

固定層における安息香酸の水抽出(第2報)

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-06-19
	キーワード (Ja):
	キーワード (En):
	作成者:谷口, 允,片山, 隆雄,杉田,治八郎
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3404

固定層における安息香酸の水抽出 第2報

谷口 允·片山隆雄·杉田治八郎

Studies on Aqueous Extraction of Benzoic Acid in Fixed Bed. No. 2

Makoto Taniguchi, Takao Katayama and Jihachiro Sugita

Abstract

The present writers continued, changing the several conditions further, the previous studies of the mechanism of solid-liquid extraction by using benzoic acid-paraffin spheres.

It was known by the investigation of the results that the accumulative fraction of extraction increased as the extraction temperature and the ratio of benzoic acid content in the spheres rose, and that the fraction of extraction was not influenced by the height of 20 cm of the packed bed.

Next, by the results of the 24 hrs extraction the pore factor κ appeared to be able to show No. 1, No. 2, No. 3 for each extraction time.

No. 1 zone (the extraction time, $0 \sim 100$ min.) In this zone the value of κ decreased gradually from ca. 2.5 to 2.3. Judging from this we could guess that the influence of the diffusion resistance in the film would decrease slowly with the recession of solid-liquid interface in the pore of a sphere.

No. 2 zone-Transition zone (the extraction time, $100 \sim 400$ min.) where the data were a little scattering. Contrary to No. 1, the value of κ increased, step by step, from 2.3 to 3.0. By these results we could think that the influence of the diffusion resistance in the pore of a sphere would appear and it extended more and more.

No. 3 zone (The extraction time, 400 later) The value of κ kept on a constant value-3.0. From this it appeared to us that the influence of the diffusion resistance in the pore of a sphere would be steady.

I. 緒 言

前報¹¹において筆者らは,水に対する溶解度の大きいクロム酸ナトリウムの場合^{2),3)}とは 逆に,溶解度の小さい安息香酸に着目して,これと固形パラフィンとの共融球状抽料を用いて, 固定層での上昇流水抽出実験を行ない,球細孔内固液界面の後退をともなう非定常固液抽出近 似解析式を用いて実験結果を解析し検討を試みた。その結果は,安息香酸の水に対する溶解度 が小さいために抽出速度が極めて遅く,数時間にわたって微量の初期抽出が行なわれ,球表面 部の固液抽出機構の一端は解明できたが,球細孔内固液界面がさらに球表面部より後退したと きの機構の解明はできなかった。そこでこの目的を達成するために筆者らはさらにひきつづい て長時間にわたって実験を行ない,結果の解析,検討を試みた。また,抽出温度,安息香酸対 パラフィンの配合比,充填層高を変えて実験を行ない,これらが抽出率にどのように影響する かということも検討できたので,それらの結果もあわせて報告する。

II. 実験装置および方法

試料の作製

前報の場合とほぼ同様な方法で試料を作製するわけであるが,前回¹⁾には手製の球状物を 用いたのに対し,今回は,球成型器が入手できたので,前回に比較して球形度の高い,さらに は粒径の一様性の高い抽料を作製できた。すなわち前回と同様にして得た円柱状の安息香酸-パラフィン固熔物を球成型器で粒径 $D_p=0.64 \text{ cm}$ の充填球を作製した。上述の球成型器は、2 板の銅板間に鋼球をはさんで圧縮,球成型器とした。なおこれを用いて球を作製するに当たっ ては,球の成型器に密着するのを防ぐためにポリエチレン膜を成型器の両面にはった。

この作製した充填球の内部の配合状態をみるために,充填球を切断し,その薄片をメチル レッドで安息香酸の結晶部を発色させて顕微鏡検査を行なった結果,ほぼ一様分布をなしてい ることが確認できた。

さらにこれとは別に,水道水で2ヵ月余り連続抽出をこの試料を用いて行なった結果,重 量変化から得た安息香酸の抽出率は,安息香酸対パラフィンの配合比1:1,2:1にたいし,そ れぞれ約62,95% であることが知られた。

2. 実験装置および方法

実験装置は前報の場合と同一とし、抽出管は充填球粒径の増大を考慮に入れて、前回より 直径の大きい、内径 3.9 cm のものを用いた。

実験方法も前報と同様であるが,抽出液の計量,サンプリングは,抽出開始後30分までは5分毎,1時間までは10分毎,3時間までは30分毎,以後1時間毎に行なった。

3. 実験条件

実験条件とそれに伴う諸数値は,表-K-1に示したとおりで,前回にくらべ,抽出温度,配合比,充填層高,抽出時間をやや大幅に変化させ,平均流量は約100ml/minの一定とした。

