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Foundations of the Empiricist Theory of Sets

and Set Functions and its Logic

Yoshio Kinokuniya®*

Abstract

In Part I, previous results on the theory of a priori measure are rectified, renovated and
rearranged for a systematic course of lectures. Herewith, it is specially emphasized that a euclidian
spdce may be thought as a model of phenomenal field of physical events, independently of any
metamathematical view on set theories. Besides, empiricism is thought to be essential to our
inferences. In Part II, logical investigations are shown, standing on the empiricist view, and the

principle of trans-induction is brought forward in a renovated form.

Introduction

Sets in a euclidian space may be taken up as the first and fundamental objects
in empiricism. But the notion of a single point will then be nonsensical if shown
independently of the space in which it dwells, because a ‘point’ must lose its
actual sight of existence if it accompanies nothing to build its spatial neighborhood
arround it. In this view, the ‘space’ may appear to be antecedent to a ‘point’.
On the other hand, the euclidian space has been used as a model of the phe-
nomenal field of physical events, directly connected to our intuition, from the
ancient days of Euclidus. In fine, geometrical forms in this space comprehend
many meanings, historically accumulated through experiments and investigations,
which had been made before the set theory was started. These being so, the set
theory shall restrain itself from spoiling any aspect of the above-mentioned his-
torical knowledges, which shall positively be qualified as the guides for correction
over all of the theories connected to the euclidian space. Standing on this view
the theory of a priori measure #% was constructed. While some amount of works
on the measure # were made by the present author, some occasional changes or
alternations thereof could not be helped. In Part I, an ultimate coures of lectures
is tried to settle some problems on #% and to give some preliminary foundations
for forthcoming studies of set functions.

Among the recent works on {foundations of mathematics, the influence of
symbolic logic may be marked as a conspicuous vogue. However, if symbolic
logic be simply applied with empiricism, it is feared that the universe of objects
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492 " Yoshio Kinokuniya

may then be obscured by some metamathematical mist of abstraction. In effect,
some investigation on the relation of ‘implication’ to ‘logical range’ have discovered
a possible discrepancy between concrete objectification and abstract one. Moreover,
empiricism prohibits the use of transfinite ordinals of higher class than the 3rd,
so that the transfinite induction cannot be applied here. Besides, in fact, the
transfinite treatment beyond the 3rd class, is essentially discordant with the a priori
measure in a euclidian space. The logical investigations on the theory of a priori
measure in empiricism are shown in outline in Part 1L

I. Sets and Measures in a Euclidian Space

1. A Priori Measure

Length, area and volume may be cited as geometric events which from ancient
times have been evident to human intuition. These events are namely geometric
figures, and are equally called sets of points by the recent terminology. They are
thereby defined as the measures of a set in one, two and three dimensions
respectively. We specially call it a priori measure in the meaning that it is
essential to human intuition. The a priori measure of a set M is written as #M
{or m(M)). @M is then the numerical value which indicates the largeness of the
space occupied by the set M. In this case, the set M is considered to be
contained in a euclidian space. However, we extend and generalize the space
a little far, and by B we mean a general finite dimensional euclidian space.

In case of dimension 1, we have

[0, al = a

[0, a] being the closed interval {xr: O0<<x<{a}. As a increases, the part occupied
by [0, a] increases. This occupation is thought to be realized by points contained
in [0, a]. Since a point, however, was defined as an interval which has only its
position in the space and no largeness to be counted, it has been thought difficult
to construct the measure of a set by means of the points contained in it. When
we let a point x correspond to the point iz (A>>0), we may naturally suppose that
the size of a point iz should be given by multiplication of the size of the point
x by 4, so that we may have the relation

# [0, 2a] = 4w [0, a] .

Thus, the situation that points make up the occupation of a set in a space E,
must induce a spatial relation of each point to the space ¥, which admits a quan-
titative character toward a point. By this reason we associate a point P with an
infinitesimal piece of space ((P)) supposed to be occupied by P, and call (P)) the
(point) occupation of P in respect to the a priori measure #%. It will then be
considerable that e.g.
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() = (x—0, z+0), [z, z+0), [:c—%O, x—k-%(}) etc. .

