

赤外線吸収と電子線回折法によるSi陽極酸化膜の構 造評価

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-07-14
	キーワード (Ja):
	キーワード (En):
	作成者: 大竹, 信行, 南條, 淳二, 野村, 滋, 原, 進一
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3544

赤外線吸収と電子線回折法による Si陽極酸化膜の構造評価

大竹信行 · 南条淳二 野村 滋 · 原 進一

Structural Evaluation of the Anodic Oxide Films on Si by IR Absorption Spectrum and Electron-Microscopic Diffraction Methods

Nobuyuki Otake, Junji Nanjyo, Shigeru Nomura and Shinichi Hara

Abstract

Anodic oxide films on Si were formed by aqueous electrolyte $(0.3 \text{ N-H}_3\text{BO}_2+\text{Na}_2\text{B}_4\text{O}_7+\text{H}_2\text{O}_3)$ and THFA+0.04 N-NH₄NO₃) and non-aqueous one (THFA+0.04 N-NH₄NO₃). For the Structural Evaluation of the films, the methods of IR Absorption Spectrum and Electron-Microscopic Diffraction were used and following results were obtained; (i) Behavior of S-shift curves varies with used electrolytes, (ii) Increasing of the water content in the non-aqueous electolyte, Si-0 non-symmetric stretching band transfers from 1030 cm⁻¹ to the shorter wavelength, (iii) The oxide films formed with the aqueous electrolyte contain the water or OH in the films, (iv) Structures of the oxide films are amorphous.

I. まえがき

熱酸化法によるシリコン酸化膜は、全体的に無定形であるが局所的に結晶化が進んでいる ところが存在すると報告されている^{1),2)}。Si酸化膜がプレーナ構成やICの表面安定化に使用さ れるとき、この局部的な結晶粒界を通して気体分子の拡散などを起し安定性が害なわれるた め、その結晶化の原因を追求し、防止することは非常に重要な事である。

陽極酸化法によるシリコン酸化膜は、その生成条件により膜の成長機構や表面状態などに 大きな影響を与える³⁾。 著者等は使用する電解液が含水性が無水性かによるシリコン酸化膜の 構造の相異を、赤外吸収特性と電子線回折によって検討してみたので報告する。

未だ中途段階であるが先輩諸兄のご批判を仰ぐ次第である。

II. 実験方法

1. 試料作製

陽極酸化膜は鏡面仕上げされた 2~5.Q-cm p型 Si の (111) 面上に生成させた。使用電解液

は、無水性のものはテトラヒドロフルフリルアルコール(THFA と略称する)に硝酸アンモ ニウムを 0.04N 添加したものを用い、含水性のものは、無水性 THFA に 0.2~8.0 w/o の蒸留 水を加えたものと、0.3 N 硼酸+硼砂である。含水量はカールフィッシャー滴定法で定量した。 電解槽は前回報告³⁾のものを一部改良して用いた。特に硼酸+硼砂の電解液を用いるとパッキ ング部に電解液が浸透し、その部分で非常に激しい反応が起り、ピンホールが集中的に発生す るので、これを除去するためにパッキングの形状にそって熱酸化膜をあらかじめ形成してお き、その後 Si 表面に陽極酸化を行なった。これを TOM 法と略 省する。使用電流密度は 3 m A/cm² で、THFA 電解液を使用した場合形成電圧が 500 V に達したら酸化を中止した。

2. 赤外線吸収

680

赤外線吸収は2.5 $\mu \sim 25 \mu$ の範囲にわたり透過法で測定し、そのピーク値、ピーク位置、半値 幅および吸収帯の形から膜構造を解析してみた。厚み方向の構造は、酸化膜をステップエッチ しながら測定した。エッチング液は緩衝 HF エッチ (Buffered HF etch) B₁ (NH₄F: 46% HF: H₂O=45g: 70 cc: 680 cc) およびこれを脱イオン水で 20 倍にうすめた溶液 B₂ を用いた。 使 用した装置は柳本回折格子赤外分光光度計 ISG-25型である。基準光束側に attenuator の代り に鏡面仕上げされた Si ウェハーを用いた。試料室および基準光束側の Si ウェハーの断面積は 5×20 mm² である。

