm でかなりよく接近している。

ii. 模型3 (下路式ワーレン, ピン) のタワミ δ_8

									Sector Contraction of the sector of the sect
部	材						l		
頹別	部状名	断面積	部材長	s/A	Ŝ	$ ilde{S}$ (s/A)	S	$S_{-}(\mu/lpha)$	$\hat{S}S(\mu/\alpha)(s/A)$
488.770		$A (cm^2)$	_s (cm)	(1/cm)	(kg)	(kg/cm)	(kg)	(kg)	(kg²/cm)
上弦材	3~5 5~7 7~9	$1.080 \\ 1.080 \\ 1.080$	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.000 \end{array}$	9.259 9.259 9.259	$-0.723 \\ -0.723 \\ -1.446$	- 6.694 - 6.694 - 13.389	$-216.960 \\ -216.960 \\ -433.830$	-238.656 -238.656 -477.213	+1,597.563 +1,597.563 +6,389.405
下 弦 材	1~2 2~4 4~6 6~8	$1.080 \\ 1.080 \\ 1.080 \\ 1.080 \\ 1.080$	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \end{array}$	9.259 9.259 9.259 9.259 9.259	+0.362 +0.362 +1.085 +1.085	+ 3.352 + 3.352 + 10.046 + 10.046	+108.480 +108.480 +325.410 +325.410	+119.328 + 119.328 + 357.951 + 357.951	$\begin{array}{r} + & 399.987 \\ + & 399.987 \\ + & 3,595.976 \\ + & 3,595.976 \end{array}$
斜 材	1~3 3~4 4~7 7~8	$1.080 \\ 0.540 \\ 0.540 \\ 0.540$	17.067 17.067 17.067 17.067	$\begin{array}{c} 15.803 \\ 31.606 \\ 31.606 \\ 31.606 \end{array}$	$\begin{array}{c} -0.617 \\ +0.617 \\ -0.617 \\ +0.617 \end{array}$	$\begin{array}{r} - 9.750 \\ + 19.501 \\ - 19.501 \\ + 19.501 \end{array}$	-185.160 + 185.160 - 185.160 - 185.160 + 185.160	-203.676 + 203.676 - 203.676 + 203.676 + 203.676	+1,985.841 +3,971.886 +3,971.886 +3,971.886
垂 直 材	2~3 4~5 6~7 9~9	$\begin{array}{c} 0.540 \\ 0.540 \\ 0.540 \\ 0.540 \end{array}$	13.830 13.830 13.830 13.830 13.830	25.611 25.611 25.611 25.611	$egin{array}{c} 0 \\ 0 \\ 0 \\ +1.000 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ + 25.911 \end{array} $	$0 \\ 0 \\ -0 \\ +300.000$	$0 \\ 0 \\ 0 \\ +330.000$	$\begin{vmatrix} 0\\0\\+8,550.630 \end{vmatrix}$

表-5 模型3(ピン)の軸力Sによるタワミ (P=300kgの場合)

(注) 荷重 300 kg, $\mu = 0.935$, $\alpha = 0.850$

 $\Sigma + 40,028.586$

 $\sum \bar{S}S \frac{\mu}{\alpha} \frac{s}{A} = 40,028.586 \times 2 - 8,550.630 = 71,506.542 \text{ kg}^2/\text{cm}$

故に,
$$\delta = \delta_S = \sum \bar{S}S \frac{\mu}{\alpha} \frac{s}{AE} = \frac{71,506.542}{2,100,000} = 0.03405 \text{ cm} \div 0.0341 \text{ cm}$$

ピン結合の摩擦にともなう材端モーメントによるタワミや、それにともなうセン断力によるタワミは非常に小さいとし省略した。実験タワミは δ =0.0330 cm で 上記計算値に非常によく接近している。 従来のトラス理論によって求めたタワミは δ =0.0309 cm で幾分小さくなっている。

iii. 模型5(下路式ワーレン, リベット)のタワミ δ_8

節点がリベットであるから,軸力Sによるタワミのほか材端モーメント Mによるタワミ も計算する。

部	材			وركان مسمع مورووي الشا					
-940 11d	前十 夕	断而積	部材長	s/A	Ŝ	$ ilde{S}$ (s/A)	S	$S~(\mu/lpha)$	$\bar{S}S(\mu/lpha)(s/A)$
/	前州石	$A (cm^2)$	s (cm)	(1/cm)	(kg)	(kg/cm)	(kg)	(kg)	(kg²/cm)
上弦材	3~5 5~7 7~9	$1.080 \\ 1.080 \\ 1.080$	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.000 \end{array}$	9.259 9.259 9.259	$-0.723 \\ -0.723 \\ -1.446$	- 6.694 - 6.694 - 13.389	-216.960 -216.960 -433.830	-176.822 - 176.822 - 353.571	+1,183.646 +1,183.646 +4,733.962
下 弦 材	1~2 2~4 4~6 6~8	$1.080 \\ 1.080 \\ 1.080 \\ 1.080 $	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \end{array}$	9.259 9.259 9.259 9.259 9.259	+0.362 +0.362 +1.085 +1.085	+ 3.352 + 3.352 +10.046 +10.046	+108.480 +108.480 +325.410 +325.410	$^{+ 88.411}_{+ 88.411}_{+ 265.209}_{+ 265.209}$	$\begin{array}{r} + 296.354 \\ + 296.354 \\ + 2,664.290 \\ + 2,664.290 \end{array}$
斜 材	$1 \sim 3$ $3 \sim 4$ $4 \sim 7$ $7 \sim 8$	$\begin{array}{c} 1.080 \\ 0.540 \\ 0.540 \\ 0.540 \end{array}$	$\begin{array}{c} 17.067 \\ 17.067 \\ 17.067 \\ 17.067 \\ 17.067 \end{array}$	$\begin{array}{c} 15.803 \\ 31.606 \\ 31.606 \\ 31.606 \end{array}$	$\begin{array}{r} -0.617 \\ +0.617 \\ -0.617 \\ +0.617 \end{array}$	$\begin{array}{r} - 9.750 \\ + 19.501 \\ - 19.501 \\ + 19.501 \end{array}$	-185.160 + 185.160 - 185.160 + 185.160 + 185.160	$-150.905 \\ +150.905 \\ -150.905 \\ +150.905$	+2,471.324 +2,942.798 +2,942.798 +2,942.798
垂 直 材	2~3 4~5 6~7 8~9	$\begin{array}{c} 0.540 \\ 0.540 \\ 0.540 \\ 0.540 \\ 0.540 \end{array}$	$\begin{array}{c} 13.830 \\ 13.830 \\ 13.830 \\ 13.830 \\ 13.830 \end{array}$	$\begin{array}{c} 25.611 \\ 25.611 \\ 25.611 \\ 25.611 \\ 25.611 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ +1,000 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ -25.611 \end{array} $	$0 \\ 0 \\ 0 \\ + 300.000$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ +244.500 \end{array} $	$ \begin{array}{c c} 0 \\ 0 \\ -0 \\ +6,261.890 \end{array} $

表―6 模型5(リベット)の軸力Sによるタワミ (P=300kgの場合)

(注) 荷重 300 kg, $\mu = 0.734$, $\alpha = 0.900$

 $\Sigma + 29,584.150$

đ

 $\sum \bar{SS} \frac{\mu}{\alpha} \frac{s}{A} = 29,584.150 \times 2 - 6,261.890 = 52,906.410 \text{ kg}^2/\text{cm}$

故に,
$$\delta_S = \Sigma \bar{\otimes} S \frac{\mu}{\alpha} \frac{s}{AE} = \frac{52,960.410}{2,100,000} = 0.02519 \text{ cm}$$

模型5(リベット)の材端モーメントMによるタワミ(P=300kgの場合)

係数 ν =0.518, β =0.900, ν/β =0.576 と算定したから、模型 1 (溶接 No. 1)の計算結果, 表-4の $\sum \overline{M}M(\nu/\beta)(s/I) = 10,349.784 \text{ kg}^2/\text{cm}$ を用い、次の通り求めることが出来る。

 $\delta_{M} = \sum \overline{M} M \frac{\nu}{\beta} \frac{s}{IE_{b}} = \frac{10,349.784}{2,100,000} \times \frac{0.576}{0.650} = 0.00436 \text{ cm}$

故に,総合タワミ

 $\delta = \delta_S + \delta_M = 0.02519 + 0.00436 = 0.02955 \text{ cm} \doteq 0.0296 \text{ cm}$