Since a set is defined as an aggregate of points, the number of the points
contained in it may naturally be abstracted. Namely, we define %M in the form

mM = (M) (1. 1)
where p=m(P) (PeM)

and (M) is called the inversion number of M.
In the above case, the size of a point P in E is considered to be everywhere
equal ; the measure 7 is then called a normal (a priori) measure. When

1y = m((P))

is not everywhere equal, % is said to be abnormal. The integral construction of
mM is given by
mM = © p, (1. 2)

e

which may coincide with the classical formula
M — (dp .

oy is called the (point) dimension (or the #-dimension) of P. The sum of all the
point occupations of A is called the (2otal) occupation of A, which will give
a concrete concept, equivalent to that of a set, to comprehend the spatial con-
struction of the integration (1. 2).

In case of n dimensions, a point P being represented by the cartesian coor-
dinate (a, -+, &,), the point dimension of P is given in the form

Pp = Mo la,

where 1, is regarded as the projection of g, on the k-th axis. Then, y, shall
naturally correspond to the integral element

dx, - dzx,

in the classical theory of integral.

The notion of the size of a point may give a convenient medium of illustra-
tion. For instance, in the plane geometry, if the point P, is represented by the
polar coordinate (9, 8;) (k=1, 2), we have

#Pl/lL!PZ = pllul’x#’])/pzypzﬂﬂz = pl/pz’

if p, and p, are given as normal dimensions. Then, the ratio of the sizes of P
and P, shall be regarded as equal to ©,/0,.

In case of an abnormal (a priori) measure #, the inversion number 1 (M) of
a set M cannot be given by (1. 1). In this case, the following formulation may
give a help. If

A(P) = poftg
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Q being a fixed point, we shall have
A= mM]pon(M)

Z being the mean value of Z(P) for PeM.
2. Resilience
The representative convention such that

1 =099, 0.23 = 0.2299 --- etc.

may be said very convenient in point that any real number can, through this
modification, be uniquely expressed ; still, the statement that the limit of the values

0.9, 0.99, .-

is equal to 1, may not always be cosidered as strictly appropriate. If exactly, it
must be that
099 =1-0.

In effect, if a univoque function f(x) is discontinuous on the left hand of a point
zx, then it must be that

Sflx) # flz—0).

It may generally be admitted that, in the space of real numbers, any point x
has no point just prior or just posterior to it. This situation may be considered
coincident with the fact that two intervals of different length can be set in one-
one correspondence of points. However, if these intervals be restricted to the
same normal measure, one-one corresponcence must only mean an equal measure
of length. Under the normal measure system, (0, 100) is regarded to contain 100
times as many points as (0, 1). That in such ways as above-stated, points are
distributed to sets, shall be illustrated as points occupy their positions in some
repelling state each other. We abstract the notion of this repelling tendency to
be associated with each individual point P and call it the resilience of P. Then
y#» may be thought as the measure of a sort of total resilience around P. In case
of 2 dimensions, a point (x, y) is considered to have resiliences in positive and
negative directions along «- and y-axes. If ABC is a triangle and if any point of
the side BC has two resiliences, one parallel to BA and one prallel to CA, then
the total linear measure of the resiliences on BC may be counted as AB+AC.
Thus, the well-known paradoxical assertion that the length of BC must be equal
to AB-+AC, may actually be turned to be reasonable.

3. Probabilism

In the classical theory of sets, if ‘a set A’ is merely supposed to be existent,
without any practical confirmation such as is seen in cases of a rectangle, sphere
etc., it may not give any real fact and may not be other than a nonsensical
designation, even when it is provided with the condition #A=1. This is because
the general notion of a set is not positively construed with measure theoretical
foundations.
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Now, by the following table, let us compare the definition of the normal
a priori measure with that of the notion of a descriptive set™ of points:

(M;) Any point P of the space ¥ (S) Each point of # has its own
maintains the same size of occupation position and can be distinguished {from
(P) and # (P) = p; other points ;

(M;) The total occupation of the (S,) That A is an aggregate of
points of A makes up #A satisfying points in ¥ is confirmable by means
the formula of the criterion

mA =n(A)p. (yPe®E) (PeAVPgA).

The total occupation of a set A may naturally be compared to the state that A is
filled with some substance. In effect, the space I, in physics, is usually consid-
ered to be everywhere filled with ‘ether’. Then g shall mean the mass-value of
the ether equally assigned to each point and #A the total mass of the ether
distributed to A.