安息香酸の水に対する拡散係数は実測値が得られぬため、**C. R. Wilke の方法**⁴⁾による推 算値を用いた。つまりこの拡散係数の実測値としては 1~2 程度より文献にみられず、その一 つとして A. W. Hixson, S. J. Baum⁵⁾の実測したものがあり、 $D=1.11\times10^{-5}$ cm²/sec @ 25± 0.5°C, 他に R. L. Steinberger, R. E. Treybal⁶⁾の、 $D=(9.084\pm0.028)\times10^{-6}$ cm²/sec @ 25± 0.005°C がみいだされる。しかしこれらのものにも温度や濃度の変化するときの値はみいだせ ない。安息香酸は水に対して溶解度の変化が小さいから、濃度変化による影響は無視できる が、温度による影響の補正を必要とする。Stokes-Einstein の式または Eyring らの絶対反応速 度論に従って導いた C. R. Wilke の方法によれば

		the second s	and the second se				and the second se		
実験番号	配合比 B.A:P.	抽出温度	層高	抽出時間	平 均 空間率	Re	Sc	拡散係数 ×10 ⁵ fcm ² /sec]	飽和濃度 ×10 ³ [g/cm ³]
		[°C]	[cm]	hr	<u>t-</u>]			,,,_o [om /seo]	[10] [8/0111]
K- 1	1:1	29.7	10.0	6	0.497	9.86	791	1.023	4.15
K- 2	1:1	41.4	10.0	6	0.507	12.57	481	1.340	6.32
K- 3	2:1	29.7	10.0	6	0.490	9.60	791	1.023	4.15
K- 4	2:1	39.9	10.0	6	0.459	12.23	511	1.297	5.98
K- 5	2:1	50.8	10.0	6	0.440	14.75	340	1.621	8.76
K- 6	2:1	23.0	10.0	6	0.480	8.74	1088	0.862	3.25
K- 7	1:2	23.9	10.0	6	0.453	8.66	1040	0.883	3.37
K- 8	1:2	31.2	10.0	6	0.463	10.15	739	1.061	4.39
K- 9	1:2	40.3	10.0	6	0.452	12.17	502	1.309	6.06
K-10	1:1	49.6	10.0	24	0.489	14.38	352	1.589	8.38
K-11	1:1	24.4	10.0	6	0.462	8.94	1016	0.894	3.43
K-12	2:1	48.4	4.3	6	0.493	14.32	368	1.551	8.04
K-13	2:1	48.0	19.3	6	0.462	14.35	373	1.539	7.93
K-14	1:1	49.0	4.2	6	0.505	14.33	367	1.570	8.20
K-15	1:1	48.9	10.0	6	0.448	13.96	361	1.567	8.17
	1	F		1		1	1		1

表-K-1 実験条件および諸数値

 $F = T/(D \mu)$

但し, F: 拡散因子 [°K sec/cm²·c.p.], T: 絶対温度 [°K], D: 拡散係数 [cm²/sec], μ: 粘 度 [c.p.]。

ここで *T*/(*D*μ) は濃度に無関係に一定である。そこで拡散係数の実測値がある場合には *F* が得られ、必要とする温度の拡散係数値が求められる。 誤差は溶媒が水の場合には平均して ±6% であるとの報告⁷⁾ がある。

ここでは、R. L. Steinberger らの実測値を用いて計算を進めた。 25° C では $F=3.67\times10^{7}$ °Ksec/(cm²·c.p.) を得る。これより t° C における拡散係数は次式で求められる。

$$D = \frac{t + 273}{(3.67 \times 10^7)\,\mu}$$

なお水に対する安息香酸の温度別溶解度は Encycropedia of Chemical Technology⁸⁾によった。

4. 積算抽出率の算出

前報と同様な方法で、1/100 N-NaOH を用いて抽出液を滴定し、その消費量を図示して、 図積分から微少時間における平均濃度を求め、積算法を用いて各抽出時間についての積算抽出 率を求めた。各実験番号における、各抽出時間についての濃度および積算抽出率の数値は、表-K-2に示した。