3. 電子線回折

回折は透過法で行なった。回折用検鏡試料は,Si酸化膜が小さな機械的振動にも破損して 回折ホルダーに納まる2m/m×3m/m角の薄膜を作製することは非常に困難である。Fig.1は

薄膜作製に用いた装置である。 作製手順は,先ず(b) に示す透明プラスチック板上にパラフィンを溶し塗布 する。 この上にシリコン酸化膜が形成された Si チッ プを乗せ固定する。これを (a) の研摩装置にセットし てエッチングを行なう。エッチング液の HF: HNO₃: CH₃COOH の体積比を 適当に 変化してエッチング速 度を調整した。

THFA+硝酸アンモニウムの電解液を用いて生成した酸化膜に対しては水分の変化にによる構造変化の有無、硼酸+硼砂を用いて生成した酸化膜に対しては、酸化時間による構造変化の有無および TOM 法を用いることによる構造変化の有無を明らかににする。 使用した電子顕微鏡は日立製作所の HU-125 型電子 顕微鏡で、加速電圧は 75 kV, 100 kV で透過法による

681

制限視野回折を行なった。

III. 実験結果と考察

1. 赤外線吸収

1-1 吸収帯とその帰属

Si 酸化膜の基本的振動として 1100 cm⁻¹ 付近の非対称伸縮振動, 800 cm⁻¹ 付近の対称伸縮振動, 450 cm⁻¹ 付近の変角振動および 3400 cm⁻¹ 付近の OH による基礎的伸縮振動が上げられる⁴⁾。しかし, 有機オキシシラン熱分解による重合膜では, これらの他に種々の吸収帯を持ち⁵⁾, (Si_xO_y)n では表わせない, いわば不純物による吸収を見ることができる。 表-1 は著者らが生成した陽極酸化法による Si 酸化膜の吸収スペクトルをまとめたもので, W. A. Pliskin⁶⁾, および S. Yamazaki⁷⁾ 等の結果をもとに振動形をも挙げた。また, Fig. 2 は, 表-1 の代表的なスペクトルを示してある。

THFA+H₂O では、含水量によって 1000~1100 cm⁻¹ 吸収帯ビーク値が変化する。その模 様を Fig. 3 に示した。 0.04 N NH₄NO₃+THFA に数 % (w/o) の蒸留水を加えて陽極酸化する と、3400 cm⁻¹付近, 950 cm⁻¹付近および 1640 cm⁻¹付近に新しい吸収帯が現われた。THFA (無水) による酸化膜の 1030~1035 cm⁻¹ 吸収帯は含水量の増加と共に高波数側 へ移動し、 6.5 w/o H₂O でほぼ 1070 cm⁻¹に達し、それ以上変化しない傾向を示す。この移動は膜中に存在す る水酸基によるものと考えられる。また、K. Sato 等は、ピーク位置のずれを Si 原子の dangling 結合に関係づけて、dangling 結合の数を・で表わすと ν (Si)> ν (Si)> ν (Si)> ν (·Si) なる不 等式が成立することを報告している。この理論を借用すると、電解液中の含水量が増すと無水 性電解液による酸化膜よりも dangling が少ないシリコン原子を含んでいることになる。

波 数 (cm ⁻¹)	熱 酸 化 膜	THFA (無水)	THFA (含水)	硼酸・硼砂	帰 属	
3650			⇒ 3650	3650	Free-OH, Si-OH H₂O	
3400			⇒3300 ~ 3500	3300~3500	OH…O, stretch 水素結合	
1640			1640	1630	Free-OH, deformation	
1450			1450*)	—	R-CH ₃ , CH bend	
1200 (肩)	$1170 \sim 1180$	1130~1150	1130~1150	$1160 \sim 1180$	Si–O–Si stretch	
$1000 \sim 1100$	1080	1030~1035	1070**)	$1168 \sim 1076$	Si-O-Si, stretch	
950			⇒ 925~ 950	920~ 950	-Si 変角 -OH, -OH…O	
800	800~ 810	800~ 815	800~ 810	790~ 800	Si-O-Si stretch	
420~ 450	428~ 440	425~ 440	425~ 440	425~ 440	Si-O-Si bend	
	1	1	1			