As to (S)), that a point is distinguished from other points, shall, in the physi-
cal sense, mean that P is distinguished in the relation to the circumstance that an
aggregate of points directly causes the total sum of the ether to be distributed to
it. Such a physical distinction may not evidently be attained but for the notion
of ‘density’ of the ether of A in any neighborhood of the point P. Besides, the
density of the ether of A may directly be interpreted as the probability of occur-
rence of the points of A in a neighborhood of P. Thus, we may expound it: that
a set A is determined as an aggregate of points in #, must coincide with the fact
that, in any sphere S we have

mANS/mS = Pr(PeA) (3. 1)

P being an aleatory variable point restricted within S. We adopt (3. 1) as the
probabhilistic definition of %A in relation to #S. #.S is of a trivial measurability.
When ACS, mA=Pr(PcA)mS.

On the above-stated foundation, it is remarkably important that any (descrip-
tive) set must be #-measurable. This is apparently the effect of the physical
interpretation of the space # by means of ‘ether’. If we could pour the ether
distributed to a set A into a vessel and weigh it, the mass-value mA might surely
be obtained. With respect to (3. 1) we see that, probabilism, in this case, plays
a role to turn the microscopic sight of a point occupation toward the macroscopic
one of the total occupation of a set. As for the inversion number, the following
formula holds :

Pr(PeA(PeM & ACM)) = n(A)m(M)

on condition that 1 is the inversion number provided for a normal! measure.
If # is a normal a priori measure, and if we have

*  An aggregate of points satisfying the conditions of (Sg) is a descriptive set.
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(VAC B) (mA=A)

we call #, an a priori measure too, even when m,((P)) is not everywhere equal.
It
m (P)) #+ . (Q))

it simply means that the size of ((P)) is not equal to that of ((Q)). Therefore,
that #% is normal means that all of ((P)) are taken to be of equal size. If

m (P)fm, (Q) > 1,

the probability of occurrence of the point P is naturally larger than that of the
point Q. Since the construction of ¥ ir.t* 7 thus differs from that ir.t
a normal measure 7, the inversion number of a set ir.t. #%, must also differ
from that i.r.t. % Denoting the inversion number of a set A ir.t. M, by n(A,
m,), we have

~ T

ﬁl//’t = n(Aa %>/R<Aa 7~n1> H
where f; is the mean #%,-dimension (i.e. the mean of #,((P)) for P) in A and ¢
is the normal #-dimension.
4. Complete Additivity

If the family of sets (M,)(:€l), I being a set of ordinal numbers, satisfies the
condition

(veel) (M, CK)
and if 0L mK<oo,

then (M) is said to be #-bounded. In this section, we suppose that (M) is -~
bounded and monotone increasing viz.

(e, k€l) (e<e>M,CM,),
and M=UM,. (4. 1)

(4. 1) naturally suggests that M is the limiting set of (M,). Besides, since M is,
in our view, considered #-measurable without exception, it shall be defined that
M is the limiting set of a #@-bounded monotone increasing family of sets (M)
when and only when

NM—M,) = void & inf #(M—M)=0.

Since the set of values %M, (¢c€I) is, by supposition, a bounded set of real num-
bers, there exists a sequence (M, )(k=1, 2,---) such that

lim wmM,, = ¢ = sup WM. .
Then, in empiricism, it is easily verified that
c=mM .

Thus # is found to be a completely additive set function.

* Qr.t” and ‘w.r.t” are rendered ‘in respect to’ and ‘with respect to’ respectively.
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In empiricism, a limiting object is admitted when and only when it can be
approached by an enumerable process of stepping. So, in the case above-men-
tioned, it must be that

(H‘k(kzla 2, )) <UM,k:M>

Still, it is notable that there is an additive set function in K, which is not
completely additive, even when all points are given equal assignment by it. Such
a function is called an wltra set function®.
5. Application

In order to construct an a priori measure we assumed spatial point occupa-
tions ((P)), which precisely fill up the whole space E without overlapping. By
this way of construction, if the system of ((P))(Pe H) is given, the corresponding
a priori measure #% is completely determined and vice versa. In this regard, (P))
is called the #-occupation of the point P. Now, let us assume that a mass quantity
7p is univoquly assigned to each #-occupation ((P)) to define a set function 7(M)
in the form

FM(=F(M)) = & 7, (5. 1)

PeM

which means that the quantities 7» are summed up through the total occupation
of a set M. 7 is called an application and % is then called the carrier of ¥ in
the meaning that the spatial construction for the integral (5. 1) is given by the
system of #-occupations ((P)). Then, it is naturally assumed that

Tp=T7(P).
75 is called the point appication of P w.r.t. 7. When 7, is infinitesimal, we write

7’P:@;

when non-negative and infinitesimal

O<T,<D.