谷口 允・片山隆雄・杉田治八郎

実験番号	θ	С	Ę	τ	ψ	$1+\delta'-\delta$	計算值 E	実測値 E
Para and a second a	[min]	×104 [g/cm ³]	$\times 10^{3} [-]$	[-]	[-]	[-]	$\times 10^{2} [-]$	$\times 10^{2} [-]$
K-1	$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 60$	5.26 3.64 2.37 1.73 1.40 0.98	2.482	$2.84 \\ 2.01 \\ 1.42 \\ 1.16 \\ 1.01 \\ 0.82$	$\begin{array}{c} 0.983 \\ 0.975 \\ 0.963 \\ 0.948 \\ 0.936 \\ 0.911 \end{array}$	$15.79 \\ 7.88 \\ 3.89 \\ 2.57 \\ 1.89 \\ 1.23$	$5.12 \\ 7.30 \\ 10.67 \\ 14.77 \\ 17.96 \\ 24.35$	$\begin{array}{c} 0.38 \\ 0.98 \\ 1.78 \\ 2.34 \\ 2.76 \\ 3.39 \end{array}$
	90 120 150 180 240 300 360	$\begin{array}{c} 0.62 \\ 0.49 \\ 0.42 \\ 0.38 \\ 0.34 \\ 0.33 \\ 0.30 \end{array}$		$\begin{array}{c} 0.67 \\ 0.58 \\ 0.52 \\ 0.47 \\ 0.41 \\ 0.37 \\ 0.34 \end{array}$	$\begin{array}{c} 0.866 \\ 0.830 \\ 0.808 \\ 0.791 \\ 0.773 \\ 0.768 \\ 0.747 \end{array}$	$\begin{array}{c} 0.80 \\ 0.56 \\ 0.44 \\ 0.36 \\ 0.26 \\ 0.19 \\ 0.18 \end{array}$	$\begin{array}{r} 34.99\\ 42.76\\ 47.19\\ 50.45\\ 53.75\\ 54.65\\ 58.24\end{array}$	$\begin{array}{c} 4.03 \\ 4.48 \\ 4.84 \\ 5.16 \\ 5.74 \\ 6.30 \\ 6.80 \end{array}$
K-2	$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 60$	8.06 5.99 3.28 2.40 1.93 1.44	3.023	$2.52 \\ 1.78 \\ 1.26 \\ 1.03 \\ 0.89 \\ 0.73$	$\begin{array}{c} 0.981 \\ 0.972 \\ 0.951 \\ 0.932 \\ 0.916 \\ 0.890 \end{array}$	$12.45 \\ 6.17 \\ 3.04 \\ 1.98 \\ 1.45 \\ 0.95$	5.73 8.14 14.09 18.99 23.09 29.55	$\begin{array}{c} 0.45 \\ 1.46 \\ 2.70 \\ 3.50 \\ 4.12 \\ 5.07 \end{array}$
	$90 \\ 120 \\ 150 \\ 180 \\ 240 \\ 300 \\ 360$	$1.08 \\ 0.90 \\ 0.80 \\ 0.73 \\ 0.65 \\ 0.58 \\ 0.52$	×	$\begin{array}{c} 0.60 \\ 0.52 \\ 0.46 \\ 0.42 \\ 0.36 \\ 0.33 \\ 0.30 \end{array}$	0.857 0.828 0.811 0.798 0.775 0.738 0.734	$\begin{array}{c} 0.62 \\ 0.44 \\ 0.35 \\ 0.28 \\ 0.20 \\ 0.15 \\ 0.13 \end{array}$	$\begin{array}{c} 37.03 \\ 43.14 \\ 46.57 \\ 49.09 \\ 53.06 \\ 59.73 \\ 60.36 \end{array}$	$\begin{array}{c} 6.13 \\ 6.97 \\ 7.69 \\ 8.35 \\ 9.52 \\ 10.57 \\ 11.49 \end{array}$
K-4	$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 60$	$12.89 \\ 10.04 \\ 6.36 \\ 4.74 \\ 4.07 \\ 3.35$	5.048	$2.57 \\ 1.81 \\ 1.28 \\ 1.05 \\ 0.91 \\ 0.74$	$\begin{array}{c} 0.981 \\ 0.975 \\ 0.960 \\ 0.945 \\ 0.936 \\ 0.922 \end{array}$	$11.80 \\ 6.43 \\ 3.17 \\ 2.08 \\ 1.54 \\ 1.02$	$5.62 \\ 7.44 \\ 11.50 \\ 14.98 \\ 17.96 \\ 21.57$	$\begin{array}{c} 0.72 \\ 1.79 \\ 3.27 \\ 4.29 \\ 5.10 \\ 6.47 \end{array}$
	$90 \\ 120 \\ 150 \\ 180 \\ 240 \\ 300 \\ 360$	$2.74 \\ 2.36 \\ 2.12 \\ 1.99 \\ 1.67 \\ 1.44 \\ 1.27$		$\begin{array}{c} 0.61 \\ 0.52 \\ 0.47 \\ 0.43 \\ 0.37 \\ 0.33 \\ 0.30 \end{array}$	0.905 0.892 0.880 0.872 0.853 0.828 0.810	$\begin{array}{c} 0.68 \\ 0.49 \\ 0.38 \\ 0.33 \\ 0.24 \\ 0.19 \\ 0.16 \end{array}$	$\begin{array}{c} 25.81 \\ 29.09 \\ 31.70 \\ 33.61 \\ 37.84 \\ 43.12 \\ 46.73 \end{array}$	8.15 9.57 10.82 11.97 14.01 15.75 17.26
K-9	$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 60$	$\begin{array}{c} 4.18\\ 2.67\\ 1.57\\ 1.23\\ 1.07\\ 0.83\end{array}$	2.252	$2.56 \\ 1.81 \\ 1.28 \\ 1.04 \\ 0.90 \\ 0.74$	$\begin{array}{c} 0.973 \\ 0.958 \\ 0.929 \\ 0.909 \\ 0.895 \\ 0.867 \end{array}$	$12.65 \\ 6.25 \\ 3.03 \\ 1.98 \\ 1.45 \\ 0.96$	$7.86 \\12.05 \\19.78 \\24.74 \\28.25 \\34.75$	$\begin{array}{c} 0.49 \\ 1.20 \\ 2.05 \\ 2.62 \\ 3.10 \\ 3.88 \end{array}$
	90 120 150 180 240 300 360	$\begin{array}{c} 0.63 \\ 0.51 \\ 0.44 \\ 0.38 \\ 0.28 \\ 0.22 \\ 0.18 \end{array}$		$\begin{array}{c} 0.60 \\ 0.52 \\ 0.47 \\ 0.43 \\ 0.37 \\ 0.33 \\ 0.30 \end{array}$	$\begin{array}{c} 0.828 \\ 0.796 \\ 0.770 \\ 0.741 \\ 0.677 \\ 0.626 \\ 0.575 \end{array}$	$\begin{array}{c} 0.60 \\ 0.44 \\ 0.33 \\ 0.27 \\ 0.18 \\ 0.15 \\ 0.12 \end{array}$	$\begin{array}{c} 43.15\\ 49.46\\ 54.26\\ 59.21\\ 68.88\\ 75.34\\ 80.87\end{array}$	$\begin{array}{c} 4.77 \\ 5.46 \\ 6.04 \\ 6.56 \\ 7.39 \\ 8.01 \\ 8.52 \end{array}$