表一1 Si 陽極酸化膜の生成法の相異による吸収帯の差

*) 膜厚が大きいとはっきり検出される。

**) 含水量が増すと THFA (無水) の 1030~35 cm⁻¹ から 1070 cm⁻¹ へ向って移動する。 ⇒ THFA (無水) では現われず, THFA (含水) で始めて現われる。

3400 cm⁻¹の極めてブロードな吸収帯は、 膜厚増大と共に吸収強度が増大し、 150°C で数 時間乾燥処理しても強度にわずかの減少がみられるだけであった。この吸収帯は水酸基による ものであるが、膜表面に吸着した吸収種によるものとすれば、観測されただけの吸収強強度を 示すためには表面密度が極めて高くなければならず、 恐らく Si 表面密度以上に達するであろ

う。以上のことを考慮すると、この吸収 帯は膜表面に吸着した水によるものではな く、膜成長中に内部に入り込んだ水又は水 酸基によるものと考えられる。

次に、950 cm⁻¹ 付近の吸収帯は、-OH 又は -OH…O(水素結合)の deformation vibration によると考えられるが、-SiH₃、 -SiH₂-の変角振動もまたこの領域にある⁸⁾ ので、両方とも存在するものと考えるのが 妥当であろう、1640 cm⁻¹ 吸収帯は、3400 cm⁻¹ 吸収帯の強度がかなり強い時にのみ、 はっきりと現われるので、自由 -OH(H₂O) による変角振動と考えられる⁷⁾。 この吸収

(19.5) 111FA 中の呂有重による SI-O 逆対析 伸縮振動帯のピーク波数の変化

(52)

帯は、150°C で乾燥処理(数時間)しても全く変化しないことから、膜内部へとり残された水に よるものであろう。 1450 cm⁻¹ 吸収帯は含水量 7.5~7.8 w/o THFA による酸化膜 (290 min, 294 min) にのみはっきりと現われた。硼酸+硼砂には認められない。これは、 $-CH_3$ 、 $-CH_2$ の 変角振動によるものと考えられるが、炭素を含まない硼酸+硼砂によるより長時間酸化したも ので比較する必要がある。

1-2 1000 cm⁻¹~1100 cm⁻¹の吸収帯

1000 cm⁻¹~1100 cm⁻¹ の吸収帯の形は,酸化法によって異なる (Fig. 2 参照)。 いずれも 1200 cm⁻¹ 付近との重ね合わせとなっていると予想される。特に硼酸+硼砂では顕著である。

このことを、より定量的に考えるため、透過率を吸光度に変換したのが Fig.4 である。

吸光度は次式で定義される。

吸光度
$$D = -\log T$$
 (1)

ここで、Tは透過率である。

吸光度には、加成性性があるため⁹)、吸収帯が重なっても差を取ることによって吸収ピー クを推定できる。

対称性のよい吸収帯は、Lorentz 曲線により、よく表わされる⁹。

 $D = a^2 / (v - v_0)^2 + b^2$

ここで、 ν_0 は吸収帯極大の波数、a, bは定数である。吸収の最大値 D_m 、吸収帯の半値幅 $\Delta \nu$ 、吸収帯の面積Aは次の3式で表わされる。

 $D_{m} = a/b^{2}$ (3) $A\nu = 2b$ (4) $A = \pi a/b$ (5)

Lorentz 曲線は, 理論的には分子の周囲から与えられる影響は全く at random である場合 に得られるものである⁹。

(53)

683

(2)

Fig. 4-2 で, 1070 cm⁻¹ 吸収帯は対称性よく描けるが, Fig. 4-3 では低周波側がしぼみ, 高周波側がふくらんだようになっていて対称性が良くない。 熱酸化膜に対しても同様である が, Fig. 4-3 と逆の傾向を示す。 これらから, 1200 cm⁻¹付近に対し次のことを仮定すること によってうまく解釈できる。

