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A Method of Solving Some Problems in Structural
Mechanics by Means of Finite Integration Transforms

Sumio G. Nomachi, Kenichi G. Matsuoka

Abstract

This paper presents inversion formulas coupled with a finite sine and cosine transforms which
are defined by finite integration, together with the related formulas by which the finite defference
equations can be solved in a similar way of the integral transform method.

As an illustrative example the elastic analysis of the Warren truss of n pannels is treated and
the convergency of finite element method of triangular elements, which are applied to the plane

stress problem and plate bending problem, is analytically confirmed by the aid of the presenting
method.

1. Introduction

The definition of “Finite Integration”, according to G. Boole", in the inverse
operation of “Finite Difference”. The finite integral of a function with a certain
kernel defines a finite integral transform, similary the finite integration would
yield a finite integration transform. It is a well-known fact that the integral
transforms play an important part in the field of continuum mechanics, so the
finite integration transforms are supposed to be a some tool for the stress analysis
of the fram work structure, and grid work structure.

We can extend the method to the analytical evaluation of the finite difference
system which is made from the continuum elastic body by the finite element
method.

2. Inversion Formulas with Respect to Finite
Sine and Cosine Series

(@) The Formulas for the Function of Integer x

S.[f@] =T fla)sin = e
o i 2.1
C[fl0)]= £ fla)cos Tz |
a=1 7n
We have the inversion formulas coupled with the above, as follows:
fla) =25 s[f@]sinTa, ]
n
. 2.2)
fla)= [ (@]cos -z,
n

(131)
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where

(b) The Formulas for the Function of x+é—

Let us introduce the symbolic notation as

o3

2=0 2
- 1 = 1 in 1 (2.3)
Ci[f<x+*2—>]=§0f<x+7>0037<x+—2->.
In a similar way, we have inversion formulas:
1) 256 Tl 1\ sin e (s L
f<x+—2*)——nﬂi§]=1w[f<x+7>]sm . (JL‘+ 2)
+i(—1)”‘Sn[f(x+i>] ;
f<x—l——1— =l7§a [f x+i>]cos—llr—<x+i> (2. 4)
2 n i=2 2 n 2
+1 ¢, [f x+~1—>}
n 2
i=0,1,---,mn; x=0,1,---,n )

3. Related Formulas

For convenience sake, let us define the modified mean and the modiﬁed differ-
ence as follows

S+ )+ fle)=Vflx), Sfle+D—fla—1)=4f(z).

Applying the above formulas to the first, the second differences, the modified
mean, and the modified difference, we find that for the sine transforms, -

S, [mf(x—m] =—sini7”{<~1>¢f<n>—»f<o>}——Disi [f(x)] RENERY

n

5, [A f(x)] — _2sin TR, [ f(x)] : (3.2)

(132)
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et el oo
S, [Vf(:c—é—)] —2 cos%gi [ f<x+i>] , (3. 4)
ifd?(x—%)sin%(x«i—%) _ sin{_{zf< ; >—Af<%>

—(—1)‘52f<n—~2—) —Af(n—%)}—DiS%-[f<x+%->] . (3.5)

5 ﬁf<x+i>s n—1<x+%> — sin é%f(——l) Af<n~i>
.y f<i>} —2sin G, [ f<x+_1_>] (3. 6)
S [Af(x)] ——2sin 2 R [f(x)], 5.7)
S, ’Vf<x>] = sin —;"j;{f<0>—<— 1))} +2 cos 25, [f(x)] . (39
and for the- cosine transforms,
[ #fa=1)| = (~1/dfn—1) ~ 270~ DR f(a)] (3.9)
c. :Af(x>] = —(— 114 fln—1)—47(0) + (1 +cos %f—){(—lmn)
- f(O)} +2sin L;f_s [ f(x)] , (3. 10)
oot e )
(3.11)
C [Vf(x—%ﬂ —— (-1)f<n—-§—) —f(_> +2 cos i_’;é [f(x+% ]
(3.12)
x Af<x——;—> cos i;-(.r—l—j—) = — COS % {Af(—;—)
—(—1)4 f<n——;—)} _DC, [ f(x—#%)] , (3.13)
2 fﬁ(x-l—é—)co —Z——(x—i-L) = —Cos %{Vf(%)
-<—1>¢Vf(n-—})} +2sin-2 g, [f<x+%>] 5.14)
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n