表-K-2 近似解析式による抽出率計算諸数値

	θ	C	ع	<i>τ</i>	d	$1+\delta'-\delta$	計算值 E	測完值 E
実験番号	[min]	×104 [g/cm ³]	×10 ⁴ [-]	[]	<pre></pre>	[-]	×10 ² [-]	$\times 10^{2} [-]$
K-10	5 10 20 30 40 60 90	10.11 7.94 4.76 3.51 2.90 2.24 1.70	3.888	2.32 1.64 1.16 0.95 0.82 0.67 0.55	0.974 0.965 0.942 0.922 0.906 0.881 0.844	10.45 5.65 2.55 1.65 1.22 0.81 0.51	7.71 10.03 16.47 21.56 25.68 31.63 39.77	0.75 2.00 3.70 4.80 5.67 7.09 8.85
	$120 \\ 150 \\ 180 \\ 240 \\ 300 \\ 360 \\ 420$	$ \begin{array}{r} 1.40 \\ 1.22 \\ 1.10 \\ 0.87 \\ 0.67 \\ 0.53 \\ 0.51 \\ \end{array} $		$\begin{array}{c} 0.47 \\ 0.42 \\ 0.39 \\ 0.33 \\ 0.30 \\ 0.27 \\ 0.25 \end{array}$	$\begin{array}{c} 0.815\\ 0.796\\ 0.775\\ 0.731\\ 0.678\\ 0.626\\ 0.615\end{array}$	$\begin{array}{c} 0.36 \\ 0.29 \\ 0.23 \\ 0.16 \\ 0.12 \\ 0.10 \\ 0.08 \end{array}$	$\begin{array}{r} 45.76 \\ 49.43 \\ 53.33 \\ 60.82 \\ 68.70 \\ 75.32 \\ 76.59 \end{array}$	$10.16 \\ 11.23 \\ 12.15 \\ 13.68 \\ 14.90 \\ 15.92 \\ 16.76$
	$540 \\ 660 \\ 780 \\ 900 \\ 1020 \\ 1140 \\ 1260 \\ 1440$	$\begin{array}{c} 0.49 \\ 0.45 \\ 0.43 \\ 0.39 \\ 0.38 \\ 0.36 \\ 0.35 \\ 0.34 \end{array}$		$\begin{array}{c} 0.22 \\ 0.20 \\ 0.19 \\ 0.17 \\ 0.16 \\ 0.15 \\ 0.15 \\ 0.14 \end{array}$	$\begin{array}{c} 0.606\\ 0.585\\ 0.570\\ 0.544\\ 0.536\\ 0.524\\ 0.517\\ 0.512\end{array}$	$\begin{array}{c} 0.07 \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.02 \end{array}$	77.55 79.73 81.27 83.73 84.39 85.43 86.02 86.44	$18.38 \\ 19.92 \\ 21.35 \\ 22.70 \\ 23.96 \\ 25.36 \\ 26.36 \\ 28.03$
K-11	$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 60$	$\begin{array}{r} 4.36 \\ 3.01 \\ 1.79 \\ 1.29 \\ 1.04 \\ 0.77 \end{array}$	2.386	$\begin{array}{c} 3.14 \\ 2.22 \\ 1.57 \\ 1.28 \\ 1.11 \\ 0.91 \end{array}$	$\begin{array}{c} 0.984 \\ 0.977 \\ 0.961 \\ 0.946 \\ 0.933 \\ 0.911 \end{array}$	$19.33 \\ 9.63 \\ 4.77 \\ 3.11 \\ 2.32 \\ 1.49$	$\begin{array}{r} 4.86\\ 6.88\\ 11.31\\ 15.46\\ 18.75\\ 24.36\end{array}$	$\begin{array}{r} 0.32 \\ 0.82 \\ 1.45 \\ 1.85 \\ 2.16 \\ 2.65 \end{array}$
	90 120 150 180 240 300 360	$\begin{array}{c} 0.55 \\ 0.43 \\ 0.37 \\ 0.33 \\ 0.29 \\ 0.26 \\ 0.21 \end{array}$		$\begin{array}{c} 0.74 \\ 0.64 \\ 0.57 \\ 0.52 \\ 0.45 \\ 0.41 \\ 0.37 \end{array}$	$\begin{array}{c} 0.878 \\ 0.849 \\ 0.822 \\ 0.806 \\ 0.787 \\ 0.765 \\ 0.726 \end{array}$	$\begin{array}{c} 0.97 \\ 0.69 \\ 0.54 \\ 0.47 \\ 0.33 \\ 0.26 \\ 0.19 \end{array}$	$\begin{array}{c} 32.28\\ 38.76\\ 44.41\\ 47.57\\ 51.20\\ 55.17\\ 61.69\end{array}$	$\begin{array}{r} 3.18\\ 3.57\\ 3.89\\4.17\\ 4.67\\ 5.11\\ 5.51\end{array}$