これに対し実験タワミは、∂=0.0290 cm で非常によく接近している。

以下,同様の計算方法で模型 6~ 模型 9 のタワミを厳密に計算した。その結果のみ示すと 次の通りである。

iv. 模型6 (上路式ワーレン, 溶接) のタワミ δ_7

荷重 P=1.0 t の場合で、係数 $\mu=0.70$ 、 $\alpha=1.0$ 、 $\nu=0.85$ 、 $\beta=1.0$ とし、セン断力の影響 のみ極小として省略すれば次の通りになる。

$$\delta = \delta_S + \delta_M = \sum \bar{\otimes} S \frac{\mu}{\alpha} \frac{s}{AE} + \sum \bar{M} M \frac{\nu}{\beta} \frac{s}{IE_b} = 0.0245 + 0.0045 = 0.0290 \text{ cm}$$

これに対し実験結果は、*δ*=0.0280 cm で非常に接近している。

v. 模型 7 (上路式ワーレン, ピン) のタワミ δ_7

荷重 P=1.0t の場合で、係数 $\mu=1.0$ 、 $\alpha=0.204$ とし、軸力 S のみによる タワミを求めれば、

$$\delta = \delta_S = \sum \bar{\mathbb{S}} S \frac{\mu}{\alpha} \frac{s}{AE} = 0.172 \text{ cm}$$

これに対し実験タワミ $\delta = 0.191$ cm で, その差 10% に満たない。

vi. 模型8(上路式プラット, 溶接)のタワミ ∂₇

荷重 P=1.0t, 係数 $\mu=0.850$, $\alpha=1.0$, $\nu=0.950$, $\beta=1.0$ とし, セン断力の影響のみ極小 として省略すれば次の通りになる。

 $\delta = \delta_S + \delta_M = \sum \bar{S}S \frac{\mu}{\alpha} \frac{s}{AE} + \sum \bar{M}M \frac{\nu}{\beta} \frac{s}{IE_b} = 0.0203 + 0.0037 = 0.0240 \text{ cm}$

これに対し実験タワミ $\delta = 0.0230$ cm で非常に接近している。

vii. 模型9(上路式プラット, ピン)のタワミ ô7

荷重 P=1.0t で、 $\mu=1.0$ 、 $\alpha=0.196$ とし、軸力Sのみによるタワミを求めれば

$$\delta = \delta_S = \sum \bar{\mathbb{S}} S \frac{\mu}{\alpha} \frac{s}{AE} = 0.126 \text{ cm}$$

で、実験値 0.125 cm と非常によく接近している。

以上の通り,どの模型においても係数の算定が適切であるため,厳密計算式を用いた計算 結果は実験タワミによく接近していたといえる。

C. 各種模型トラスの各節点における厳密変位計算

上述のように,各模型トラスの下弦材支間中央節点の厳密タワミ(垂直変位)が求まった わけであるが,更に(5),(6),(7)式より節点変位連立方程式をそれぞれ誘導し,電子計算機(主 として,北海道大学電子計算機センター所有の HIPAC-103)にかけて各節点変位を迅速に求 め,下弦材支間中央節点におけるその垂直変位と先に求めた同点の厳密垂直変位 との比率(変 位補正係数)を次の通り決定した。

表一7 変位補正係数 (dexact/dordinary)

模 型 種 別	模型1	模型3	模型5	模型6	模型7	模型8	模型 9
変位補正係数	0.658	1.102	0.957	0.871	5.165	0.960	5.040

(注) 模型 1~5 では荷重 P=300 kg の場合で、模型 6~9 では荷重 P=1.0 t の場合である。

上述の変位補正係数を電子計算機で求めたそれぞれの模型における各節点変位にかけ,各 模型における総べての厳密節点変位を決定した。その結果を表にして示せば次の通りである。

i. 模型1,3,5の厳密節点変位 (表-8参照)

(mm)	1 移動 鲛	平 垂 直	0 68	27 +0.08004	58 +0.08004	38 + 0.16830	25 + 0.16830	27 + 0.24240	12 + 0.24240	+0.02955	+0.02955	27 +0.24240	12 + 0.24240	38 +0.16830	25 + 0.16830	58 + 0.08004	27 + 0.08004	68
1)の変位	紫 宝	×	-0.040	0.036	+0.042	-0.030	+0.031	+0.020	-0.016	0	0	-0.020	+0.016	+0.030	-0.031	-0.042	+0.036	+0.040
1 5 (リベッ	国家感感) 重	0	+0.08004	+0.08004	+0.16830	+0.16830	+0.24240	+0.24240	+0.02955	+0.02955	+0.24240	+0.24240	+0.16830	+0.16830	+0.08004	+0.08004	0
模型	一也	水 本	0	+0.00437	+0.08320	+0.00960	+0.07190	+0.06124	+0.02460	+0.04091	+0.04091	+0.02065	+0.05687	+0.07098	+0.09202	+0.00200	+0.07700	+0.08210
J) (t	多動酸	垂直	0	+0.09253	+0.09253	+0.19460	+0.19460	+0.28030	+0.28030	+0.34050	+0.34050	+0.28030	+0.28030	+0.19460	+0.19460	+0.09253	+0.09253	0.
の変位 (mn	同端を	水平	-0.04729	-0.04192	± 0.04923	-0.03512	+0.03614	+0.02344	-0.01864	C	0	-0.02344	+0.01864	+0.03512	-0.03614	-0.04923	+0.04192	+0.04729
(型 3 (ピン)	回 感 感	垂	0	+0.09253	+0.09253	+0.19460	+0.19460	+0.28030	+0.28030	+0.34050	+0.34050	+0.28030	+0.28030	+0.19460	+0.19460	+0.09253	+0.09253	0
榜		水平	0	+0.00503	+0.09611	+0.01183	+0.08301	+0.07076	+0.02841	+0.04725	+0.04725	+0.02385	+0.06566	+0.08199	+0.10630	-0.00231	+0.08896	+0.09492
(1	、動 鲛	垂直	0	+0.05516	+0.05516	+0.11610	+0.11610	+0.16710	+0.16710	+0.20300	+0.20300	+0.16710	+0.16710	+0.11610	+0.11610	+0.05516	+0.05516	0
の変位 (mn	回着名	大 平	-0.02819	-0.02498	+0.02935	-0.02093	+0.02154	+0.01391	-0.01111	0	0	-0.01397	+0.01111	+0.02093	-0.02154	-0.02935	+0.02498	+0.02819
型1(落接)	四 記 一 一 一 一 の の の の の の の の の の の の の の の	垂	0	+0.05516	+0.05516	+0.11610	+0.11610	+0.16710	+0.16710	+0.20300	+0.20300	+0.16710	+0.16710	+0.11610	+0.11610	+0.05516	+0.05516	0
換	他 第 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	× *	0	+0.00300	+0.05728	+0.00705	+0.04948	+0.04218	+0.01694	+0.02819	+0.02819	+0.01422	+0.03916	+0.04889	+0.00634	-0.00137	+0.05303	+0.05660
< 1 値	R	「「「」」		0	က	$\overline{4}$	2	9	2	8	6	10	11	12	13	14	15	16

4

(注) (+), (-)の記号は左支点を原点とし、なは右側を(+), y は下鍋を(+)とする。

模型 1, 3, 5 の厳密節点変位 (P=300 kg の場合)

中村作太郎

ii. 模型 6,7の厳密節点変位

模型6(溶接)と模型7(ピン)については、すでに述べた著者提案の迅速計算方法によっ

		模型 6 (洋	啓接)の変(泣 (mm)			模型 7 (ピン) の変位 (mm)			
加裡	一端間	目 定 鉸 多 動 鉸	両端和	多動鉸	実 渕	一端區 他端利	固定 鉸 多 動 鉸	両端移	多動 鉸	実 測
前点	水平	垂直	水平	重 直	垂直変位	水平	垂 直	水平	垂 直	垂直変位
1	0	0	-0.0390	0	0	0	0	-0.2275	0	0
2	+0.0694	0	+0.0272	0	+0.0128	+0.3842	0	+0.1618	0	+0.0790
3	+0.0071	+0.1458	-0.0310	+0.1458	+0.1219	+0.0422	+0.8635	-0.1836	+0.8635	+0.8480
4	+0.0649	+0.1458	± 0.0265	+0.1458	+0.1332	+0.3842	+0.8635	+0.1570	+0.8635	+1.1070
5	+0.1621	+0.2779	-0.0193	+0.2779	+0.2138	+0.9580	+1.6450	-0.1140	+1.6450	+1.4810
6	+0.0516	+0.2779	+0.0134	+0.2779	+0.2155	+0.3051	+1.6450	+0.0795	+1.6450	+1.5590
7	+0.0370	+0.2900	0	± 0.2900	+0.2800	+0.2185	+1.7200	0	+1.7200	+1.9100
8	+0.0393	+0.3909	0	+0.3909	+0.3191	+0.2323	+2.3140	0	+2.3140	+1.9730
9	+0.0547	+0.2779	+0.0193	+0.2779	+0.2138	+0.3242	+1.6450	+0.1140	+1.6450	+1.4810
10	+0.0248	+0.2779	-0.0134	+0.2779	+0.2155	+0.1468	+1.6450	-0.0795	+1.6450	+1.5590
11	+0.0692	+0.1458	+0.0310	+0.1458	+0.1219	+0.4090	+0.8635	+0.1836	+0.8635	+0.8480
12	+0.0120	+0.1458	-0.0265	+0.1458	+0.1332	+0.0707	+0.8635	-0.1570	+0.8635	+1.1070
13	+0.0780	0	+0.0390	0	0	+0.4620	0	+0.2275	0	0
14	+0.0105	0	-0.0272	0	+0.1281	+0.0624	0	-0.1618	0	+0.0790

