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Totally Ordered Linear Space Structures and Separation

Theorem in Real Linear Topological Spaces

Kazuo Iwata

Abstract
As a sequel to 21)% this time in a real linear topological space, the author deals with
the Hahn-Banach separation theorem™ (i.e., so-called Mazur’s theorem) and the related

problems from the view-point of the totally ordered linear space structures™ of the space.

Introduction. In the preceding note 21), in a real linear space
(excluding the topological consideration) we have dealt with the geometric
form of the Hahn-Banach theorem and the Krein’s extension theorem in
some detail’. On these subjects, now let the space be equipped with a linear
topology (occasionally, locally convex), and let the closed hyperplanes and
the continuous linear forms thereof be made mention. Then, still more,
by copying 21), there are derived the corresponding versions from a general
view via our new (for the author) means. For caution’s sake, these resulting
versions seem to be somewhat mentionable.

The first part of the matter is concerned with the separation theorem
of Mazur type', and the remainder is so with the extension theorem of
Krein-Rutman type''!.

The author wishes to express his gratitude to Prof. S. Koshi (Hokkaido
Univ.) for his obliging inspection.

Preliminaries. Let E be a real linear space with some non-zero vectors.
For convenience’ sake, notations and terminology employed in 21) are avail-
able as they are, except the symbol & and the Defl. 2. 7 is merely sub-
stituted by %, namely e.g., (E, &) signifies the totally ordered linear space
structure of E with respect to #Z. For the latter, see below.

* That was written under the direction of the Editors of Hokkaido Math. Jour., and
was dedicated to Prof. Y. Katsurada (Hokkaido Univ.) on her 60th birthday.
*% By this he means [18), chap. I, §5, th. 1].
*#*k  For this thought, the author was benefited by D. M. Topping [16), p. 418].
¥ For the former subject matter, compare 21) with e. g., [9), §8], [11), p. 460 (Notes and
Remarks)] and [12), §8, Th. 3]. For the latter, compare the same with [13), Th. 3.3],
[18), chap. II, §3, prop. 1] and [19), (V, 5.4), Cor. 1].
¥t Cf. 6), 7), 8 and [9), §8]. Compare the present Theorem 2 with [18), chap. II, §5,
exerc. 3]
i+ Cf. e.g., [15), Th. 2.6.3} or [20), Th. XIIL. 2.3]. The present Theorem 3 is subse-
quently compared with [19), (V, 5.4]].
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44 K. Iwata

Separation theorems. The said definition is modified as

DeriniTION 1. A system A in E is said to lie (resp., lie semi-positively,
lie positively) on one side of a hyperplane H={zxeE": f(x)=a} (feE* being
non-zero, « fixed) if a<<f{a) (resp., a<<f(a) and not all be «, a< f(a)) for
~each member a of A.
As a topological version of [21), Th. 1], we have

THEOREM 1. Let E be a linear topological space and A a positively
independent subset of E. A necessary and sufficient condition that A lies
(resp., lies semi-positively, lies positively) on one side of a closed maximal
subspace N(f) of E is that there exists a t.o.ls. (E, .R), with AC(E, %),
such that (i) holds (resp., (i) plus (it) holds, (i) plus (iii) holds), where

(i) (E, #)* contains some non-void open subset O of E ,

(ii) some a,cA is an order unit of (E, R);

(i) each a€A is an order unit of (E, ).

Proor. We work with the semi-positive case, and the remains are
likewise obtained by [21), Lemmas 1, 2, 3 and 4]. (Necessity) Let 0 < f(a)
(a€A) and not all be zero. Take (E, &) so that AC(E, &), then (E, f(.%)))
proves to be a t.o.ls. as required in view of the “closedness” of N(f).
(Sufficiency) Hypothesis implies AVOC(E, %)*. Besides, not only a,€ A, but
also €O all are the order units of (E, @) since O is open for linear to-
pology. These lead up to the conclusion.

ExamprLes. Let the finite sequence space R™ be equipped with the
local convexity by the usual inner product. Setting as A= {(a), a5, -**) : ;=0
for almost all £ Ya,>0}, an example such that (iii) holds (i.e., the sufficient
condition (strict case) of our [21), Th. 1] is met) but (i) fails is furnished.
On the other hand, therein taking another A = {(0, &y a3 ') :a,=0 for
almost all # Ya,>0}, an example such that (i) holds (letting x,=0, the
sufficient condition of [18), chap. II, § 5, exerc. 3] is met) or (iii) holds but
(1) plus (ii) fails is furnished. These are because of the fact that given
positive reals &, ¢, there are positive integer n and real d satisfying nd<<—¢
and (nd?)"*=e.