© indicates ‘empty null’ which means the vacancy of quantity. In this section,
we confine our argument to the case of non-negative and bounded 7. Then, it
may easily be seen that values of 7, must be at most infinitesimal except at most
an enumerable number of them. A general application may be expressed as
a difference of two non-negative ones.

If we could pour all of 7, distributed to A together into a vessel and weigh
them, the value 74 might surely be obtained. If constructively, partitions of a set
A may be brought forward to be observed along with . However, in empiricism,
an observable partition must be limited to an enumerable one. Thus, we are
forced to have the definition as follows :

Definition. If, for any enumerable partition (M,)(k=1, 2, ---) of a set M,
we have
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then TM is represented in the form
7M = @rp
with T»=T(P),

(P)) being point occupations i.r. L. a certain a priori measure.

In fine, 7 is defined by (5. 1) as a completely additive set function. This
may be thought as a merit of empiricism. As for the quantitative criticism on
T» we may sort out the following four cases: (i) 7,=0 ; (i) 0<r,<oco; (iii)
O0<Sf(P)=Tplpp<<o; (iv) O<I,<BD & f(P)=0V oo, up being the point dimen-
sion of the carrier #%. The complement of the set {P: 7,=} is the support of
7. In the part of (iii), ¥ may be expressed as an integral

f(P)pr ox [ F(P)aP.

We assume the case (iv) to be possible, but do not make any detailed explanation
on it here?.

An additive set function f(in E) which is neither an a priori measure nor
an application, is an ultra set function. In this case, the only formula generally
promised for f is that

(VA, BC E) (f(AUB) = f{A)+f(B)—f(ANB)).

II. Logic and Empiricism
1. Ranging
If a chain or a concatenation of symbols or words is certainly read as indi-
cating or designating some objects or some state of the objects, it is called a des-
cription (in the generalized sense). When exclusive cases for certain situations
are taken as elements, the set

R(A)= {&: A is true in &
is called the wusual deductive range of the description A. Then, implication ‘=’
may be defined by
A>B. =.R(A)S R(B) (1. 1)
on condition that R(A)s#void. More generally, we assume that to any description
A (of a given family of descriptions) uniquely corresponds a set R(A) (of elements

of a given universe); then, by the implication defined by (1. 1), we will obtain
a deductive system of logical language. If U is a universe of objects and

R(A)C U & R(A)+# void,

then A is called a description (standing) on U. For a family of desriptions 9 it
may not always be possible to find a universe U such that
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UR(A)CU. (1. 2)

AeN

If U is existent and satisfies (1. 2), we say that A(e) or A is given a ranging
in U, and then call U the range universe of this ranging.

A course of logic usually involves a definition of the level to correspond to
a predicate or an object. If U is a range universe of which all elements are
descriptions, then the elements of T shall be regarded as of the same level. If
U; and U, are range universes and if any element of U, is either a description
on U; or a relation between subsets of T, then U, is said to be of higher level
than U, in that any element of ¥, is regarded as of higher level than any element
of U7, If T, # void and there is no universe to be of lower level than T, the
level of T, is zero. However, it appears that essentially the levels of objects are
determined relatively and not absolutely. For instance: when a line is defined by
a pair of points, the line will be thought to be of higher level than the points;
but, when a point is defined by a pair of lines, the point will be of higher level.
Such being the conditions, we will take the notion of the level only to be some-
times conveniently used in the relative meaning. Descriptions on the same uni-
verse U are of the same level, because their ranges then are equally subsets of .