表-9 模型 6,7 の厳密節点変位 (P=1.0 t の場合)

(注) (+), (-)の記号は左支点を原点とし, xは右側を(+), yは下側を(+)とする。

-	模型 6	(溶接)の変位	(mm)	<u>模型7(ピン)の変位 (mm)</u>					
裡加	両 端 移	3 動 鉸	宝 궤	両 端 稻	多動鉸	宝 涠			
節点	水平	垂直	垂直変位	水平	垂直	垂直変位			
1	-0.0436	0	0	-0.1898	0	0			
2	+0.0382	+0.0282	+0.0128	+0.2570	+0.0568	+0.0790			
3	-0.0453	+0.1115	+0.1219	-0.1998	+0.7340	+0.8480			
4	+0.0459	+0.1123	+0.1332	+0.2550	+0.7340	+1.1070			
5	-0.0354	+0.2164	+0.2138	-0.2488	+1.1402	+1.4810			
6	+0.0177	+0.2164	+0.2155	+0.1315	+1.2076	+1.5590			
7	0	+0.2900	+0.2800	0	+1.7200	+1.9100			
8	0	+0.2915	+0.3191	0	+1.7300	+1.9730			
9	+0.0354	+0.2164	+0.2138	+0.2488	+1.1402	+1.4810			
10	-0.0177	+0.2164	+0.2155	-0.1315	+1.2076	+1.5590			
11	+0.0453	+0.1115	+0.1219	+0.1998	+0.7340	+0.8480			
12	-0.0459	+0.1332	+0.1332	-0.2550	+0.7340	+1.1070			
13	+0.0436	0	0	+0.1898	0	0			
14	-0.0382	+0.0128	+0.0128	-0.2570	+0.0568	+0.0790			

表-10 模型 6,7の変形理論による厳密節点変位 (P=1.0t)

(注) (+), (-)の記号は左支点を原点とし, xは右側を(+), y は下側を(+)とする。また本計算値は微小 変形を考慮した節点変位方程式を解いて求めた各節点変位に, それによる節点変位係数をかけて求 めたものである。 て厳密節点変位を決定したほか,一般厳密変形理論¹⁾によっても方程式を解き各節点変位を参 考のため求めてみた。なおそれらの結果を,各節点の垂直変位につき実測値と比較し,本論文 の主題である迅速計算方法によって求めた値は充分厳密性の保たれることを明かならしめた。

iii. 模型 8,9の厳密節点変位

2000 IB1		模型8(落	驿接)の変色	7. (mm)	and the second]	模型9(ヒ	*ン) の変(立. (mm)	a a constant a substantia a subs
植列	一端国他端和	国 定 鉸 多 動 鉸	両 端 利	多動鉸	実測	一端日他端利	固定 鉸 多動 鉸	両 端 利	多動鉸	実 測
意 人	水平	垂直	水平	垂 直	垂直変位	水平	垂 直	水平	垂 直	垂直変位
1	0	0	-0.0088	0	0	0	0	-0.0462	0	0
2	+0.0268	+0.0271	+0.0224	+0.0271	+0.0256	+0.1409	+0.1424	+0.1178	+0.1424	+0.0971
3	+0.0001	+0.0833	-0.0088	+0.0833	+0.0822	+0.0007	+0.4372	-0.0462	+0.4372	+0.4587
4	+0.0237	+0.1104	+0.0193	+0.1104	+0.1691	+0.1244	+0.5796	+0.1016	+0.5796	+0.5802
5	+0.0029	+0.1903	-0.0044	+0.1903	+0.2069	+0.0153	+0.9992	-0.0231	+0.9992	+0.9082
6	+0.0180	+0.2290	+0.0136	+0.2290	+0.2424	+0.0946	+1.2020	+0.0716	+1.2020	+1.0270
7	+0.0088	+0.2400	0	+0.2400	+0.2300	+0.0462	+1.2600	0	+1.2600	+1.2500
8	+0.0088	+0.2936	0	+0.2936	+0.3047	+0.0462	+1.5410	0	+1.5410	+1.5380
9	+0.0117	+0.1903	+0.0044	+0.1903	+0.2069	+0.0614	+0.9992	+0.0231	+0.9992	+0.9082
10	-0.0092	+0.2290	-0.0136	+0.2290	+0.2424	-0.0484	+1.2020	-0.0716	+1.2020	+1.0270
11	+0.0176	+0.0833	+0.0088	+0.0833	+0.0822	+0.0924	+0.4372	+0.0462	+0.4372	+0.4587
12	-0.0149	+0.1104	-0.0193	+0.1104	+0.1691	-0.0783	+0.5796	-0.1016	+0.5796	+0.5802
13	+0.0176	0	+0.0088	0	0	+0.0924	0	+0.0462	0	0
14	-0.0180	+0.0271	-0.0224	+0.0271	+0.0256	-0.0945	+0.1424	-0.1178	+0.1424	+0.0971

表一11 模型 8,9の厳密節点変位 (P=1.0tの場合)

(注) (+), (-)の記号は左支点を原点とし, xは右側を(+), yは下側を(+)とする。

ピン結合トラスの模型では、支間に比べ断面積の大きなトラスほど従来のトラス理論によ るタワミ計算値と実測値の間に著しい差異が見られ、著者提案による厳密タワミ計算法の適用 が非常に有効なことが確証出来た。材端モーメントによる二次応力度の増加については、溶接 模型トラスでもっとも大きいと考えられるので、厳密節点変位を用いたそれらの計算を次にあ げる。

D. 各溶接模型トラスにおける部材応力度の厳密計算

すでに掲載せる厳密節点変位を用い, 撓角分配法⁸⁾の併用により(8)~(13) 式により その部 材応力度を計算し,従来の理論による計算値,実験値などと比較すれば,表-12の通りになる。

4. 試案実物トラス橋の厳密計算

図-5 および 図-6 に示すような試案の 半溶接トラス橋, すなわち単径間二重ワーレン・ト ラス橋⁹ (支間 62.0 m) と三径間連続ワーレン・トラス橋¹⁰ (支間 78 m + 78 m + 78 m = 234 m)

