

物体形状のキャビテーション発生に及ぼす影響につ いて(第3報)

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-07-08
	キーワード (Ja):
	キーワード (En):
	作成者: 奥田, 教海, 海鉾, 武司, 早川, 道雄, 一場, 久美
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3507

物体形状のキャビテーション発生に 及ぼす影響について 第3報

奥田教海・海鉾武司 早川道雄・一場久美

On the Effects of Submerged Body Shapes on Cavitation Occurrence Part 3.

Kyôkai Okuda, Takeshi Kaihoko, Michio Hayakawa and Hisayoshi Ichiba

Abstract

The authors present the experimental results of cavitation about the symmetrical bisectorhydrofoils, of which thickness ratios are 0.133-0.453.

The experiments are carried out on the test condition of 7-12 m/sec flow velocities and $0^{\circ}-12^{\circ}$ attack angles.

The main results of the experiments are as follows:

a) The incipient cavitation factors K_i are always larger than the theoretical minimum pressure coefficients C_{pmin} .

b) The following experimental formula is varified:

 $K_i = C_{p\min} + A/V^2,$

where A is the constant and V is the flow velocity.

c) Selecting attack angle α and β (angle between leading edge tangent and flow direction) as the test parameters, the whole test diagram about K_i and α are obtained.

I. まえがき

同題名の第2報に引き続き、本報告では一連の対称円弧翼を供試物体とし、それらの形状 がキャビテーション発生に及ぼす影響について調べた結果を報告する。

II. 実験装置および方法

2.1 実験装置および方法

第1,2報に詳述してあるので、ここでは省略する。

2.2 供試物体

弦長が総て等しく厚さの異なる5種のレンズ状物体を使用した。これを「対称円弧翼」と 名づける。詳細な寸法は図-1の通りである。材質は強度,耐腐蝕性に優れた SUS-28, -32を 使用している。

2.3 翼表面の圧力分布の測定

弦長 100 mm, 厚さ 29.4 mm の対称円弧翼 (厚弦比が 0.294 で供試翼 No.3 に対応している。) を用いて翼表面の圧力分布を測定し, No.3 翼と対比することとした。

III. 実験結果および考察

本実験は迎え角 $\alpha=0^{\circ}-10^{\circ}$,流速V=7-12 m/sec の範囲で行なった。 このときキ ャビテーションの初生が観察されるのは図-2 に示した3個所であるが,測定に際しては1 との2みに注目し、1を背面型、2を先端型と 名ずけた。なお以下に使用する初生キャビテ ーション係数 K_{ι} の定義は次の通りである。

$$K_i = \frac{P - p_v}{\frac{1}{2}\rho V^2}$$

ただし

- P, V: 初生時における近寄り流れの 静圧,流速
- *Pv*, *P*: その時の水温に相当する水の 蒸気圧,密度

3.1 迎え角0°の場合

3·1·1 総圧の影響

回流水槽の総圧 P_t を一定に保ち,流速 の変化のみによって静圧を低下させたとき各 供試翼がどの流速でキャビテーションを発生 するかについて調べた。それを 図-3に示す。 この場合のキャビテーションは背面型のみで ある。 $P_t \ge V$ との間にはほぼ直線的な関係 が成り立つ。

3・1・2 流速の影響

流速の変化が K_i に 及ぼす 効果を 図-4 に示す。流速が増すにつれ K_i はわずかに減 少し R_z>7×10⁵ の範囲ではほぼ 一定値を示

282

す。その値と理論最小圧力係数 C_{pmin} と比較すれば 下表の通りである。ただし $R_L = VL/\nu$ である。

	No. 1	No. 2	No. 3	No. 4	No. 5
K_i	0.45	0.65	1.00	1.40	1.60
$C_{p\min}$	0.38	0.54	0.89	1.25	1.43

3・1・3 各種寸法の影響

i) 厚弦比: K_i と T/L の関係を示したのが図-5
 左である。両者はほぼ比例して変化する。

ii) 曲率半径: K_i に及ぼす翼表面の曲率の効果を

図-5 右に示した。 K_i と曲率半径 r との間には双曲線的な関係が成り立つ。ただし r_0 は規準値 で弦長 L を直径とする円の半径である。

3・1・4 $K_i \cdot L/T$ および $K_i \cdot r/r_0$

上述の結果から $K_i \cdot L/T$, $K_i \cdot r/r_0$ なる無次元変数はほぼ一定になることが予想される。 それを 図-6 に示す。両変数によって、図-4 に見られる翼厚さの違いによる K_i の差はほとん