C, [Af(x)] ——cos 22 ,{-f(0>.—-(,—-;1)”'f(n).} +2sin L8, [f(:c)] ;319

C’{Af(x)]chosgz—Ri[f(x)] e S (3:16)
where

D, = 2(1—005 Z—”) .

n

4, Analysis of the Warren Truss

As an example, let us consider the Warren truss as shown in Fig. 1, « and
w denote the horizontal and vertical displacements at a nodal point respectively.
A;, A, and A, are the cross sectional areas of the lower chords, the upper

_HDQ

n;/l

Fig. 1.

chords and the diagonals, and 2, A, represent the lengths of chord members and
the diagonals. ’
Then the stresses of the members are related with the displacememts by the
following equations ‘ ’ ‘ ]

S’r-r+1 :Sr—i-l-rzKl(ur—%l_——ur)) )
-

S. TR O R Sr+g.r+% =K, (”H,g—”ﬂé)a .

'Sr'r+%~ = Sr+%-r = K3{<ur+%_u‘f)a_<wr+%_wr)ﬁ} ’

S, =8, 4, =Kflu,—u,_a+w.—w, )8},

7‘7‘“'2‘ 7"-’_2'7‘
where

K —EA g _EA, g _ EA,
2 2 2

, a=cosf, f=sind.

. ) i
And the equilibrium of forces at the nodes 7 and 7+ written in, for the

horizontal components

(134)
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S,..,crl—Sr.,._l+(Sr-r-+%_Sr-r—%)a+Hr /D,. i_l
= K Llu, + Ko Vetr-—2u,) Sprt _7_-6’:%» Srafred
— Ksapdw. 3+ H,=0, (4. 2) \
S‘r—%-%_SrJr%—-rv!-g+(Sr+%~r+%"‘Sr-r+—%—>a+Hr+%— /
Srat-r 5r+-2L'r+l
= K2A2ur—%+K3aZ(Vur_2ur+%) z
+K3a‘BAw,. +Hr+% = 0 (4. 3)
for the vertical components
(Sr-r—%-%+Sr-r+—é—)‘8“Pr=K3aﬁAUr—% sr"‘"’x Sr‘r"%
— K (Vwr-—2w,)—P, =0 (4. 4) ' ' Vi
(Srigrs1+Smg )+ Prig = Ksa,ﬂdu S TH,—_’S’"”
+ K (Vw, — 2w rg) + Prsg (4. 5) 2]
in Whlch H, P are the external forces actmg at Fig. 2.
the nodal point.
Py 1
-/LTﬁz’_' 51 The equilibrium of forces at the nodal points 0, - are
/ \ o Kty + Koo~ ) — Ko (wi —wo) + Hy =0, (4. 6)
Spo St KaoB(uy—u,)— Kof*(wi—wo) + P, =0, (4.7)
Kodus + Koo (Vuty— 2n3) + Ksafdw,+Hy =0, (4. 8)
KoaBdu,+ K (gw,— 2wy + Py =0, 4.9)
Sp-t and the equations at the nodal points 7, n—%- could easily
/ be written in a similar way.
/ s Applying the symbolic operators §;, €;, S;, C; to the
Hy=—= o1 equations (4.2), (4.3), (4.4), (4.5) respectively and satisfying
Fig. 3. the boundary conditions that the truss is simply suppored,
we have

{K\D;+2K;0®} R, [u,} — 2K cos ;l C.lur+1]
n

+ 2K a8 sin ;_”s [wesi] = C[HL], (4. 10)
. |

2K °8; [w,] — 2Ksaf sin éléz [22-+3]
. 7

— 2K, cos ;” 8, [w1] = S, [P, (4. 11)

— 2K,a® cos Z—ﬂl?Z [u,] —2Kaf sin T8, [w,]
2n 2n

+ {K,D,; + 2K?) C,[urs3] = C,[H:s3], - (4.12)

(135)
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2K sin 25 Ry [u,] —2K.f* cos 7 8, [w,]
2n 2n

+ 2Kgﬂzsi [wr*%] == Si [P)—*%] 5 (4. 13)

from which we find out the integration transforms of the displacements, and
invert them into the actual displacements.