III. 実験結果の解析および考察

1. 近似解析式による積算抽出率の算出

前報と同様に、杉田の提出した、固定層における非定常固液抽出近似解析式を用いて、各 実験番号の各抽出時間について算出した積算抽出率の値は、計算値 E として、II-4 の結果とと もに 表-K-2 に示した。この表には解析したもののみを掲げ、また計算に利用した ϕ をパラメ ーターとする無次元関係式の値を r についてプロットした図、および表に用いた記号の定義は 共に前報と同様とした。

ここで各実験番号,各抽出時間についても同様であるが,表-K-2に示されているように, 例えば実験番号 K-10 の 24 時間抽出の場合の,抽出時間 60 分のものについて抽出率の考察を してみると,実測値約 7.1% に対し近似式による計算値は約 31.6% と大幅に差がみられるのは 前報と同様である。したがってこのことはやはり,近似解析式の誘導に当たって想定した球モ

デルと実際球との細孔形状などの違いや、これらに起因する各種拡散抵抗の影響によるものと 思われる。

2. 温度の抽出率への影響

安息香酸対パラフィンの配合比が、2:1,1:2,1:1のものについて、抽出温度をパラメー ターとして各抽出時間について実測から求めた積算抽出率の値は 図-K-1,-2,-3 にそれぞれ 示した。

図から明らかなように,充填球中の安息香酸の配合割合によらず,どの抽出時間について も積算抽出率は温度の高いほど大きな値を示した。このことは,安息香酸の水に対する溶解度 と温度との相関関係とほぼ対応している。

3. 配合比の抽出率への影響

安息香酸対パラフィンの配合比,2:1,1:1,1:2のそれぞれについて各抽出時間に対し積 算抽出率をプロットし,図-K-4に示した。これは抽出温度40°Cのときのものである。図から 明らかなように,抽出率は各抽出時間について安息香酸の配合比の小さいものほど低い値をし めしているが,これについては後で述べる細孔内拡散抵抗の影響が現われているのではないか と思われる。

図-K-1 配合比2:1のときの抽出率への 温度による影響

図-K-2 配合比1:2のときの抽出率への 温度による影響

図−K-3 配合比1:1のときの抽出率への 温度による影響

図-K-4 配合比の抽出率への影響

4. 充填層高の抽出率への影響

J. E. Williamson 6^{99} は、ガス系の場合に おいて層高の影響を論じているが、本実験で は 10, 20 cm 層高の抽出率への影響はどのよ うなものであるかを、 抽出温度 50° C とした ときの配合比 2:1, 1:1 のものについて検討 した。その結果は、図-K-5、-6 に示した。こ

れによると、充填層高約 10, 20 cm のものについては、各抽出時間に対し、実測の積算抽出率 に与える影響はほとんどみられず、抽出時間約 150 分以後の比較的抽出後期に若干データーに 差が生じてくる程度である。

5. r 補正による解析と考察

すでに述べたように、実測から求めた積算抽出率と、近似解析式から求めた計算による積 算抽出率との差は著しくかけ離れているため補正計算を前報と同様に行なった。

すなわち前述の各種拡散抵抗を一括した細孔係数 κ を用いて拡散係数 D を, D/κ^2 として 補正(前報では充填球半径 R を κ 補正して κR として計算を進めたが,これは D/κ^2 補正と一致 する)し、やはり同様に各種パラメーターに添字 c を付して計算を行ない、その結果を **表-K-3** に示した。ここで $\kappa=1$ の場合のものは補正しないときのものを示し、この表-K-3 は、長時間 の 24 時間抽出の実験番号 K-10 についてのものである。