20 (i=Cpmin+<u>13</u> 1.8 1.6 1.4 Ki 1.2 1.0 °°⊶3 0.8 0.6 No. 5 432 0.4 1.25 0.89 0.54 0.38 0.2 06 9 ∇ (m 12 13 10 75

図---8

どなくなっている。

3・1・5 翼表面圧力分布との関係

圧力分布測定実験で得られた最小圧力係数 C_{pmin} , その理論値および No. 3 の翼の K_{i} とをプロットした のが 図-7 である。それらはかなり近い値を示して いる。

3.1.6 K_iに関する実験式

$$K_i = C_{p\min} + \frac{A}{V^2}$$

ただし A は定数とする,

なる式を想定し、実験結果と比較した。Aの値を No. 3, V=1.0 m/sec の時の実験値から求めたところ 13 となり,それによって描いた曲線と実験値とは 図-8に示すように,かなりよい一致を示すことがわかつた。

3.2 迎え角を変化させた場合

3・2・1 迎え角の影響

迎え角 α の違いによる発生キャビテーションの 型は各供試翼について次の通りである。

 No. 1
 No. 2
 No. 3
 No. 4
 No. 5

 背面型
 0°-2°
 0°-3°
 0°-8°
 0°-10°
 0°-10°

 先端型
 3° 以上
 4° 以上
 9°, 10°
 なし
 なし

 α の変化が K_i に及ぼす影響を調べたのが図-9である。先端型は α の変化により大きく変わるが,背面型はほとんど影響されない。これは第一報において述べた欠円翼の場合とほぼ同様の傾向を示している。

3・2・3 流速の影響

各翼に対し流速の影響を調べたのが 図-10 である。背面型の場合は迎え角0°のときと同じ 傾向を有するが,先端型では流速の影響が見られない。(図において No. 1, No. 2 翼の先端型の データは省略した。)

3・2・3 $K_i \ge \beta - \alpha \ge 0$ 関係

翼先端の接線が近寄り流れに対してなす角 β-α を用いてまとめたのが 図-11 である。この 図の曲線で水平に近い線は背面型, 垂直に近い線は先端型を示す。この図によって実験結果を 総括的にながめることができる。

 $\boxtimes -10$

284

物体形状のキャビテーション発生に及ぼす影響について 第3報

IV. む す び

以上,対称円弧翼形状のキャビテーション発生に及ぼす影響を調べた結果を下記のように まとめることができる。

迎え角0°の場合,

- 1) 総圧一定の下で、キャビテーションを発生せずに達し得る速度は総圧 P_t にぼほ比例 する。
- 2) 初生キャビテーション係数 K_i は流速が増すにつれてわずかに減少する。
- 3) K_i は 5 種の翼すべてにおいて、理論最小圧力係数 C_{pmin} よりも常に大である。
- 4) $K_i \cdot L/T$, $K_i \cdot r/r_0$ なる無次元量は翼厚さによらずほぼ一定となる。
- 5) K_iに関して次の実験式が適用できる。

$K_i = C_{p\min} + \frac{A}{V^2}$

ただし C_{pmin} : 理論値, A: 定数

次に迎え角を変化させた場合については、

- 6) 迎え角αの違いにより、2種の異なる型のキャビテーションが発生する。
- 7) 先端型の K_i は α により大きく変化するが、背面型の K_i はほとんど変らない。
- 8) β - α を変数にとると、 K_i と α との関係について総括的な線図が得られる。

(昭和45年5月20日受理)

285

文 献

- 1) J. W. Holl, G. F. Wislicenus: Trans. ASME, 83, pp. 385-398 (1961).
- 2) R. W. Kermeen et al.: Trans. ASME, 77, pp. 533-541 (1955).
- 3) R. T. Knapp: Trans. ASME, 80, pp. 1315–1324 (1958).
- 4) J. W. Holl: Trans. ASME, 82, pp. 941-946 (1960).
- 5) 沼知福三郎: 日本機械学会誌, 66, (537), 16-22.
- 6) 沼知福三郎: 東北大学高速力学研究所報告, 18, (177), 147-160等.