Taking the case when the concentrated load acts at the nodal point ¢, we
obtain

C;[H,]= C, [(H-+3] = 8;[Pr+3] =0,
S;[P.] =Psin Z.—WC,
n

from which the nodal displacements are written in the closed form, as follows

P g—‘n{(nz—cz)-fi(n—r)z} , r>c w1
u, = . .
Kip n—c {37‘2—0(271—6)} , r<c
3n
- Br—ra—r+)—r—c}, rxc
b | (4. 15)
ur%—%= . .
KB | n—c {e(@n—c)=3r(r+1)) r<e
3n
c(n—r)
w, = 2K1—K3a2 . n
. K,-K,p? r{in—c)
n
c(n—7) {r(2n——r)—cz+1} , r>c
4&2(K1+K2> 67
—KWP- o) (4. 16)
v -——~{c(2n—c)—7~2+1} , r<ec
6n
£ 2n—2r—1)
P n
Wrig =
Raf 76 (2r+1)
n

K 1K) —357—1-(272—27‘——1){r(2n—r—1)+(n__62)}, >

K- K,p° ‘ n—c

3n

(2r+ 1){6(2n—c)—r(r+ 1)} , r<c

(4.17)

and the stresses of the members are written in

(136)
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£ @2n—2r—1), r>c
i 7
S =2 (4.18)
T 2r+1), r<c
n
—~(n—n), r>c
Sr+%-r+%-: %' " (4' 19)
—Z(n—c), r<c
n
£ R r>c
Seeg= 41 (4. 20)
_ﬂ—c, r<c
n
__C_, r>c
* ‘Sr-r-% == '% . . (4. 21)
' n—c r<c
7

5. Convergency of Finite Element Mthod by Means
of Finite Integration Transforms

The most important question for the user of the finite element method, is
whether the method yields sufficiently accurate results for his purpose. Numerous
test calculations have been performed in
order to compare results obtained by
means of the finite element method with

. . f’}m
known analytical solution, but they have f
only partly answered the above question.
There still remains the fundamental ques- ;m_
tion whether the finest limit of the R {
element can insure us the exact solution "
of the differential equation.

We will illustrate that the finite in- (43
tegration transforms can analitically ex- \ T’
amine the convergency of the finite ele- . LT _l
ment method. ’ d

X

(a) Plane Stress Problem | z

Let us take the triangular element
as shown in Fig. 4, then the stiffness

matrix [K] is found as®

Fig. 4.

(£37)
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Kii K?}] Kim
[K] = K, Ky ij (5- 1)
[N Km7 ij Kmm >
where
1—y 1—y
z brbs+——2— CiCs Vb, c -+ 5 b,
A
K.} = T A=) 1y iy
vbyc,+ b.c, c.co+—=0,b,
2 2
b'z:yj_ym7 Cy == Ty L5,
A, t; the area and the thickness of a triangular element respectively,

from which we have for the case without y-1
body forces,

(FY = K] @, 5.2) ,

Y+5

where

{F}e:{Fm Fi/z sz Fz/z Fzm Eym}rs

(Y =fu v w v w v}

Assemble the triangular elements as

shown in Fig. 5, then the equilibrium of ¥-%

forces in the x direction are expressed by, at z—F T ik e
the node (z, ¥)
Fig. 5
4 1 2 1
1. <uw -?Amux—z— y> -+ Tty <uzy 7Vyuzg/—%—>
1
— 30—7) 44, 05-3y-3 =0, (5.3)
at the node (x—i— —1~, y—l—i)
2 2
4 1 2
12 Usrdoy+d— B Vocu’C 21*'%) + 1+ (ZL@+—Z vty
1 1 1
—7—‘71{”:”%1/) —?mdxdyvzy = () 5 (5. 4)

at the node <x, v+ %)

4 - s

112

at the node <x+%, y)

(138)
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’ 2 \
- 4 - (711,712.y—%417xu1,y>+ L <ux-%.y——;—l7'yuh%.y_%)=0. (5. 6)
—y v

Making the finite integration transforms from the equations (5.3)~(5.6), and
combining them adequately, we have

1 44 Do Iy D,}Risr[ux.y]
(1+v)(3—v) 1—y 4
| .
A cos T cos T C.8, [tiarjv+i]
(1+v)(3~y) 2n 2m
+ sin _12;75_ sin ;ﬂ 8., [ttartv+2] =0, 5.7
—y n m
S gD 1y Dr}asﬁ[um%wﬁ]
(I+v)(3~—y) 1—y 4
4 in 1
- —— RS, |u,.
LB ) % o €05 gy FoeSe L]
+ sin Losin ' $,R, [u,.,] =0, (5. 8)