Fig. 4-1 の熱酸化膜に対して,(i)固有振動数 1170~1180 cm⁻¹ および 1080 cm⁻¹の吸収種 が極めて多量に存在する。(ii) 他にも種々の固有振動の吸収種が存在するが,1030 cm⁻¹ 付近の 吸収種が多少多い。Fig. 4-2 の硼酸+硼砂による酸化膜に対して,(i)固有振動数 1160~1180 及び 1070 cm⁻¹ の吸収種が極めて多量に存在する。(ii) 他にも種々の固有振動数の吸収種があ る。Fig. 4-3 に示す THFA+0.04 規定 NH₄NO₃ の電解液による酸化膜は,(i)固有振動数 1130 ~1150 cm⁻¹ と 1030 cm⁻¹ の吸収種が極めて多量に存在する。(ii) 他に 1080 cm⁻¹ 付近の吸収種 が多少存在する。

二〇以上のように, Fig. 4 の吸収帯は (i), (ii) の単なる重ね合わせであると解釈出来る。

SiO₂が結晶化すると、Si-O 逆対称伸縮振動帯の吸収ピーク波数は高周波側にあり、ほとんどが 1100 cm⁻¹ 以上である⁴⁾。また、後述する電子線回折の結果 THFA による酸化膜に局部的結晶化が存在することが予想されるので、1140~1170 cm⁻¹ の吸収種は、局部的結晶化領域に存在するものと推察する。

1-3 酸化膜のステップエッチ

1-3-1 エッチング速度

に示した。

膜厚は Fig. 7 を利用して推定した。 エッチング液は、陽極酸化膜に対しては B₂、熱酸化
 膜に対して B₁ を使用した。 その結果を 表-2
 表-2
 ま-2
 ま-2

P. F. Schmidt 等によれば、0.2 NHF に対 するエッチ速度は、水蒸気熱酸化膜(1050°C) および KNO₂/THF 陽極酸化膜でそれぞれ 20 Å/min および 190 Å/min である。 すなわ ち THFA 陽極酸化膜は約 10 倍のエッチ速度

エッチ液 B ₁	THFA (無水) 〃 (含水) 硼酸+硼砂	~100 Å/min ~500 Å/min ~1500~1800 Å/min
エッチ液 B ₂	THFA (無水) 熱酸化膜	∼4000 Å/min ~400~600 Å/min

を持つ,著者等の結果は,これにほぼ一致する。硼酸+硼砂のエッチ速度はTHFA(無水)よ りも約3倍大きくTHFA(含水)よりも約15倍大きい。また,THFA(含水)及び硼酸+硼砂 の表面近くでのエッチ速度は,内部に比較すると大きな値を示す。特にTHFA(含水)で顕著 であった。P.F. Schmidt は,酸化膜中のH濃度が増すとエッチ速度が増すと報告しているこ とから判断すると,前回の報告³⁾に於いて,膜生成時間と共に膜中のプロトン濃度分布が高く なり, 膜表面濃度が内部より高くなってやがて膜破壊を導き膜が歪み有孔性なると報告してお いたが,このことと合せて,膜表面層のエッチ速度が大きいことは妥当性がありそうである。

1-3-2 陽極酸化膜の S-shift 曲線

陽極酸化膜に対して得られた代表的な S-shift 曲線を Fig. 5 に示し、その実測例を THFA +0.04 規定 NH_4NO_3 +5.5 w/o H_2O 電解液で生成した酸化膜について Fig. 6 に示す。

Fig. 6. THFA, 0.04 規定 NH4NO3 電解液で生成した酸化模の S-shift 曲線

THFA の場合, 膜厚が半分になると水酸基ブループによる 3400 cm⁻¹ 付近の吸収帯がほとんど消失していることから, 水酸基は表面付近で高濃度であると考えられる。

硼酸+硼砂による S-shift 曲線は、すべて同じパターンを持ち、いずれも Si-SiO₂ 界面付 近でピーク値が極大となり、界面の極く近傍で次第にピークは低周波側に移動する傾向を示し ている。一方、THFA による陽極酸化膜の S-shift 曲線では、3 通り位のパターンを持ってい る。E. Ritter¹⁰⁾ が実験的に示したところによると、SiO は 980 cm⁻¹、Si₂O₃ は 1064~1030 cm⁻¹、 SiO₂ は 1076~1064 に吸収ピークを持つ。すなわち、酸素含有量が増すほど高い波数ピークを 持つ。したがって硼酸+硼砂の場合、Si-SiO₂ 界面から 500~1000 Å の領域は、ほぼ SiO₂ で占 められ、それよりも表面に近いところは、より酸素含有量が少ないと考えられる。