			₩A [].	ξ12 <u>المش</u> ±ــــــــــــــــــــــــــــــــــــ	模型 1 (P- 	=300 kg),	模型 6 (1	>=1.0t), 페6の 책(±	模型 8 (1	$P = 1.0 t$) of $\frac{1}{\sigma}$	の部材応J 2)	1度の酸沼 離	計算値 <u>新</u> 8の部材	応力度 σ	(kg/cm	(2
	応力度	後 (美) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	「「「」の影響にいる。	AでJaを 家 ぎ 密 も あ	<u> の (Kg/CI</u> 計 算	n ⁻⁾ 実験値	後米のどう	開きたい。	「厳に」を見て	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	実験値	が米の「ちょう」である。	連齢に 十算値	酸に発き	が	実験値
∲ 寢	/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 次 初 成 初 成	<u> ら 成 最</u> 大 成 力 度	(合成) (応力度)	51 次 応力废	合成最大応力度	一 次 応力度	合成最大 応 力 度	(合)成) (応力度)	- ○ 応力度	合成最大 応 力 废	→ 次 応力度	合成最大 力 応 废	(売力度)
	U_1	- 220.88	342.63	- 100.44	-192.58	-193.20	0	-518.30	0	-387.70	-324.90	- 58.70	-138.40	- 49.90	- 63.80	- 50.40
. 2	U_2		422.01	-100.44	-244.17	-252.00	-143.20	-699.70	-100.24	-516.44	-440.50	-117.40	-516.00	- 99.80	-243.10	+. 73.50
	U_3	-401.70)520.50	- 200.85	-317.90	-332.60	-143.20	686.50	-100.24	-392.24	-281.70	-176.10	-534.60	-149.70	-289.10	-294.00
	L_1	+100.44	+142.02	+ 50.22	+ 81.27	+ 84.00	+ 71.60	+589.50	+ 50.12	+325.12	+206.70	0	-95.10	0	- 45.90	- 21.00
	L_2	+100.44	1 + 221.40	+ 50.22	+128.62	+ 88.20	+ 71.60	+627.30	+ 50.12	+286.12	+122.70	+ 58.70	+176.10	+ 49.90	+ 82.00	j
,	L_3	+301.32	325.54	+150.66	+199.97	+222.60	+214.70	+237.20	+150.29	+167.09	+203.40	+117.40	+860.50	+ 99.80	+309.30	+130.20
	L_4	+301.32	3 + 618.03	+150.66	+305.36	+298.00	~	~	~	~	/	/	\	~	~	$\overline{\ }$
	D_1	-171.42	-311.92	- 58.71	-197.21	-222.60	-571.00	-761.90	-399.70	-518.60	-400.50	+500.60	+803.40	+425.51	+638.30	+661.50
	D_2	+342.84	(+608.10)	+171.42	+205.02	+210.00	+571.00	+722.00	+399.70	+493.40	+445.20	+500.60	+926.80	+425.51	+627.00	+636.30
1	D_3	-342.84	l -418.83	-171.42	-220.81	I	-571.00	-697.10	-399.70	-478.80	-422.10	+500.60	+553.40	+425.51	+475.60	+499.80
,	D_4	+342.84	+442.38	+171.42	+236.12	+202.00	/	~	/	~	\	\	\	~	~	\
	V_0	~		~	~	\	~	~	~	~	\	-398.40	-962.40	-338.64	-659.30	-663.60
	V_1	0	-194.04	0	- 63.07	- 31.50	0	-104.50	0	- 88.80	- 84.10	-398.40	-1,012.10	-338.64	-694.90	-546.00
	V_2	0	-293.28	0	- 95.32	- 42.00	0	- 81.80	0	- 69.50		- 398.40		-338.64	-755.64	-760.20
	V_3	0	+238.68	0	+155.14	+115.00	0	- 1.50	0	- 1.30	- 24.80	- 796.80	-796.80	-677.28	-677.28	-642.60
	V_4	+555.54	1 +555.54	+277.77	+277.77	+218.40	-758.00	-758.00	530.60	-530.60	1	\	~	\	\	$\overline{\}$
	注) 換:	型の1の		$16 \odot V_2$,		1 8 0 L2 #	8枚では,	1- 20	貼り方が	不確実の	いめ遡定合	直が不安范	たのでその	の数値を言	己載しない	0

塩別1(P=300 kg) 韓型6(P=1.01)、模型8(P=1.01)の部材応力度の厳密計算値

節点剛性と変形の影響を考慮せる一般トラス橋の厳密解法とその計算方法について (第2報)

699

(+)の記号は引張応力度, (-)の記号は圧縮応力度を示す。

(193)

の二橋について著者提案の方法によって厳密計算を試みた。なお、節点接合部の詳細について 述べれば、溶接、リベットの混用とし、工場取付部は溶接、現場取付部はリベットとした。

A. 係数 μ, ν, λ および α, β, γ の算定

トラスの断面, 寸法および節点接合条件を考慮し, また模型トラスの基礎実験結果とその 厳密計算例などを参照の上, 係数 μ , ν , λ および α , β , γ を次の通り決定した。

橋梁種別	μ	ע	λ	α	β	7	$\mu/lpha$	ν/β	λ/γ
単径間半溶接二種 ワーレン・トラス橋	0.734	0.810	0.810	0.900	0.900	0.900	0.815	0.900	0.900
三 径 間 連 続 半 溶接 ワーレン・トラス橋	0.790	0.840	0.840	0.900	0.900	0.900	0.878	0.934	0.934

表-13 係数 μ, ν, λ および α, β, 7 の値

B. 単径間半溶接二重ワーレン・トラス橋の厳密計算 (死荷重,活荷重の合計 w=100 kg/cm)

i. 支間中央節点の厳密タワミ計算

(3), (4) 式を用いて、軸力Sによる一次タワミ、節点に生ずる材端モーメントMによる二 次タワミ、部材セン断力Qによる三次タワミを計算し、これらを加算することによって厳密 タワミを決定する。

a) 軸力 S による一次タワミ

部	材	wc. ≂: ≄*		a/ 4	ē	G	õç	RC (-(A) (-)
種別	部材名	断 固 債	司 州 攴	S/A	3	3	83 /1 m	(α/μ)
		$A(cm^2)$	s (cm)	(1/cm)	(kg)	(kg)	(Kg²)	(kg²/cm)
_Ŀ	1~3	251.24	775.00	3.085	-0.1922	-111,600	+ 21,453	+ 66,183 (α/μ)
7 7.	3 ~ 5	340.84	775.00	2.274	-0.1577	333,200	+219,139	$+ 498,322 (\alpha/\mu)$
5%	$5 \sim 7$	442.00	775.00	1.753	-1.0592	-959,100	$+486,\!292$	+ 852,470 (α/μ)
材	7 ~ 9	506.44	775.00	1.530	-1.5755	-526,200	+829,012	$+1,268,388 (\alpha/\mu)$
下	2 ~ 4	268.24	775.00	2.889	+0.2383	+122,000	+ 29,075	+ 83,998 (α/μ)
7t:	4 ~ 6	306.64	775.00	2.527	+0.6338	+300,800	+190,704	$+ 481,909 (\alpha/\mu)$
52	6~8	447.44	775.00	1.732	+1.0936	+441,800	+483,130	$+ 836,781 (\alpha/\mu)$
材	8~10	492.24	775.00	1.575	+1.4384	+508,200	+731,005	$+1,151,333 (\alpha/\mu)$
	1 ~ 4	207.42	1,187.70	5.726	+0.2946	+171,000	+ 50,377	$+ 288,459 (\alpha/\mu)$
M	2 ~ 3	207.42	1,187.70	5.726	-0.3652		+ 68,261	$+ 390,862 (\alpha/\mu)$
赤叶	3~6	171.42	1,187.70	6.929	+0.3481	+152,400	+ 53,046	$+ 367,556 (\alpha/\mu)$
	4~5	171.42	1,187.70	6.929	-0.3118		+ 36,454	+ 252,590 (α/μ)
	5 ~ 8	129.55	1,187.70	9.168	+0.3036	+102,500	+ 31,121	$+ 285,317 (\alpha/\mu)$
++	$6 \sim 7$	129.55	1,187.70	9.168	-0.3562	- 85,663	+ 30,515	+ 279,762 (α/μ)
41	7~10	97.15	1,187.70	12,226	+0.4349	+ 70,125	+ 30,500	$+ 372,893 (\alpha/\mu)$
	8~9	97.15	1,187.70	12.226	-0.2249	- 56,475	+ 12,701	$+ 155,282 (\alpha/\mu)$
垂	1~2	258.00	900.00	3.488	-0.2232	-129,600	+ 28,932	$+ 100,915 (\alpha/\mu)$
	3~4	72.00	900.00	12.500	+0.0130	+ 27,463	+ 357	$+$ 4,463 (α/μ)
直	5 ~ 6	72.00	900.00	12.500	+0.0062	+ 19,225	+ 119	+ 1,488 (α/μ)
	7~8	72.00	900.00	12,500	-0.0597	+ 23,600	- 1,408	$-$ 17,600 (α/μ)
材	9~10	72.00	900.00	12.500	+0.3408	+ 23,763	+ 8,099	$+ 101,238 (\alpha/\mu)$
			ŀ					

表-14 軸力Sによる一次タワミ (荷重 w=100 kg/cm の場合)

 $\Sigma + 7,822,609 (\alpha/\mu)$

故に、従来の理論による一次タワミは、 $(\alpha/\mu)=1.0$ とおき、 $\bar{\mathbb{S}}S(s/A)(\alpha/\mu)=\bar{\mathbb{S}}S(s/A)$ となり

$$\delta_{10(8)} = \sum_{i} \& S \frac{s}{AE} = (7,822,609 \times 2 - 101,238) \div 2,100,000 = 7.4019 \text{ cm} \div 7.402 \text{ cm}$$