If descriptions A and B are of the same level, following 8 cases are
distinguished :

R(A)=void & R(B)=void; a: R(A)=void & R(B)#void;
R(AY#void & R(B)=void; a,: R(A)#void & R(A)CR(B);
as: R(B)#void & R(BJCR(A); as: R(A)#void & R(A)=R(B);
R(A)—R(B)+#void & R(B)—R(A)# void & R(A)NR(B)+ void ;
R(A)+#void & R(B)+# void & R(A)NR(B) = void .

Then, taking U={a;, a5, -, s} as the universe, we may have
R<A$B> - {ala Oy, Ky aﬁ} .

‘I-A’ is usually rendered ‘A is true’. However, in this paper, we let ‘A’ mean
‘A is possible’ (i.e. ‘A is not impossible’). ‘~ A’ is the negation of ‘A’ and
is rendered ‘A is impossible’ or ‘A is false’. <A’ itself cannot be rendered as
a description on U, whereas A and ~ A stand on U. In effect, we still have
R<|'—A) - {a3, Ay, Ay Oy A7, as} s
R("‘B) = {C% a, s QG o, g), (L. 3)
R(~FA) = {a, o} and R(~FB) = {a, a3} .
In fine, (AB)AA is not a description on U, but (AD>B)A(—A) and (ADB)A
(~—A) are ones on U.
Now, since

R((ABA(~1FA)) = RIADBNR(~FA) = {a, a},

(155)
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with respect to (1. 3) we have
R{((ASBIA(~HA)ZR(-B), ZR{(~-B), but SR(-B)UR(~}B).
Hence we conclude
(ASB)A(~FA)D =B, 7>~ B, but 2> —(BV ~B). (1. 4)

It is remarkable that the result (1. 4) is incompatible with the assertion ‘“fallacy
implies any event’, which is professed by some sect of symbolic logicians.
2. Event Complex

A description shall, in itself, be regarded as an event. I its usual range +
void, it is called a possible event and if =void an émpossible one. Though the
terms ‘event’, ‘possible’ and ‘impossible’ are, originally, of the theory of probability,
they are rather more lucid than the corresponding terms of pure logic and may
even be preferable in point of straightness for the empiricist view. With this
terminology, we may straightly pass to the statistical view if needed.

If the premises, notions or relations among them, and the available referential
facts in the context of a theme are resolved into a finite number of descriptions
A={A,, -, A,) of which all are regarded as of the same level, then the state
construction defined in the form

¢(A) = Via(A,V~4,)

is called the event complex (or simply the complex) generated by A. In this
case, partial products of 2n events A,, ~A, (k=1, ---, n), which do not vanish,
make, in all, a finite set

F(A): (FJ)(JZI’ ) V)’

and I'; are found to be mutually exclusive events. I'(A4) is called A-aspect of the
theme.

If we take I'(A4) as the range universe, we may sufficiently transact inferences
on the theme by means of the language standing on I'(A4), i.e. the language
which has I'(4) as the universe of individuals.

3. Inductive Range

Induction too is proceeded on contradistinction of some implicative relations.
So then, a ranging must thereupon be contrived to define the implication. Deduc-
tive ranges are found incompatible with this purpose. The deductive range of
a description A comprises possible events of A as its elements, because, in a de-
ductive case, the point of observation is whether the object is possible (or true)
or not. However, in an inductive case, observation rests only on the residual part
of inspection, so the ranging should also be defined on this part.

Assuming that P is a set of propositions and is provided with a criterion ¢
which is tested on subsets of L5, if a subset P of P conforms to ¢, we write
=P, and if not, ~p—P. In addition, we assume that ¢ satisfies the following
two properties :
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descriptiveness: (P S P) (p—PV ~p—P):

regressiveness: PCQCP & o—-0.> .o P. (3. 1)
In this case, we define a rang R(P) by the stipulation that
R(P) = LP— P when ¢ P (3. 2)
and = void when ~¢r+ P.

Then, the implication appearing in (3. 1) may be realized by the definition :
P 0. = R(PYCTR(Q) (3. 3)

on condition that R(P)#void. It will be needless to say that the left side of

(3. 3) just means ¢ P>, The range defined by (3. 2) is called an inductive
range.