1—v n 2m

in which boundary conditions are to be given as to eliminate the boundary values.
In a similar way, the equilibrium of forces in the y direction leads to the

following results;
|

1 D 1—y G~
4+ T+ Dy} 8,C, [tte+ 3943
(1+v)(3—v) { 1—v 4 } [t 30+3]
4 i T o

— COS —=- COS S, R {u,,

Q0@ ) % o O gy Sl lita]
+ sin ™ sin " RS, [u,.,] =0, (5.9)

—y 2n 2m

— 44Dy 1—”D.L-}S,~R,['vm.y]
3—v) 4

(1+v)( 1—y
4 i rw &/~
_— - COS cos 8.C.[v2rdusd
1+»)(3—)  2n 2m Lo toi]
1 in 17 sin T C8, [ttar 391 =0 (5. 10)

14y 2n 2m
1, 8.C.[v..1.,-1] in the equations (5.7), (5.8) and (5.9), we

Eliminating C,8, [«,, Lo 1

B

have
D ' 4cos~;£cos ' .
4 +~1_vDa} RS, [u,.,]— i) e 2m -{40'05—”5— ‘
1—vy 4 4+ 2 +_1——u D, 2n
1—vy 4

(139)
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X co8 T RS, [u,,] — Mﬂsin M sin 1T S,R, [2.1]
2m 2

1—v 7 2m
1+v)(3—v) . im o

A 2 sin —— sin
1—vy 2n 2m {

o )

4cos -F-cos 1T 8, R, [Vay]
4o - 2n 2m
1—y 4

_ 1+v)B—y) sin in sin 4% R,S, [um.y]} =0, (5.11)
1—y 2n 2m
which corresponds to the equilibrium of forces in the x direction.
Neglecting the higher order of D; and D,, we can write equation (5.11) in
the following form;

D, D, : 1 . im . Tw
L e 2 RS (g +——— —— SR v, =0.
{l—uz 2(1+v)} L] 2(1—v) )sm 7o m o]

(5. 12)

Making the element be infinitly small, is equivalent to letting #» and m be
infinite, thus we have

D= p (7Y gnimoa(im) TR
F Y n 2 r e m b n . n b m . m
In the other words, the more number of subdivision is used for the presented

problem, the closer the finite integration transforms corresponding to it become
the finite integral transforms. We therefore, write the equation (5.12) as follows

1 _32u+ 1 .82u+ 1 v
(1—% ox* 2(1+v) dy* 2(1—v) oxdy

(5. 13)

which is for the case of infinitesimal subdivision. Likewise, the equilibrium of
forces in the ¥ direction yields

2. 2, 2,

1 du " 1 A 1 v

. =0. 5.14
2(1—v) dxdy 2(1+v) dx* (1—v) 99° ( )

A couple of equations (5.13) and (5.14) are well-known as the differential
equations for the plane stress state. So it is concluded that this kind of sub-
division method would lead us to the exact solution by letting the number of
element be infinity.

(h) Bending Problem of Plate
A hybrid finite element method which was proposed by Kubo and Yoshida®
will be taken into account. The notation M=(M,+ M, }/(1+) leads to M= —D
(0*w/ox® + dw?[oy?). M,, M;, M, denote the values of M at the vertices on the
triangular element i, j, £ respectively, then the M-diagram is drawn as Fig. 6.
Assuming that the shearing forces along the sides of triangle are positive

(140)
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Mk /\
Q..
/ ki 4
AR

v

Fig. 6. Fig. 7.

-
\/,,r

directing downward as shown in Fig. 7, we have

1
Z,-j Qi = 4~A

{8+ L= B) Mo+ (B + 13— By) M,— 202, M.,

ik

in which A,;, is the area of the triangle. These shearing forces may be replaced
by the concentrated forces at the vertices as follows:

5 1 1
Fz':-_lz‘j 7;j+l¢, 77 B e
2( Qi+ Qi) A

i3k

{28.M,

(= L= ) My + (B~ By — U5) M.