節点剛性と変形の影響を考慮した厳密一次タワミは

$$\delta_{10(S)} = \sum \bar{S}S \frac{\mu}{\alpha} \frac{s}{AE} = 7.4019 \times 0.815 = 6.0325 \text{ cm}$$

b) 節点モーメント *M* による二次タワミ

部	材	断面二次	部材長	s/I	$\overline{\boldsymbol{M}} = (1/2) \cdot (\overline{\boldsymbol{M}}_{mn} \pm \overline{\boldsymbol{M}}_{nm})$	$M = (1/2) \cdot \langle M_{mn} \pm M_{nm} \rangle$	$ar{M}M$	$\overline{oldsymbol{M}}M(u/eta)(s/I)$
種別	部材名	I (cm ⁴)	s (cm)	(1/cm ³)	(kg-cm)	(kg-cm)	(kg ² -cm ²)	(kg²/cm)
上	1~3	100,869.41	775.00	0.00768	-0.0568	- 15,335	+ 870.26	+ 6.016
74.	$3 \sim 5$	154,489.85	775.00	0.00502	+0.3474	+303,595	+ 105,462.80	+ 476.481
鉉	5 ~ 7	172,460.34	775.00	0.00449	+0.7224	+511,553	+ 369,566.00	+1,493.416
材	7 ~ 9	217,399.97	775.00	0.00356	+2.9805	+133,329	+2,185,716.00	+7,003.034
 ۲	2 ~ 4	114,604.77	775.00	0.00676	+0.00875	+ 98,550	+ 861.82	+ 5.243
74-	4~6	142,089.02	775.00	0.00545	+0.8360	+482,130	+ 403,070.00	+1,977.059
5%	6~8	171,876.54	775.00	0.00451	-0.7591	+505,222	- 383,489.00	$-1,\!556.581$
材	8~10	204,534.00	775.00	0.00379	+4.0283	+310,188	+1,249,524.00	+4,262.126
	1~4	48,747.41	1,187.70	0.0244	-0.0502	- 17,084	+ 857.86	+ 18.389
M	2~3	48,747.41	1,187.70	0.0244	+0.0348	+ 38,185	+ 1,326.93	+ 29.139
形	3~6	35,128.00	1,187.70	0.0338	+0.1116	+ 34,056	+ 3,800.31	+ 115.605
	4 ~ 5	35,128.00	1,187.70	0.0338	+0.0748	+ 56,290	+ 4,212.18	+ 128.135
	$5 \sim 8$	20,630.02	1,187.70	0.0576	-0.0242	+ 22,265	+ 538.37	- 27.909
	$6 \sim 7$	20,630.02	1,187.70	0.0576	+0.0211	+ 33,104	+ 699.31	+ 36.252
材	$7 \sim 10$	12,870.00	1,187.70	0.0923	+0.1151	+ 42,746	+ 4,921.81	+ 408.855
	8~9	12,870.00	1,187.70	0.0923	+0.1654	+ 41,098	+ 6,797.97	+ 564.708
垂	1 ~ 2	44,109.71	900.00	0.0204	-0.0629	- 51,393	+ 3,230.28	+ 59.308
	$3 \thicksim 4$	1,529.62	900.00	0.5884	-0.00134	- 423	+ 0.57	+ 0.300
直	$5 \sim 6$	1,529.62	900.00	0.5884	+0.00345	- 94	+ 0.33	+ 0.172
	7 ~ 8	1,529.62	900.00	0.5884	-0.00789	- 376	+ 2.97	+ 1.571
材	9 ~ 10	1,529.62	900.00	0.5884	0	± 298	0	0

表-15 節点モーメント M による二次タワミ (荷重 w=100 kg/cm の場合)

 $\Sigma + 15,001.768$

Q

故に、支間中央節点10のMによる二次タワミは

$$\delta_{10(M)} = \sum \overline{M}M \frac{\nu}{\beta} \frac{s}{IE} = \frac{2 \times 15,001.768}{2,100,000} = 0.01429 \text{ cm}$$

(196)

c) 部材セン断力 Q による三次タワミ

部	材	断面積	部材長	s/A	$\bar{Q} = (M_{\rm m} - \bar{M}_{\rm mm})/s$	Q = (M - M - M)/s	$\bar{\mathcal{Q}}\mathcal{Q}$	$\overline{Q}Q(\lambda/r)(s/A)$
種別	部材名	$A (\text{cm}^2)$	s (cm)	(1/cm)	(kg)	(kg)	(kg ²)	(kg²/cm)
F	1 ~ 3	251.24	775.00	3.085	-0.000147	- 39.580	+ 0.00400	+ 0.01111
	3~5	340.84	775.00	2.274	+0.000897	+ 783.579	+ 0.70260	+ 1.43790
弦	$5 \sim 7$	442.00	775.00	1.753	+0.001865	+1,320.317	+ 2.46240	+ 3.88490
材	7~9	506.44	775.00	1,530	+0.007693	+1,892.722	+14.56070	+20.05010
—— 下	2 ~ 4	268.24	775.00	2.889	+0.000226	+ 254.358	+ 0.00570	+ 0.01493
武	4 ~ 6	306.64	775.00	2.527	+0.002158	+1,244.378	+ 2.68540	+ 6.10740
32	6~8	447.44	775.00	1.732	-0.001959	+1,303.978	- 2.55450	- 3.98200
材	8 ~ 10	492.24	775.00	1.575	+0.010400	+ 800.595	+ 8.32650	+11.80240
	1~4	207.42	1,187.70	5.726	-0.0000846	- 28.769	+ 0.00243	+ 0.01254
251	2 ~ 3	207.42	1,187.70	5.726	+0.0000585	+ 64.304	+ 0.00376	+ 0.01940
朴	3~6	171.42	1,187.70	6.929	+0.0001880	+ 57.350	+ 0.01078	+ 0.06722
	$4 \sim 5$	171.42	1,187.70	6.929	+0.0001260	+ 94.792	+ 0.01194	+ 0.07446
	$5 \sim 8$	129.55	1,187.70	9.168	-0.0000407	+ 37.494	- 0.00153	- 0.01260
ملية. م	$6 \sim 7$	129.55	1,187.70	9.168	+0.0000356	+ 55.746	+ 0.00198	+ 0.01636
12	7 ~ 10	97.15	1,187.70	12.226	+0.0001940	+ 71.985	+ 0.01396	+ 0.15363
	8 ~ 9	97.15	1,187.70	12.226	+0.0002790	+ 69.209	+ 0.01928	+ 0.21213
垂	1~2	258.00	900.00	3.488	-0.0001260	- 102.785	+ 0.0129200	+ 0.040550
	$3 \sim 4$	72.00	900.00	12.500	-0.0000027	- 0.845	+ 0.00000227	+ 0.0000255
直	$5 \sim 6$	72.00	900.00	12.500	+0.0000119	- 0.188	+ 0.0000224	+0.0002520
	7 ~ 8	72.00	900.00	12,500	-0.0000158	- 0.753	+ 0.0000119	+0.0001340
材	9 ~ 10	72.00	900.00	12.500	0	± 0.596	0	0

表-16 部材セン断力 Q による三次タワミ (荷重 ω=100 kg/cm の場合)

 $\Sigma + 39.91084$

故に,支間中央節点のセン断力 Q による三次タワミは

$$\delta_{10(Q)} = \kappa \sum Q Q \frac{\lambda}{\tau} \frac{s}{AG} = \frac{6}{5} \times \frac{39.91084 \times 2}{810,000} = 0.0001183 \text{ cm}$$

総合厳密タワミは

 $\delta_{10} = \delta_{10(S)} + \delta_{10(M)} + \delta_{10(Q)} = 6.0325 + 0.01429 + 0.0001183 = 6.0469083 \text{ cm} \div 6.047 \text{ cm}$

ii. 各節点の厳密変位計算

(7) 式より誘導した普通の節点変位方程式を電子計算機にかけて迅速に解き, 支間中央節 点 10 における変位と先に掲載した同点の厳密変位との比, すなわち節点変位補正係数 $\partial_{\text{exact}}/$ $\partial_{\text{ordinary}} = 6.0469/6.9899 = 0.865 を求め, これを各節点変位にかけて各節点の厳密変位を表-17$ の通り決定した。