図-K-6 配合比1:1のときの層高の 抽出率への影響

図-K-5 配合比2:1のときの層高の 抽出率への影響

θ	κ	ξc	$ au_c$	ψ_c	$1 + \delta_c' - \delta_c$	計算值 Ec
[min]	[-]	$\times 10^{3} [-]$	[-]	[-]	[-]	$\times 10^{2} [-]$
5 10 20 30 40 60 90	1	3.89	2.32 1.64 1.16 0.95 0.82 0.67 0.55	0.974 0.965 0.942 0.922 0.906 0.881 0.844	10.45 5.65 2.55 1.65 1.22 0.81 0.51	7.71 10.03 16.47 21.56 25.68 31.63 39.77
$120 \\ 150 \\ 180 \\ 240 \\ 300 \\ 360 \\ 420$			$\begin{array}{c} 0.47 \\ 0.42 \\ 0.39 \\ 0.33 \\ 0.30 \\ 0.27 \\ 0.25 \end{array}$	$\begin{array}{c} 0.815\\ 0.796\\ 0.775\\ 0.731\\ 0.678\\ 0.626\\ 0.615\end{array}$	$\begin{array}{c} 0.36 \\ 0.29 \\ 0.23 \\ 0.16 \\ 0.12 \\ 0.10 \\ 0.08 \end{array}$	$\begin{array}{c} 45.76 \\ 49.43 \\ 53.33 \\ 60.82 \\ 68.70 \\ 75.32 \\ 76.59 \end{array}$
$540 \\ 660 \\ 780 \\ 900 \\ 1020 \\ 1140 \\ 1260 \\ 1440$	<i></i>		$\begin{array}{c} 0.22 \\ 0.20 \\ 0.19 \\ 0.17 \\ 0.16 \\ 0.15 \\ 0.15 \\ 0.14 \end{array}$	$\begin{array}{c} 0.606\\ 0.585\\ 0.570\\ 0.544\\ 0.536\\ 0.524\\ 0.517\\ 0.512\\ \end{array}$	$\begin{array}{c} 0.07 \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.02 \end{array}$	$\begin{array}{c} 77.55\\ 79.73\\ 81.27\\ 83.73\\ 84.39\\ 85.43\\ 86.02\\ 86.44 \end{array}$

表-K-3 近似解析式による抽出率補正計算諸数値 [実験 K-10]