Now Theorem 1 is, in line with [21), Th. 2], also interpreted in terms
of “absorbing (syn., radial)’ by [21), Lemma 4]. Henceforth, we shall
proceed from this point of view.

As a general form of the corresponding version of [21), Th. 3], there
holds the next theorem. In this theorem, whenever we take into account
the topological consideration for quotient space, we let it be equipped with
the quotient topology.

THEOREM 2. Let E be a linear topological space, M a linear subspace
of E, and let A be a system in E such that the image ¢o(A+ x,) is positively
independent in I.|M, where ¢ is the canonical map of E onto E[M. A ne-
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Totally Ordered Linear Space Structures and Separation Theorem 45

cessary and sufficient condition that A lies (resp., lies semi-positively, lies
positively) on one side of a closed hyperplane H in E with H> M — z, is
that there exists a t.o.l.s. (EJM, %), with ¢(A+x)C(EIM, %), such that
(2) holds (resp., (2) plus (i) holds, (i) plus (iii) holds), where
Q) (E/M, &) contains some non-void open subset of E|M ;
(1) (E/M, .R)" is absorbing at some point of ¢(A+x,);
(1) (E/M, %)™ is absorbing at each point of ¢o(A+x,).

Proor. We work with the case x,€E is equal to zero. The remains
are readily verified from this by translation. Now, under the postulate
floy=Flx+ M) (xeE, x+MeE|/M) the following assertions are equivalent :

1) in E, A lies (resp:, lies semi-positively, lies positively) on one side of
a closed maximal subspace H=N(f) with HDOM;

2) in linear topological quotient space E/M, ¢(A) lies (resp., lies semi-
positively, lies positively) on one side of a closed maximal subspace N(F).
Indeed, “f= Fo¢” part is clear. Besides, quotient topology for E/M is
compatible with the linear structure of E/M, and (N(f)) is open in E if
and only if (N(F)Y is open in E/M. Therefore the above fact is true and
which achieves the desired end by Theorem 1 via [21), Lemma 4].

RemMark 1. In particular, the case where ¢(A+x,) is a convex subset
of E/M not containing the origin (convex subset A of £ not meeting M—x,
is the case) satisfies the initial hypothesis of Theorem 2. Hence, therewith
letting ¢(A-+x,) be open (A is open is the case since ¢ is open), a fortiori,
the Hahn-Banach separation theorem follows.

ReMmark 2. For the separation by a (closed) maximal subspace, we are
dealing with (cf. [21), Rem. 1]) the positively independent systems in the
space instead of the convex subsets not containing the origin. But, moreover,
in doing with the convex subsets not radial at the origin for the same pur-
pose, we can proceed by use of Theorem 2 (of course, if possible, alternatively,
by taking its non-empty radial kernel).

By the way, we give here a variant of generalized Stiemke theorem.

CoroLLARY. Let E be a non-trivial locally convex space and A a non-
empty finite system in E. A necessary and sufficient condition that A does
not lie positively (resp., does not lie semi-positively, does not lie) on one side
of any closed maximal subspace of E is that o(A) is positively dependent
in EJ{0} (resp., positively dependent therein with coefficients all not zero,
positively dependent as in just before and further the linear span of ¢(A)
is EJ{0Y), where ¢ is the canonical map of E onto E[{0}.

Proor. To prove the “only if” part of the first assertion, first let E
be Hausdorff. Now, let A={ay, a5, -+, a,,} be positively independent, i.e., the
convex hull co(A) does not contain the origin. While, as it is usually
given, co(A) is compact and hence is closed. With this, take a convex
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symmetric open O-neighbourhood (U such that Upco{A)=¢. Then con-
sidering the subset B=U{U+a;:i=1, 2, -+, n}, it follows directly that
co(B)30. Hence by Theorem 1 via [21), Lemmas 1 and 4], a fortiori, 4
lies positively on one side of a closed maximal subspace of E. Now let E
be non-Hausdorff. Whereas, Hausdorff space E/{0} associated with E is at
least one dimensional and locally convex. Therefore the present assertion
is valid from the fact above and Theorem 2. The converse is clear since
{0} H for any closed maximal subspace H of E. The remains of the
proof are attained via these by reductio ad absurdum and by use of (further)

quotient topology of E/{0} (cf. every finite dimensional subspace thereof is
closed).