By means of the principle of cut appreach® in empiricism, we may directly
attain the theorem :

Proposition 3. 1. If B is a set of propositions with a descriptive and
regressive criterion ¢ to be tested on its subsets, and if
} ~p P
and (AP CP) (P + void and ¢ —P),

then there are two sequences of subsets of ¥ () and (Q,) (k=1, 2, ---) such that:

(i) PcP,CCQcCP;
(i) UP,=NO;;
(i) (VA) (p=Pr & ~o-Q).
4. Unrmaximizable Case
If we apply the principle of transfinite induction, Proposition 3. 1 may be
altered to the following result:
[T). Under the same conditions assumed in Proposition 3. 1, there exists
a family of subsets of P (P,) (A€ A) with an indication set A of ordinal numbers
such that:
(i) (V4 ped) G<p. > . P,C P,
(i) (Vied) (0P
(i) QCP & QP = UP.>.~p—0.
P appearing in (iii) may be regarded as a supremum w.r.t. ¢. When such
P exists, ¢ is said to be maximizable on P. [T] itself, however, is denied in
empiricism, by the following example.
We may take a euclidian space (of finite dimension) # as %5 in the sense that
a point ‘P’ is also regarded as a symbol ‘P’ rendered ‘Pe B’. ¢ be defined by

* ‘=’ shall henceforth be read as‘ ,then we have’. Such it may be read in either case of a de-

ductive or an inductive range.
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oA = mA<c, (4. 1)

¢ being a fixed finite positive number. If [T] in this case holds, there is a family
of subsets of F A=(A,) (i€ 4) such that

<p. > A CA,
and if A=UA,

we may have
(VBC E) (BDA. o> .mB>c).

Since % is an a priori measure in K, we then have

WA = sup(WmA,) (4. 2)
so that mA = c.

Therefore, if we take an enumerable set N in H—A and define B as

B=AUN
we may directly have

BDOA & B =c.

Thus ¢ defined by (4. 1) cannot be maximizable. It is remarkable that the above-
shown contradiction (to the existence of A) is concluded only by the characteristic
relation (4. 2) of an a priori meaure %% and not by any restriction on ordinal
numbers. If we mean to insist [T], we must then necessarily renounce the pro-
perty (4. 2) of @ and thereafter assert either A to be denied its 7-measurabilty
or % itself to be denied its complete additivity.

Since we shall be resting on the theory of a priori measure, we may not
renounce (4. 2). Thus, we encounter an unexpected obstruction to the principle
of trans-induction which was attempted to be an alternative removation of the
principle of transfinite induction. It is very regretful that here the preseut author
must change his previous announcement that the principle of trans-induction may
be made well-established by means of the empiricist principle of cut approach®.
Some reflection will show us that such an unmaximizable case as above discussed,
may appear only when the residual part for inspection with respect to ~¢ dose
not vanish out. So then, it is considered relevant to restrict the conditions as
follows.

If ¢ is a regressive criterion on subsets of P and if
(VPSH) (p-P & Pr#vold oHQSP) (PCQ & o-Q),

then ¢ is said to be insuppressible on P. Then, it is easily shown that ¢ is
insuppressible whenever ¢ is unmaximizable on . We now assume an operator
@ called a @-inspector being defined as follows :

(1) PCSO(P); (i) PCQ.=.0P)CO(Q);

* Pe=P—P and ¢ (P)=p—90(P).

(158)
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(iliy @(P)#=D Q). > . P+Q;
(iv) o-P & PCQ & 0(Qr+#void. >.(HRCP) (PCR & ¢—R
& ¢(Q)CO(R)).

In this case, the set P which holds ¢~ P will be enlarged unless @ () vanishes.
So we may have:

Proposition 4. 1. Under the same designations with [T, if ¢ accompanies
a g-inspector @, we may have

© P
only when , oP)=P.

Besides, the principle of trans-induction shall be introduced in the renovated
form as follows :

Principle of Trans-induction. If ¢ is a descriptive and regressive criterion
on P and is provided with a -inspector @, then there is a monotone increasing
sequence of subsets of P (P,) k=1, 2, ---) such that

(V&) (o= Py)
and NO(PLr = void .

This principle shall, of course, rest on the ground of empiricism, i.e. on the
view that any limiting process can be realized by an enumerable stepping whenever
it is found possible. As for the limiting set P of the sequence, whether ¢~ P

.or ~¢l—P cannot generally be presented in advance.
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