THFA の場合は, 膜が異なった相 (phase) に別れているように考えられる。表面近くで高 波数側へ移動するのは, 表面付近で高濃度の水酸基が存在するためと考えられる。

1-3-3 膜厚と吸光度の関係

686

Lambert の法則により,透過率 T は、 ℓ を膜厚として $T = e^{-at} = 1a^{at}$ で与えられるから, 吸光度 D と a、 ℓ の間は $D = a \cdot \ell$ が成立する。 J. E. Deal¹³) 等は、これを用いて 熱酸化膜の 1000~1100 cm⁻¹ 吸収帯あるいは 800 cm⁻¹ 吸収帯での a を求ている。 a は酸化膜固有の吸光係 数であり、 D と ℓ は比例関係にあるので、赤外線を用いて D を求めると ℓ が解るのである。 a は、THFA (KNO₂) 陽極酸化膜の 1030 cm⁻¹ で 0.95~1.01 μ^{-1} 、熱酸化膜では約 1.45 μ^{-1} と報 告されている¹¹)。硼酸+硼砂による陽極酸化膜では $a = 0.69 \sim 0.76 \mu^{-1}$ という値が著者等の実験 結果より求められた。測定結果を Fig.7 に示した。ただし、吸光度は基線法で求め、膜厚は、

干渉微鏡で求めた,誤差は±300Åである。

1-4 赤外線吸収による Si酸化膜の構造に関する考察

Si 酸化膜は一般に非晶質系であるが, 熱酸化膜は微量の結晶化領域を含むと云われている¹¹⁾。著者等が形成した酸化膜でも局所的な結晶化の存在を認めることができるが, 大部分は 規則性を全く含まない SiO₄ 正四面体の三次元網から成っていると考えられる。

硼酸+硼砂および含水性 THFA による陽極酸化膜では、水酸基グループによる吸収が
3000~3700 cm⁻¹領域に現われている。

THFA では Si-O 逆対称伸縮振動帯 は、含水量の増加と共に1030 cm⁻¹か ら1070 cm⁻¹へ移動し、以後変化しな い傾向を示している。一方硼酸+硼砂 は,80 w/o 以上の水を含むがピーク位 置は 1070 cm⁻¹ である。この帯域での ピーク波数,半値幅は膜の有効性,結 合歪を示すと云われている6)。 又酸素 含有量の Si 含有量に対する比率によ ってピーク位置も変動する¹⁰⁾。(Fig. 8 参照) ピーク位置から, THFA (無水) は SiO よりもむしろ Si₂O₃ に近く、硼 酸硼砂は SiO に近いと考えられる。し かし、THFA (含水)では、ピーク値が 硼酸硼砂のものに近づき、遂には一致 するので、O/Si 比だけがピーク値を 決定すると結論づけることは出来ない と考えられる。膜中の水酸基もピーク 値に影響を与えていると考えられる $(Fig. 9)_{\circ}$

THFA (無水) では, Fig.9(a) と(a) の結合が大部分で,他のものは極めて少ないであろう。 THFA (含水),硼酸+硼砂では(c) と(d) の含有量が極めて多くある。ステップエッチの結 果より,表面近くで-OH 濃度が高いことから,-OH の存在が極めて大きな影響を持っている ことが推測される。このことは又,硼酸+硼砂のピーク値が1070 cm⁻¹にあるのは,この水酸 基によるものであると解釈できる。

1000-1100 cm⁻¹ 吸収帯の半値幅は THFA が 110 cm⁻¹, 硼酸+硼砂が 80 cm⁻¹, 熱酸化膜

が80 cm⁻¹である。 吸光係数からは硼酸硼砂よりも THFA の方が膜はより密であると考えら れる。これを考慮すると, 陽極酸化膜は, ピーク値, 半値幅からは必ずしも有孔性, 結合歪と 対応していると結論づけることはできない。硼酸+硼砂による膜のエッチ速度が THFA (無水) による膜より 10 倍大きいのは, 水酸基の存在と, 結合歪が原因と考えられる。 水素の存在も 結合歪を大きくするものと考える。