	$M_{10} = 1000 \rightarrow 1000$		2007 A la 1	26 52 21 10		able other in 1 lott	in the second
エロ胆	廠密計算(こよる値	发位	一普迪計算	による値	_ 厳密計算	による値
直変位	水平変位	垂直変位	節点	水平変位	垂直変位	水平变位	垂直変位
+0.2153	+2.2192	+0.1862	10	+1.2753	+6.9899	+1.1036	+6.0470
0	0	0	11	+0.8919	+6.3570	+0.7722	+5.4907
+2.7417	+2.2192	+2.3100	12	+1.6563	+0.4657	+1.4331	+5.5874
+2.8965	+0.1451	+2.5035	13	+0.5086	+4.9594	+0.4396	+4.2813
+4.9554	+2.3704	+4.2813	14	+2.0208	+5.0189	+1.7476	+4.3417
+5.0189	+0.4584	+4.3417	15	+0.1818	+2.7417	+0.1572	+2.3100
+6.3570	+1.4331	+5.4907	16	+2.3829	+2.8965	+2.0602	+2.5035
+6.4657	+0.7740	+5.5874	17	-0.01608	+0.2153	-0.01391	+0.1862
+6.8840	+1.1036	+5.9140	18	+2.5507	0	+2.2072	0
	直変位 -0.2153 0 -2.7417 -2.8965 -4.9554 -5.0189 -6.3570 +6.4657 +6.8840	直変位 水平変位 -0.2153 +2.2192 0 0 -2.7417 +2.2192 -2.8965 +0.1451 -4.9554 +2.3704 -5.0189 +0.4584 -6.3570 +1.4331 +6.4657 +0.7740 +6.8840 +1.1036	直変位 水平変位 垂直変位 -0.2153 +2.2192 +0.1862 0 0 0 -2.7417 +2.2192 +2.3100 -2.8965 +0.1451 +2.5035 -4.9554 +2.3704 +4.2813 -5.0189 +0.4584 +4.3417 -6.3570 +1.4331 +5.4907 +6.4657 +0.7740 +5.5874 +6.8840 +1.1036 +5.9140	$i\bar{n}x\bar{x}\bar{x}$ $\bar{x}\bar{x}\bar{x}\bar{x}\bar{x}\bar{x}$ $\bar{x}\bar{n}\bar{x}\bar{x}$ -0.2153 $+2.2192$ $+0.1862$ 10 0 0 0 11 -2.7417 $+2.2192$ $+2.3100$ 12 -2.8965 $+0.1451$ $+2.5035$ 13 -4.9554 $+2.3704$ $+4.2813$ 14 -5.0189 $+0.4584$ $+4.3417$ 15 -6.3570 $+1.4331$ $+5.4907$ 16 -6.4657 $+0.7740$ $+5.5874$ 17 $+6.8840$ $+1.1036$ $+5.9140$ 18	$i\bar{n}x\bar{x}\bar{x}\bar{x}\bar{x}\bar{x}\bar{x}\bar{x}\bar{x}\bar{x}$	$i\bar{n}\bar{g}$ \bar{k} \bar{Y} \bar{g} \bar{g} \bar{k} \bar{k} \bar{k} \bar{k} \bar{g} \bar{k} \bar{k} \bar{g} \bar{g} \bar{k} \bar{g} <	$i\bar{a}\bar{g}$ \bar{k} \bar{Y} $\bar{g}\bar{g}$ \bar{k} $$

表-17 各節点の厳密変位計算値 (cm) (荷重 w=100 kg/cm 満載)

(注)(+),(-)の記号は左支点を原点とし, xは右側を(+), yは下側を(+)とする。

iii. 部材応力度の厳密計算

表-17 に示した各節点の厳密変位を用い, 撓角分配法⁸⁾の併用により(8)~(13) 式によって 部材応力度を厳密に求めれば,表-18 が得られる。

	応力度	普通計算による部材	応力度 σ (kg/cm ²)	厳密計算による部材	応力度 σ (kg/cm ²)
部材		一次応力度	最大合成応力度	一次応力度	最大合成応力度
Ŀ	1~3	- 444.30	- 525.65	-326.12	- 392.02
7+	3~5	- 977.40	-1,072.65	-717.41	-794.61
5%	5 ~ 7	-1,038.50	$-1,\!116.59$	-762.26	-825.51
材	7~9	-1,039.10	-1,154.79	-762.70	-856.40
下	2~4	+ 454.70	+ 633.30	+333.74	+478.34
74:	$4 \sim 6$	+ 981.10	+1,069.89	+720.13	+792.03
5%	6 ~ 8	+ 987.50	+1,107.94	+724.83	+822.33
材	8~10	+1,032.40	+1,160.46	+757.78	+861.53

表-18 部材応力度の厳密計算値 (荷重 w=100 kg/cm 満載)

	应 力 庭	普通計算による部材	「応力度 σ (kg/cm ²)	厳密計算による部材	「応力度 σ (kg/cm ²)
部	₩ ₩	一次応力度	最大合成応力度	一次応力度	最大合成応力度
	1~4	+ 824.60	+ 861.54	+605.26	+635.17
Att	2~3	- 901.20	- 980.32	-661.48	-725.56
水注	3~6	+ 890.20	+ 968.14	+653.41	+716.54
	$4 \sim 5$	- 426.90	- 549.02	-313.34	-412.24
	5~8	+ 693.90	+ 765.66	+509.32	+567.42
	6 ~ 7	- 818.00	- 896.11	-600.41	-663.66
材	$7 \sim 10$	+ 405.50	+ 442.13	+297.64	+327.30
	8 ~ 9	-1,208.30	-1,270.32		-937.12
垂	1~2	- 502.40	- 677.34	- 368.76	-510.36
	3~4	+ 365.20	+ 469.74	+268.06	+352.66
庖	$5 \sim 6$	+ 154.80	+ 247.22	+113.62	+188.42
	7~8	+ 255.40	+ 317.89	+187.46	+238.06
材	9~10	+ 247.10	+ 247.10	+181.37	+181.37

(注) (+)の記号は引張応力度, (-)の記号は圧縮応力度を示す。

C. 三径間連続半溶接ワーレン・トラス橋の厳密計算 (死荷重,活荷重の合計 w = 97.9 kg/cm)

図-6 に示す三径間連続半溶接ワーレン・トラス橋の各部材の断面積, 断面二次モーメントなどをあげれば, 表-19 の通りである。

上弦	材 (l=13	3.00 m) 👘	下弦	材 (l=13	3.00 m)		斜	材	(l=1)	.3.21 m)	
部材	断面積	断面二次 モーメント	部材	断面積	断面二次 モ-メント	部材	断面積	断面二次 モーメント	部材	断面積	断面二次
	$ A(\text{cm}^2) $	$I (cm^4)$		$ A(\mathrm{cm}^2) $	$I (cm^4)$		$A(\text{cm}^2)$	$I (cm^4)$		$ A(\mathrm{cm}^2) $	$I (cm^4)$
1~ 3	394.6	174,585	0~ 2	312.7	141,201	0~1	410.2	208,176	9 ~ 10	376.2	120,082
3~ 5	552.2	258,105	2~ 4	366.7	180,795	1~2	304.4	169,531	10~11	376.2	120,082
5~ 7	552.2	258,105	4~ 6	416.2	216,240	2~3	291.2	87,673	11~12	479.8	274,564
7~ 9	458.8	202,871	6~ 8	401.4	207,127	3~4	223.6	78,582	12 ~ 13	440.8	214,808
$9 \sim 11$	321.2	124,208	8~10	302.5	139,012	4~5	212.0	38,254	13~14	331.0	125,281
$11 \sim 13$	458.8	202,871	10~12	302.5	139,012	5~6	212.0	38,254	14~15	321.8	102,125
$13 \sim 15$	321.2	124,208	12 ~ 14	347.2	163,795	6~7	233.6	70,428	15 ~ 16	223.6	78,582
$15\sim 17$	376.0	225,220	14 ~ 16	302.5	139,012	7~8	291,2	87,673	16~17	224.0	39,154
$17 \sim 19$	342.4	193,376	16 ~ 18	312.7	141,201	8~9	304.4	169,531	17~18	200.0	42,269

表--19 各部材の断面積,断面二次モーメント

いま,死荷重,活荷重の合計 w=97.9 kg/cmが 満載せる場合について,著者提案による方法 により厳密計算を試みた。すなわち,先ず中央径間の下弦材中央節点 18 について (3), (4) 式によ り厳密タワミを計算し, (7) 式より誘導した 69 元の節点変位方程式を電子計算機にかけて迅速 に求めた各節点の変位に、中央節点18のタワミ比(節点変位補正係数) $\delta_{\text{exact}}/\delta_{\text{ordinary}}=5.352/6.080=0.881 をかけ厳密節点変位を決定した。その結果のみあげれば次の通りである。$

i. 各節点の厳密変位計算値

	普通言	† 算 頎	厳 密言	†算値		普 通言	十算 値	厳 密 言	・算 値
節点	水平変位	垂直変位	水平変位	垂直変位	節点	水平変位	垂直変位	水平変位	垂直変位
0	0	0	0	0	19	+0.286	+4.180	+0.252	+3.685
1	+2.810	+1.520	+2.477	+1.338	20	+0.048	+3.420	+0.042	+3.011
2	+0.333	. +2.280	+0.294	+2.008	21	-9.429	+2.660	8.311	+2.341
3	+3.572	+4.559	+3.149	+4.031	22	+0.095	+0.758	+0.084	+0.668
4	+0.476	+4.940	+0.425	+4.349	23	-0.714	+0.375	-0.629	+0.331
5	+0.486	+5.319	+0.428	+4.683	24	-0.476	0	-0.420	0
6	+0.333	+6.840	+0.294	+6.022	25	+0.762	+1.900	+0.671	+1.637
7	+1.714	+6.459	+1.511	+5.686	26	+2.476	+3.420	+2.183	+3.011
8	+0.571	+5.320	+0.503	+4.635	27	+0.286	+4.180	+0.252	+3.681
9	+0.952	+4.180	+0.840	+3.681	28	+1.571	+5.320	+1.373	+4.635
10	+4.095	+3.420	+3.610	+3.011	29	-0.286	+6.459	-0.252	+5.686
11	+0.619	+1.900	+0.546	+1.673	30	+1.429	+6.840	+1.259	+6.022
12	+2.333	0	+2.057	0	31	+2.143	+5.319	+1.889	+4.683
13	+0.714	+0.375	+0.627	+0.331	32	-3.283	+4.940	-2.854	+4.349
14	+3.952	+0.758	+3.483	+0.668	33	-0.619	+4.559	0,545	+4.031
15	+0.714	+2.660	+0.627	+2.341	34	+1.619	+2.280	+1.369	+2.008
16	+0.667	+3.420	+ 0.588	+3.011	35	+7.762	+1.520	+6.843	+1.338
17	+0.429	+4.180	+0.379	+3.685	36	+1.429	0	+1.259	0
18	+1.286	+6.080	+1.134	+5.352					
	1	1	1	1	11	1		1	