固定層における安息香酸の水抽出 第2報

θ	κ	ξe	τ_c	ψ_c	$1\!+\!\delta_c'\!-\!\delta_c$	計算值 Ec
[min]	[-]	$\times 10^{3} [-]$	[]	[-]	[-]	$\times 10^{2} [-]$
$5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 60 \\ 90 \\ 120 \\ 150 \\ 180 \\ 240$	1.5	1.73	$\begin{array}{c} 3.48\\ 2.46\\ 1.74\\ 1.42\\ 1.23\\ \textbf{1.00}\\ 0.82\\ 0.71\\ 0.64\\ 0.58\\ 0.50\\ \end{array}$	0.987 0.983 0.973 0.963 9.955 0.943 0.926 0.916 0.898 0.888 0.888 0.862	$\begin{array}{c} 23.90\\ 11.91\\ 5.91\\ 3.89\\ 2.91\\ 1.89\\ 1.25\\ 0.93\\ 0.74\\ 0.61\\ 0.43\\ \end{array}$	$\begin{array}{c} 3.83 \\ 5.14 \\ 8.00 \\ 10.65 \\ 12.85 \\ 16.18 \\ 20.66 \\ 24.56 \\ 27.42 \\ 29.88 \\ 35.97 \end{array}$
$\begin{array}{c} 300\\ 360\\ 420\\ 540\\ 660\\ 780\\ 900\\ 1020\\ 1140\\ 1260\\ 1440\\ \end{array}$			$\begin{array}{c} 0.45\\ 0.41\\ 0.38\\ 0.34\\ 0.30\\ 0.28\\ 0.26\\ 0.24\\ 0.23\\ 0.22\\ 0.21\\ \end{array}$	$\begin{array}{c} 0.825\\ 0.790\\ 0.780\\ 0.772\\ 0.760\\ 0.751\\ 0.732\\ 0.713\\ 0.713\\ 0.713\\ 0.707\\ 0.703\\ \end{array}$	$\begin{array}{c} 0.33\\ 0.26\\ 0.22\\ 0.16\\ 0.13\\ 0.11\\ 0.10\\ 0.07\\ 0.07\\ 0.06\\ 0.05\\ \end{array}$	$\begin{array}{c} 43.74\\ 50.59\\ 52.43\\ 53.89\\ 56.00\\ 57.53\\ 60.65\\ 63.68\\ 63.65\\ 64.57\\ 65.19\end{array}$
10	2	0.97	3.28	0.991	$\frac{21.36}{22.15}$	2.78
	2,0	0.02	4.10	0.994	32.15	1.00
$\begin{array}{c} 20\\ 30\\ 40\\ 60\\ 90\\ 120\\ 150\\ 180\\ 240\\ 300\\ 360\\ 420\\ 540\\ 660\\ 780\\ 900\\ 1020\\ 1140\\ 1260\\ 1440\\ \end{array}$	3	0.43	$\begin{array}{c} 3.48\\ 2.84\\ 2.46\\ 2.01\\ 1.64\\ 1.42\\ 1.27\\ 1.16\\ 1.00\\ 0.90\\ 0.82\\ 0.76\\ 0.67\\ 0.61\\ 0.56\\ 0.52\\ 0.49\\ 0.46\\ 0.44\\ 0.41\\ \end{array}$	$\begin{array}{c} 0.992\\ 0.990\\ 0.988\\ 0.984\\ 0.980\\ 0.975\\ 0.971\\ 0.969\\ 0.961\\ 0.950\\ 0.938\\ 0.935\\ 0.932\\ 0.927\\ 0.924\\ 0.916\\ 0.913\\ 0.909\\ 0.906\\ 0.894\\ \end{array}$	$\begin{array}{c} 23.97\\ 11.87\\ 11.92\\ \textbf{7.88}\\ 5.24\\ 3.93\\ 3.14\\ 2.63\\ 1.92\\ 1.53\\ 1.26\\ 1.07\\ 0.85\\ 0.69\\ 0.59\\ 0.50\\ 0.50\\ 0.50\\ 0.42\\ 0.38\\ 0.35\\ 0.31\\ \end{array}$	$\begin{array}{c} 2.25\\ 2.85\\ 3.66\\ 4.86\\ 5.84\\ 7.44\\ 8.31\\ 8.86\\ 11.14\\ 14.14\\ 17.42\\ 18.16\\ 18.90\\ 20.18\\ 21.03\\ 23.06\\ 23.86\\ 24.94\\ 25.56\\ 28.52\\ \end{array}$
$\begin{array}{c} 40\\ 60\\ 90\\ 120\\ 150\\ 180\\ 240\\ 300\\ 360\\ 420\\ 540\\ 660\\ 780\\ 900\\ 1020\\ 1140\\ 1260\\ 1440\\ \end{array}$	4	0.24	$\begin{array}{c} 3.28\\ 2.68\\ 2.18\\ 1.89\\ 1.69\\ 1.54\\ 1.36\\ 1.20\\ 1.09\\ 1.01\\ 0.89\\ 0.81\\ 0.74\\ 0.69\\ 0.65\\ 0.61\\ 0.58\\ 0.55\\ \end{array}$	$\begin{array}{c} 0.993\\ 0.991\\ 0.988\\ 0.985\\ 0.983\\ 0.982\\ 0.977\\ 0.971\\ 0.964\\ 0.961\\ 0.961\\ 0.960\\ 0.951\\ 0.951\\ 0.951\\ 0.950\\ 0.947\\ 0.945\\ 0.943\\ \end{array}$	$\begin{array}{c} 21.44\\ 14.22\\ 9.38\\ 7.02\\ 5.61\\ 4.67\\ 3.59\\ 2.81\\ 2.31\\ 1.96\\ 1.51\\ 1.25\\ 1.03\\ 0.91\\ 0.81\\ 0.71\\ 0.64\\ 0.57\end{array}$	$\begin{array}{c} 2.19\\ 2.67\\ 3.55\\ 4.48\\ 5.00\\ 5.45\\ 6.70\\ 8.41\\ 10.38\\ 11.14\\ 11.36\\ 11.62\\ 13.88\\ 13.87\\ 14.32\\ 15.17\\ 15.57\\ 16.08\\ \end{array}$

表から明らかなように,全ての抽出時間についても同様なことだが,例えば抽出時間 60 分 のものについて説明すると,実測値 E が約 7.1% に対し, $\kappa = 1.5$, 3.0 のときはそれぞれ近似式 による計算値 E は約 16.2, 4.9% であるから,実測値と計算値の抽出率の一致する κ の値は 1.5 と 3.0 の間に存在することがわかり,これをグラフを利用して求めると κ はおよそ 2.3 である ことがわかる。次いでこの κ の値に対応するときの φ_c を求め,およそ 0.978 を得る。

このようにして各抽出時間について実測と計算による E の一致するときの κ 値を求めて プロットしたものが 図-K-7 である。

図から、 ϕ_o は抽出開始後 200 分ごろまでは比較的急激な減少をみせ、それ以後はゆるやかな減少を示し、1.00~0.88 の範囲内にある。

κ 値については, この図から考えられるように大きく3つの Zone にわけることができるのではないかと思われる。

第1の Zone は抽出時間 100 分までのところで, κ 値がやや高い 2.5 附近から次第に低く なっていることが示されており,このことは, 球細孔内固液界面が球表面部から次第に後退す るにつれて,存在していた境膜内拡散抵抗の影響が次第に減少してくることを示していると思 われる。