The equilibrium of forces at the node 7 is expressed by

P=3F, (5. 15)

in the case of the distributed load, the equivalent vertex load should be introduced,
D Aijc
P,= "‘12—/(2%“”%"*‘%)

where g;, g;, g, denote the values of the distributed load at the vertices, and

P, ¢ = Z P ¢
which turns to
YP,=3F, (5. 16)
The similar discussion may be valied for the relation between the deflection
and M,
thus

= A
W= 5 (2M+ M+ M)

. 1 ) \
M;EE;@&m+%—&~@wﬁﬁr%—%mJ

which is followed by

(141)
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nW.=LN, (5.17)

where w;,, w;, w, are the deflections at
the vertices on.the triangular element.

Setting the layout of the triangular ,
element as shown in Fig. 8 we can write , , vz
for the node (x; y) as \/E Ki \

b3 LM, —an, ., Y

¥ = ~/ 3 - 4 o+l
_VszMar‘%zw%) >

_ y_zl
sz.y:% (8¢, + Aoer.y /N /\ \

A A Fig. 8.

g

so the equation of the equilibrium of forces as follows

4M,.,— LM, ., V.V Mo 3.y-1

I

%‘(8%& 7/+qux vyt Vvaﬂm —~) » (5 18>

from which the integration transform produces the following expression

(4—D,)8,8,.[M,.,]—4 cos él cos %’LS@_S'T [Meogvri]

~a2<1 )ss [+ 2 cos 2 cos - 7= 8.8, g, y04]
(5.19)
Likewise, at the node <x+%, y+%>

(44 D,)8,S, (M35 +3] — 4COS-2—COS—9—~SS {M,.,]

71 Zm

) D\s & a ir re
=a(1——21§, ot by s k] + —— COS —— COS 8:8.19,..1 .
( ) ar )+ 2005 7 cos [T 58, g,

8
(5. 20)
Equation (5. 19) and (5. 20) yield,
(12D,+4D,.+ Di—D,D,) 8,8, [Mw]
1 1
=a(6— D, —= D+ DD 8.8, [q..
@(6—-D— S8l
+ 6a’ cos —— in cos 28,8, (.. idoyd] - (6.21)

7 2m

Making subdivision infinitely small, and increasing their numbers to infinity,
we can write

(142)
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D, = ar Y D i<,ﬂlz
Z . n 3 7 0 m

. .\ . s
COS—ZEZ]L—i i s cosi#lfal_ T .
2n 8\ n m 8

We substitute the above into the equation (5.21), and neglect the higher
order term, the equation (5.21) finally becomes

{12<jf;f-k4<125f}xiﬁh[ﬂdzﬂ]::IZaz 8, (2] (5. 22)

n m

Denoting /, and /, the lengthes of the plate in the x and y directions, we
have

V3 ma=I,, na=I,,

then equation (5. 22) can be written as follows:

(=) (=)} ssia) = s, 5. 23)
{ x v
which is equivalent to
M | *M

{ oM _ 5.24

ox’ 0y* 7 ( )

in a same way, we come to the expression

2 2

Thus, the method considered is convergent to the differential equation of the
bending of plate.

6. Conclusion

An analitical approach; the finite integration transforms, for finding the solu-
tion for regular structural lattices or the assemble of a regularly distributed finite
element is presented.

The approach which the authors had partly presented can treat the problem
of the regulaly distributed triangular net by the aid of a set of formulas regarding
sin ﬂ—(x—l—i> and cos ﬂ(:c—f——l—)

no\ 2 n 2

(Received May 20, 1971)

References

1) G. Boole: A Treatise on the Calculus of Finite Differences, 2nd ed., Dover Publications,
New York, 1960, p. 62.
2) S. G. Nomachi: On Finite Fourier Sine Series with Respect to Finite Differences, the

(143)



536 Sumio G. Nomachi, Kenichi G. Matsuoka

Memoirs of the Muroran Institute of Technology, Vol. 5, No. 1, 1965, p. 187.

3) S. G. Nomachi: A Note on Finite Fourier Transforms Concerning Finite Integration, the
Memoirs of the Muroran Institute of Technology, Vol. 5, No. 2, 1966, p. 205,

4) O. C. Zienkiewicz: The Finite Element Method in Structural and Continuum Mechanics,
McGraw-Hill, Maidenhead, 1968, p. 26.

5) K. Kubo and Y. Yoshida: An Approach for the Analysis of Thin Plates in Bending,
Proceedings of the Japan Society of Civil Engineers, No. 167, 1969, p. 9.

(144)