Extension theorem. We next deal with the extension theorem of
Krein-Rutman type. To do this, we take the following.

DeriNiTION 2. Let (E, #) be a partially ordered linear space. The
subset {x:0 < x(P?)} of E is called the positive cone of E and is simply
denoted by C. But, if necessary, some of them are given hy the form
(E, &)" as before.

DerFINITION 3. A partially ordered linear space which is simultaneously
a linear topological space is called an ordered linear topological space. By
the way, linear topology for E will be denoted by &.

As a corresponding version of [21), Th. 4 (2)]', there holds the following.
This is logically equivalent with [19), (V, 5.4), Theorem (Bauer-Namioka)]
excepting the trivial case when fe M* is identically-zero, and so too is [21),
Th. 4 (2)] with Cor. 1 ibid.

‘ TrEOREM 3. Let E be an ordered linear topological space with positive
cone C. Let M be a linear subspace of K and f a non-identically-zero linear
Jform on M. A necessary and sufficient condition that f can be extended
to a positive continuous linear form F on E is that there exists a t.o.ls.
(B, &) with the following properties :

Q) ANCC(E, R), where A; stands for {xeM : flo)>0};

(i) (K, #)" contains some Q€@ which meets M.

Proor. (Necessity) Take (E, %) so that AVCC(E, £,)" by [21), Th.
4 (1) and Lemma 1]. Then (£, F(.%,)) turns out to be a t.0.ls. as required
by [21), Lemma 2] in view of the continuity of F. (Sufficiency) By property
(ii), (E, #)" is absorbing at each point of MnO since O is @-open. Hence
by [21, Th. 4 (2)], we get a positive linear form F on K extending f. Besides,
it follows whereby that OcC{zx€E : F(x)>>0}, and F is continuous.

SurpLEMENT TO THEOREM 3. OQur condition (i) plus (i) above is, as
a matter of fact, eqivalent to that AMCYO (0@ meets M) holds positive

1 Here the author, adds the following. In the case of [21, Th. 4 (2)], on hypothesis,
“positiveness of f” was over-imposed. Henceforth, this imposition is rescinded.
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linear independence. In view of this, the logical equivalences aforesaid are
directly ascertained too. Let us work with the former case, and the latter
is similarly done from this. First, our condition is necessary. To see this,
letting U be a convex symmetric O-neighbourhood in hypothesis, take m,
in M so that f(m, —m)>0 whenever meMnU — (CU{0})). [ is positive is
immediate, and ANC is positively independent. Suppose now that AMCY
(U+m,) were no longer so, then there would exist both finite many respec-
tive vectors a,€A4;, ¢,€C, u,+meU + m,, and corresponding scalars «, =0,
8;=0, 7,.>0 with 2¥7,=1, such that p=2a,a,+2pc,+27,(u,+m})=0. But
then, by the above, this yields f(p)>0, a contradiction. For the converse,
we may assume with ease that O€& in hypothesis be convex. Moreover,
it follows thereby clearly that f(x)=0 {xe MA(O+(CY{0}))). Hence by taking
my€ MnO, (—O)+m, serves for a convex 0-neighbourhood as required since
Sflmy—m)>=0 whenever meMn((— O +m,)—{(CY{0})).

In this connection, the hypothesis in [19), (V, 5.4), Corollary 2 (Krein-
Rutman)] explicitly implies that positively independent subset AMC itself
contains an Q€@ which meets M. Hence this cited comes under a special
case of Theorem 3 except only when feM* is identically-zero.

We close this note with focusing attention on an extreme case of
Theorem 3 (one-sided specializations thereof are also easy). That is, the
following is a just consequence of [21), either Th. 2 (semi-strict case) or
Th. 4 (2)] (resp., Theorem 1 (semi-positive case) or Theorem 3).

CoroOLLARY. Let E be a totally ordered linear topological space with
positive cone C. “Then there exists a non-zero positive (resp., non-zero posi-
tive continuous) linear form on E iff C is absorbing at some point (resp.,
C contains some non-void Oe@).

In other words, on putting C=(E, #)*, above positive nature is charac-
terized as C=(E, f(R)" for some non-zero feFE* (resp., non-zero f€R')
where two non-zero linear forms are the case iff they are positive scalar
multiples each of the other.

(Received May 19, 1973)
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