第2の Zone は抽出時間 100 分から 400 分までのところで,第1 Zone とは逆に減少した κ 値が次第に増大して一定値 3.0 に近づくのがみられ,このことは,境膜内拡散抵抗の影響が 消滅し,次第に細孔内拡散抵抗の影響が現われ,次第にその影響も増加していくことを示す遷 移状態の部分ではないかと考えられる。図では点線で示した部分でデーターの若干のバラツキ がみられる。 **第3**の Zone は抽出時間 **400** 分以後のところで, κ は一定値 **3.0** をとり, ここでは, 一定 の細孔内拡散抵抗を示す部分と思われる。

全体として本実験では κ 値は 2~3 の値をとり、前報の 2~4 より小さい値をとっている が、前回は固体抽料の作製に球成型器を用いず、そのために球形度や粒径一様度が低く、これ らの影響によるものであると思われるが、抽出開始直後 κ 値は次第に減少し、再び高い一定値 まで上昇する傾向^{3),10)} はよく一致した。

IV. 結 言

前報にひきつづき,安息香酸一パラフィン共融球状抽料を用いて固定層での上昇流水抽出 実験を行ない,固液抽出機構を解明し,今回は特に24時間抽出による結果の解析検討から,各 種拡散抵抗の影響を各抽出時間について上述のように3つの Zone に分けて考えることができ た。そして安息香酸の水抽出率のための補正固有値はおよそ3.0を一定値としてとるのではな いかということも知りえた。さらには,抽出温度,配合比,充填層高の抽出率への影響の様子 も一部解明できた。

最後に、この実験に終始協力いただいた菊地英二君に厚く感謝の意を表する。

(昭和42年4月6日,化学工学協会第32年会(東京)にて講演)11)

(昭和42年4月28日受理)

물기	旦	市田	88
äС	ち	記七	ൗ거

<i>B. A.</i> :	benzoic acid の略	T:	絶対温度 [7]
C:	外部液濃度 [M/L3]	t:	温 度 [T]
D :	拡散係数 [L ² /θ]	2	
D_p :	充填球粒径 [L]	0:	$= (2/\sqrt{\pi}) \{\tau \exp(-\tau^2)\}/(\operatorname{ert} \tau - \operatorname{erf} \psi \tau) [-]$
E:	積算抽出率 [−] or [%]	δ' :	$= (2/\sqrt{\pi}) \{ \psi \tau \exp(-\psi^2 \tau^2) \} / (\operatorname{erf} \tau - \operatorname{erf} \psi \tau) [-]$
F·	$F = T/(D_m)$ で定義される拡散因子	θ :	抽出時間 [θ]
	$[T H^2/(I M)]$	κ:	細孔係数 [-]
		μ :	粘 度 [M/L θ]
h:	充 填 層 高 [L]	ê:	$= \{3(1-\epsilon)^2 PD/\epsilon R^2\} (h/\bar{u}_{rad}) [-]$
P.:	paraffin の略		$\left(\left(-\frac{1}{2} \right)^{2} \right) = \left(\left(-\frac{1}{2} \right)^{2} \right)^{2} \left(\left(-\frac{1}{2} \right)^{2} \right)^{2} \left(\left(-\frac{1}{2} \right)^{2} \right)^{2} \right)^{2}$
R:	充填球半径 [L]	τ:	$= R/2 \sqrt{D\theta} [-]$
Re:	Reynolds 数 [一]	ψ :	=S/R [-]
Sc:	Schmidt 数 [-]	下附	記号 c: ĸによる補正を示す。

以上は本報で用いた直接的記号の解説であるが、くわしくは前報を参照されたい。

また上述の記号の次元については, 質量: [*M*], 長さ: [*L*], 時間: [θ], 温度: [*T*] とし て示した。

参考文献

- 1) 谷口·杉田: 室蘭工大研究報告, 5-2, 653 (1966).
- 2) 杉田·本田·谷口·久新: 工化誌, 69-3, 377 (1966).
- 3) 谷口・村元・杉田: 日本化学会北海道大会 (札幌) 講演要旨集, 26 (1965).
- 4) Wilke, C. R. and P. Chang: A. I. Ch. E. Journal, 1, 246 (1955).
- 5) Hixson, A. W. and S. J. Baum: Ind. Eng. Chem., 36, 528 (1944).
- 6) Steinberger, R. L. and R. E. Treybal: A. I. Ch. E. Journal, 6, 277 (1960).
- 7) 佐藤一雄: 物性定数推算法, 308 (丸善株式会社, 1957).
- 8) Kirk-Othmer: Encycropedia of Chemical Technology, 2, 461 (1953).
- 9) Williamson, J. E., K. E. Bazaire and C. J. Geankoplis: Ind. Eng. Chem. Fundamentals, 2, 126 (1963).
- 10) 谷口·杉田: 日本化学会北海道大会 (室蘭) 講演要旨集, 21 (1966).
- 11) 谷口·杉田: 化学工学協会第 32 年会 (東京) 講演要旨集, 第1 分冊, 174 (1967).