2. 電子線回折とその結果および考察

加速電圧 75 kV, 100 kV で透過法による制限視野回折で行なった。 試料の酸化条件と結 果を表-3 に示し,酸化膜の鏡像と回折パターンを写真-1~8 に示した。写真-7,8 は,本研究 以外の試料で,使用した電解液は THFA+2% NaNO₂,3 mA/cm² で,酸化時間はそれぞれ 10 min, 30 min である。

回折パターンは全てハローなリングで、電解液、水分、酸化時間等の相違による回折パタ ーンの変化は認められない。 写真上で明瞭でないが、フィルム上で2~4本の太いリングが認 められ、特に 写真-1 でそのリングが四本認められたので、面間隔を求め ASTM カードの二酸 化 Si と比較したものを Fig. 10 に示した。この図から酸化膜の構造を判定するのは非常に難し いが、強いと言うならα-クリストバライト或いはβ-石英と思われる。 顕微鏡による酸化膜の 透過像を観ると、THFA で水分が少ないと均一で良質の膜を得るが、水分が多くなると次第 に凹凸がついたり、穴があいたりする。水分が2% 付近から無数の 0.1 μ 位の穴や凹凸がつき

		陽極酸	化の条	件		
写 真	The state of the s	水 分	電流	時 間	回 折 パターン	
		(w/o)	(mA/cm ²)	(min)		
		THFA+0.04 規定NH4 NO3	0.19	5	72	V
		"	0.275	3	140	V
		"	0.30	3	106	V
		"	0.985	5	70	V
		"	1.0	3	180	$v_{\mu} = V - v_{\mu}$
		and the matrix of the second	1.17	3	139	V
		n n	1.94	3	148	V
		· · · · · · · · · · · · · · · · · · ·	2.96	3	130	V
			3.96	3	120	V
	I I I I I I I I I I I I I I I I I I I	7.55	3	294	V	
	硼酸十硼砂		3	60	V	
		$H = \frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right$	17 <u>– 1</u> 7 – 1	· 3·	70	V
		"		3	70	. V
				3	100	V
			1	1		

表-3 試料作製条件と回折パターン

- (V: ハロー)

(58)

始め、それ以上水分を増加させても大き な変化はない。エッチングによって凹凸 がつくということは, 0.1 μ 位の大きさ でエッチングされ易いところとされにく いところがあるということで、これは、 酸化膜が0.1µ位の粒子に分かれている と考えるべきか、0.1µ位の距離で極部 的に弱い所があると考えるべきか判然と しないが、膜質が不均一になっているこ とは言える。 写真-7と8は、これまで 得られた多くの回抗パターンで、かなり 結晶化が進んだ構造のものと考えるべき か、又は薄膜作成時、エッチングによる 反応熱により SiO2 が結晶化したものか, あるいは、電子ビームの照射によって結 品化したものか明確ではないが,二つの 写真で共通して云えることは, 電解液が THFA に塩として 2% NaNO₂ を用い短 時間の酸化を行なっていることと、膜の

透過像が稿模様であることである。 この点は, 今後更に検討の余地がある。 本回折で得られ たパターンは全てハローなリングであり, 膜構造はほとんど無定形と考えられるか, 中には いくらか結晶化していると考えられ, それは, α-クリストバライトか又は, β-石英と考えら れる。

写真—1 THFA+0.04 N-NH₄NO₃• 0.19 w/o H₂O. 5 mA/cm², 72 min, 75 kV, I_p= 60 mA, ×4300.

写真—2 THFA+0.04 N-NH₄NO₃• 1.9 w/o H₂O. 3 mA/cm², 148 min, 75 kV, I_p= 110 mA, ×3200.

写真-3 THFA+0.04 N-NH₄NO₃・ 3.96 w/o H₂O. 3 mA/cm², 120 min, 75 kV, ×3200.

写真—5 硼酸+硼砂 (80 w/o H₂O) 3 mA/cm², 60 min, 75 kV, I_p= 85 mA, ×3500.