表-20 各節点変位の厳密計算値 (cm) (w=97.9 kg/cm 満載)

(注) 左支点0を原点とし, x は右側, y は下側を(+)とする。

ii. 各部材応力度の厳密計算値

表-20 で示した厳密節点変位を用い, 撓角分配法⁸⁾の併用により(8)~(13)式によって各部 材応力度を厳密に計算すれば表-21の通りになる。

5. 結 言

A. 模型トラスの厳密計算結果についての考察

i. 各模型トラスの節点変位

各模型ともその厳密節点変位は普通に計算した節点変位に対し、かなりの差異を示してい

	上	の応力度	σ (kg/cm ³)		弦材 (の応力度	σ (kg/cm ²))
	普通言	十算值	厳密言	†算値		普通常	†算値	厳密言	十算 値
部 材	一次	最大合成 応力度	一次応力度	最大合成 応 力 度	部材	一 次 応力度	最大合成 応 力 度	一 次 応力度	最大合成 応 力 度
1~ 3	- 886.9	-1,438.2	-779.5	-1,294.3	0~ 2	+ 848.6	+1,277.0	+ 745.5	+1,145.7
3~ 5	- 960.3	-1.218.8	-894.0	-1,135.7	2~ 4	+1,157.0	+1,591.8	+1,016.0	$+1,\!422.2$
5~ 7	- 984.7	-1,243.9	-865.0	-1,107.1	4~ 6	+1,216.5	+1,441.1	+1,069.2	+1,278.9
7~ 9	- 887.6	- 992.3	-779.5	- 878.3	6~ 8	+1,113.2	+1,363.0	+ 978.0	+1,211.2
9 ~ 11	+ 590.3	+1,171.9	+518.4	+1,061.4	8~10	+1,042.3	+1,756.7	+ 916.5	$+1,\!584.6$
$11 \sim 13$	+1,026.8	+1,510.6	+902.3	+1,354.3	10~12	- 993.7	-1,222.8	- 873.4	-1,087.5
$13 \sim 15$	+ 655.0	+ 704.3	+575.5	+ 621.6	12 ~ 14	- 914.3	-1,526.8	- 803.9	$-1,\!376.4$
$15 \sim 17$	- 878.3	-1,312.2	-772.0	-1,177.2	$14 \sim 16$	+ 560.2	+1,116.2	+ 492.2	+1,012.0
$17 \sim 19$	— 9 Э2.6	-1,121.0	-872.0	- 991.9	16 ~ 18	+1,010.2	+1,053.4	+ 888.2	+ 928.6
A THE R. P. LEWIS CO., LANSING MICH.	tend in the second size and the second size of the second size and the second size of the		* 177°247. For an end of the set		10			pper provide and the second seco	
		斜	材の	応力	〕 度	σ (.	kg/cm ²)		
	普通言	斜 計算 値	<u>材</u> の 厳密計	<u>応</u> す 1 算 値	〕 度	<u>σ</u> (1 普通言	kg/cm²) † 算 値	厳密言	上算 値
部 材	普通言 一次 応力度	斜 計算値 最大合成 応力度	材 の 厳密計 一 次 応力度	応 方 算 値 最大合成 応 力 度	<u>度</u> 部 材	σ () 普通青 一 一 次 応 力	kg/cm ²) † 算 値 最大合成 応 力 度	厳密計 一次 応力度	▶ 算 値 最大合成 応 力 度
部 材 0~1	普通言 一次 応力度 - 879.0	斜 計算値 最大合成 応力度 -1,292.0	材 の 厳密計 一 次 応力度 - 772.5	<u>応</u> 力	<u>度</u> 部材 9~10	σ (! 普通青 一次 応力度 - - 881.9	kg/cm ²) † 算 値 最大合成 応 力 度 -1,263.1	<u>厳密</u> 計 一次 応力度 - 774.5	+ 算 値 最大合成 応 力 度 1,130.7
部 材 0~1 1~2	普通言 一次 応力度 - 879.0 +1,275.1	斜 + 算 値 最大合成 応 力 度 -1,292.0 +1,467.9	材の 酸密計 一次 応力度 - 772.5 +1,121.0	応 方 算 値 最 大 合成 応 力 度 -1,158.5 +1,301.2) 度 部 材 9~10 10~11	σ () 普通言 一次 応力度 - - 881.9 +1,266.4	kg/cm ²) + 算 值 最大合成 応 力 度 -1,263.1 +2,033.0	厳密計 一次 応力度 − 774.5 +1,112.5	+ 算 値 最大合成 応 力 度 -1,130.7 +1,828.5
部 材 0~1 1~2 2~3	普通言 一次 応力度 - 879.0 +1,275.1 - 802.9	斜 † 算 値 最大合成 応 力 度 −1,292.0 +1,467.9 −1,297.0	<u>材</u> の 厳密言 一次 応力度 ー772.5 +1,121.0 - 705.4	応 力 算値 最大合成 応力度 -1,158.5 +1,301.2 -1,167.2	<u>度</u> 部材 9~10 10~11 11~12	σ () 普通言 一次 一次 万 一次 7 小方度 1 - 881.9 +1,266.4 - - 921.2	kg/cm ²) + 算 值 最大合成 応 力 度 -1,263.1 +2,033.0 -1,444.7	厳密言 一次 応力度 - 774.5 +1,112.5 - 809.0	算値 最大合成 応力度 -1,130.7 +1,828.5 -1,298.0
部 材 0~1 1~2 2~3 3~4	普通言 一次 応力度 - 879.0 +1,275.1 - 802.9 +1,214.7	斜 算値 最大合成 応力度 -1,292.0 +1,467.9 -1,297.0 +1,424.3	材の 厳密書 一次 応力度 - 772.5 +1,121.0 - 705.4 +1,066.5	応 算値 最大合成 応 力 度 -1,158.5 +1,301.2 -1,167.2 +1,262.3)度 部 材 9~10 10~11 11~12 12~13	σ ((普通書 一次 応力度 - - 881.9 +1,266.4 - - 921.2 - 976.2	kg/cm ²) + 算 値 最大合成 応 力 度 -1,263.1 +2,033.0 -1,444.7 -1,864.4	<u>厳密言</u> 一次 応力度 - 774.5 +1,112.5 - 809.0 - 857.3	 算値 最大合成 応力度 -1,130.7 +1,828.5 -1,298.0 -1,688.3
部 材 0~1 1~2 2~3 3~4 4~5	普通書 一次 応力度 - 879.0 +1,275.1 - 802.9 +1,214.7 - 587.8	斜 算値 最大合成 応力度 -1,292.0 +1,467.9 -1,297.0 +1,424.3 - 853.9	<u>材</u> の 厳密計 一次 応力度 - 772.5 +1,121.0 - 705.4 +1,066.5 - 516.2	応 京 値 最大合成 応 力 度	一度 部材 9~10 10~11 11~12 12~13 13~14	σ () 普通言 次 応力度 - - 881.9 +1,266.4 - - 921.2 - 976.2 +1,236.2 -	kg/cm ²) + 算 値 最大合成 応 力 度 -1,263.1 +2,033.0 -1,444.7 -1,864.4 +1.744.7	<u>厳密計</u> 一次 応力度 - 774.5 +1,112.5 - 809.0 - 857.3 +1,086.0	★ 算 値 最大合成 応 力 度 -1,130.7 +1,828.5 -1,298.0 -1,688.3 +1,561.0
部 材 0~1 1~2 2~3 3~4 4~5 5~6	<u>普通</u> 計 <u>一次</u> <u>応力度</u> - 879.0 +1,275.1 - 802.9 +1,214.7 - 587.8 - 587.8	斜 算値 最大合成 応力度 -1,292.0 +1,467.9 -1,297.0 +1,424.3 - 853.9 - 936.1	村の の 厳密計 次 一772.5 +1,121.0 -705.4 +1,066.5 -516.2 -508.0	応 京 値 最大合成 応 力 度	 度 部 材 9~10 10~11 11~12 12~13 13~14 14~15 	σ ((普通青 次 応力度 - - 881.9 +1,266.4 - - 921.2 - 976.2 +1,236.2 - - 915.8	kg/cm ²) + 算 値 最大合成 応 力 度 -1,263.1 +2,033.0 -1,444.7 -1,864.4 +1.744.7 -1,250.0	<u>厳密計</u> <u>次</u> <u>床力度</u> - 774.5 +1,112.5 - 809.0 - 857.3 +1,086.0 - 804.2	★ 算 値 最大合成 応 力 度 -1,130.7 +1,828.5 -1,298.0 -1,688.3 +1,561.0 -1,116.4
部 材 0~1 1~2 2~3 3~4 4~5 5~6 6~7	普通言	斜 算値 最大合成 応力度 -1,292.0 +1,467.9 -1,297.0 +1,424.3 - 853.9 - 936.1 +2,045.2	村の の 酸密計 次 一,772.5 +1,121.0 - 705.4 +1,066.5 - 516.2 - 508.0 +1,046.0 +1,046.0	 応 力 算値 最大合成 応 力 更 -1,158.5 +1,301.2 -1,167.2 +1,262.3 - 765.0 - 833.5 +1,843.5 	速 部 材 9~10 10~11 11~12 12~13 13~14 14~15 15~16	σ () 普通常 一次 一次 万 一次 7 1 266.4 - 921.2 - 976.2 +1,236.2 - - 915.8 +1,274.8 -	kg/cm ²) + 算 値 最大合成 応 力 度 -1,263.1 +2,033.0 -1,444.7 -1,864.4 +1.744.7 -1,250.0 +1,846.9	厳密計 一次 応力度 - 774.5 +1,112.5 - 809.0 - 857.3 +1,086.0 - 804.2 +1,118.0	★ 算 値 最大合成 応 力 度 -1,130.7 +1,828.5 -1,298.0 -1,688.3 +1,561.0 -1,116.4 +1,652.7
部 材 0~1 1~2 2~3 3~4 4~5 5~6 6~7 7~8	普通言 一次 応力度 - 879.0 +1,275.1 - 802.9 +1,214.7 - 587.8 - 587.8 +1,191.6 - 808.7	 斜 算値 最大合成 応力度 -1,292.0 +1,467.9 -1.297.0 +1,424.3 - 853.9 - 936.1 +2,045.2 -1,183.0 	村の 酸密計 一次 一772.5 +1,121.0 -705.4 +1,066.5 -516.2 -508.0 +1,046.0 -710.5	応 京 値 最大合成 応 力 度	 渡材 9~10 10~11 11~12 12~13 13~14 14~15 15~16 16~17 	σ () 普通青 次 一次 次 二次 7.0 二次 7.0 1.266.4 921.2 - 976.2 +1,236.2 915.8 +1,274.8 - - 723.0	kg/cm ²) + 算 値 最大合成 応 力 度 -1,263.1 +2,033.0 -1,444.7 -1,864.4 +1.744.7 -1,250.0 +1,846.9 -1,714.9	<u>厳密</u> テカ度 - 774.5 +1,112.5 - 809.0 - 857.3 +1,086.0 - 804.2 +1,118.0 - 635.0	★算値 最大合成 応力度 -1,130.7 +1,828.5 -1,298.0 -1,688.3 +1,561.0 -1,116.4 +1,652.7 -1,562.0