写真—7 THFA+2% NaNO₂. 3 mA/cm², 30 min, 75 kV, ×2000.

写真--4 THFA+0.04 N-NH4NO3・ 7.55 H2O. 3 mA/cm², 75 kV, Ip=60 mA, ×4000.

写真—6 硼酸+硼砂 (80 w/o H₂O) 3 mA/cm², 70 min, 100 kV, I_p= 85 mA, ×4200.

写真—8 THFA+2% NaNO₂. 3 mA/cm², 30 min, 75 kV, ×2000.

IV. 結 論

陽極酸化膜の構造評価を赤外線スペクトルと電子線回折で行なった。 先ず,赤外吸収スペクトルによって,次の結果を得た。

先ず(i)無水性電解液による酸化膜は水酸基グループの吸収が現われず,含水性 THFA および硼酸硼砂で生成された酸化膜は,膜中に存在すると考えられる水叉は OH の吸収が現 われる。又, THFA 溶液中の含水量が多いほどエッチング速度が大きい結果を示す。

(ii) Si-O-Si 逆対称伸縮振動帯において THFA では吸収ピークが含水量の増加にともな い高波数側へ移動し, 硼酸硼砂の 1070 cm⁻¹ と同じ値に達し, それ以上含水量が増しても変化 しない。なおこの原因は, 膜表面で高濃度分布している水酸基の存在によるものと考えられる。

(iii) S-shift 曲線から硼酸+硼砂の場合 Si-SiO₂ 界面付近はほぼ SiO₂ で占められ,表面付 近はより酸素含有量が少なくなっていると考えられ,THFA では膜が異なった phase に別れて いるように考えられる。しかし,各電解液によって生成された酸化膜の全ての S-shift 曲線が 膜表面で再び高波数側へ shift しているのは,膜表面に存在している OH 基に原因していると 考えられる。以上,(ii),(iii) から 1100 cm⁻¹ 付近のピーク波数は O/Si 比だけでなく,膜中の OH 基濃度を考慮に入れて決定しなければならないと考える。1000~1100 cm⁻¹ の吸収帯の吸 光係数は硼酸硼砂で 0.69~0.76 cm⁻¹であり,THFA,熱酸化膜のものよりもかなり小さい。以 上,酸化膜中の OH グループは赤外線吸収特性に大きな影響を示すので酸化膜中の OH 分布 をより詳細に調べることにより陽極酸化生成のメカニズムを考察する大きな助けとなるであ ろう。

次に電子線回折の結果, 膜構造は全体的に無定形であり局所的に結晶化の進んだと考えら れるパターンを得たが, SiO₂の薄膜作製は非常に困難で先ず膜作製技術を完全にしてからより 徴細な部分の回折パターンを得なければならず現段階ではまだ結論は出せない。

(昭 47.5.20 受理)

文 献

- 1) S. W. Ing: J. Electrochem. Soc., 109, p. 221 (1962).
- 2) M. M. Atalla et al: BSTJ, 38, p. 749 (1959).
- 3) 井上·南条·野村·原: 室工大研報 (理工編), 7 (1), p. 37.
- 4) 半導研究振興会編: 半導体研究 3. "トランジスタと IC のパッシベーション", 産報, p. 40 (1967).
- 5) J. Kleler: J. Electrochem. Soc., 112 (5), p. 503 (1965).
- 6) W. A. Pliskin et al: J. Electrochem. Soc., 112 (10), p. 1013 (1965).
- 7) S. Yamazaki et al: Surface science, 7, p. 68 (1967).
- 8) 島内武彦他編: 赤外線吸収スペクトル. 一理論と応用一, 化学の領域増刊 45 号, p. 128, 南江堂.
- 9) 日本化学会編: 実験化学講座 続10. "赤外線吸収スペクトル", p. 306, 丸善.
- 10) K. Sato and M. Shibata: J. Phys. Soc. Japan., 21 (6), p. 1088 (1966).
- 11) P. F. Schmidt and M. J. Rand: Solid State Comm. 4, p. 169 (1966).
- 12) P. F. Schmidt et al: J. Electrochem. Soc., 118 (2), p. 325 (1971).
- 13) J. E. Dieal et al: ibid, 115 (3), p. 326 (1968).

691