表-21 各部材応力度の厳密計算値 (荷重 w=97.9 kg/cm 満載)

(注) (+)の記号は引張応力度, (-)の記号は圧縮応力度を示す。

る。すなわち,溶接トラスやリベットトラスでは厳密計算値の方が普通の計算値に比べ 0.658~ 0.96の比率で小さくなっている。これを見てもわかる通り,変位計算には厳密計算方法を用い た方が遙かに合理的であり,しかも有利になっている。勿論,実験結果をもとにして計算式中 の各種係数を定めているので,厳密計算結果の方が遙かによく実験値に近接しているのも当然 といえよう。ピントラスでは逆に厳密計算値の方が普通の計算値に比べ遙かに大きくなってい る。これはトラスの骨組寸法に対する部材断面積の大さにも関係することが明白であり,普通 の計算値に比べ 1.102~5.165 倍にもなっている。その原因は部材の変形やピン孔の歪,変位な どによるものと思うが,Karl Bung 氏¹¹⁾の行なった実験結果とも同一の傾向を示し,普通の計 算を行なったのでは著しく危険でもあり,厳密計算方法が是非とも必要になって来る。著者提 案の厳密計算方法によれば実験値ともよく接近し好結果が得られるようである。 図-7,図-8, 図-9 は,模型トラスに対して行なった厳密計算結果と普通理論による計算値や実験結果との関

(201)

係を示したグラフである。このグラフを見ればわたるように、溶接トラスのタワミはピントラ スに比べ著しく小さく、節点剛性の影響がはっきりと現われている。

中央節点の荷重一タワミ曲線図

ii. 溶接模型トラスの部材応力度

厳密計算結果は普通計算結果に比べ,かなり(約60~75%)小さくなっているから 経済断面を得るためにも厳密計算方法の方が遙かに有利であり,また実験値とはよく近接しているから,普通の計算方法よりも遙かに合理的であることがわかった。

B. 試案実物トラス橋の厳密計算結果についての考察

i. 半溶接トラス (溶接とリベットの混用) の節点変位

二つの試案トラス橋ともその厳密節点変位は普通に計算した節点変位に対し、0.865と 0.881を示し、厳密計算方法によって計算した方が遙かに有利で合理的なることがわかった。

ii. 半溶接トラス (溶接とリベットの混用) の部材応力度

厳密計算の結果は普通の計算によって求めた値に比べ,約75%~85%程度であり,部材応 力度から見ても,厳密計算方法の方が有利であり,遙かに合理的でもある。

C. 厳密計算方法に対する考察

厳密計算方法は確かに有利であり合理的なることがわかったが、計算解式中に含まれる係 数の正確なる算定が極めて大切である。相似形の模型実験を行なえば確実であるが、模型実験 を行なわずに、推定によって定める場合は類似の基礎模型実験を参照し、幾分安全側に係数を とる方がよいと考える。係数の取り方さえ熟達すれば、本研究による厳密計算方法は充分な精 度を与えるものと確信する。

また,電子計算機を利用して節点変位方程式を解く場合には,方程式の慎重な照査は勿論 のこと,同一問題を数回,同一電子計算機にかけ,3回以上同一結果が得られるまで,しかも 妥当な計算値が求まるまで照査しながら何回でも繰返して計算を遂行すべきである。多元一次 連立方程式の電子計算機による解は簡単なようでも細かい注意が必要なことを付言する。

最後に本研究に御協力頂いた室蘭工業大学の土木工学教室教職員各位と土木工学科の卒業 生諸君に心から御礼を申し上げる次第である。 (昭和41年4月30日受理)

文 献

- 1) 中村作太郎: 室蘭工業大学研究報告, 4-1, 111~125 (1962).
- 2) 中村作太郎·番匠 勲·志村政雄: 室蘭工業大学研究報告, 4-1, 127~144 (1962).
- 9) 中村作太郎·番匠 勲·須田 勲·志村政雄: 室蘭工業大学研究報告, 4-2, 364~384 (1963).
- 4) 日置興一郎: 日本建築学会論文報告集, No. 101, 39~44 (1964).
- 5) 鷲尾健三·東郷 武・脇山広三: カラム, No. 15, 13~17 (1965).
- 6) 中村作太郎·万代良夫: 土木学会第20回年次学術講演会講演概要, I-63, 63 (1965).
- 7) 中村作太郎·潘匠 勲·須田 勲·志村政雄: 土木学会北海道支部技術資料, No. 19, 71~77 (1963).
- 8) 鷹部屋福平: 一般剛節構の実用解法1版, 103~121 (東京, 1937).
- 9) 小田弥之亮: 複斜材の応力 (I), 1 版, 8~23 (東京, 1941).
- 10) 中村作太郎·万代良夫: 土木学会北海道支部技術資料, No. 21, 44~56 (1965).
- 11) 青木楠男: 鎔接鋼橋,1版,118~158 (東京,1935).