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TotallγOrdered Linear Space Structures and Separation 

Theorem in Real Linear Topological Spaces 

Kazuo Iwata 

Abstract 

As a sequel to 21)'， this time in a real linear topological space， the author deals with 

th巴 Hahn-Banachseparation theorem判，i.e.， so-called Mazur's th巴orem)anrl th巴 r巴!ated
problems from th巴view-pointof the totally ordered linear space slructures朴大 ofthe space. 

Introduction. In the preceding note 21)'， in a real linear space 
(excluding the topological consideration) we have dealt with the geometric 

form of the Hahn凶Banachtheorem and the Krein's extension theorem in 

some detaiF. On these subjects， now let the space be equipped with a linear 

topology (occasionally， locally convex)， and let the closed hyperplanes and 

the continuous linear forms thereof be made mention. Thenラ stillmore， 
by copying 21)， there are derived the corresponding versions from a general 

view via our new (for the author) means. For caution's sake， these resulting 

versions seem to be somewhat mentionable. 

The nrst part of the matter is concerned with the separation theorem 

of Mazur typett， and the remainder is so with the extension theorem of 
Krein-Rutman typettt. 

The author wishes to express his gratitude to Prof. S. Koshi (Hokkaido 

Univ.) for his obliging inspection. 

Preliminaries. Let E be a reallinear space with some non-zero vectors. 

For convenienceラ sake，notations and terminology employed in 21) are avail-

able as they are， except the symbol ，グ andthe Def. 2. g7 is merely sub-

stituted by se， namely e. g.， (E， se) signi五esthe totally ordered linear space 
structure of E with respect to 52. For the latter， see below. 

" That was written under the direction of the Editors of Hokkaido Math. Jour.， and 
was dedicated to Prof. Y. Katsurada (Hokkaido Univ.) on her 60th birthday. 

料 Bythis he means [18)， chap. II， S 5， th. 1]. 
料* For this thought， the author was benefited by D. M. Topping [16)， p. 418]. 
t For the former subject matter， compar巴21)with e. g.， (9)， S 8]， [11)， p. 460 (Notes and 
Remarks)] and [12)， S 8， Th. 3]. For the latter. compare the same with [13)， Th. 3.3]， 
[18)， chap. II， S 3， prop. 1] and [19)， (V， 5.4)， Cor. 1]. 
tt Cf. 6)， 7)， 8) and [9)， S 8]. Compare the present Theor巴m2 with [18)， chap. II， !i 5， 
exerc. 3] 

'IH Cf. e. g.， [15)， Th. 2.6.3] or [20)， Th. XIII. 2.3]. Th巴 presentTheorem 3 is subse-
quently compared with [19)， (V， 5.4j] 

(43) 
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Separation theorems. The said defi.nition is modi五edas 
DEFINITION 1. A system A in E is said to lie (resp.， lie semi閉positively，

lie positively) on one side of a hyperplane H = {xEE : f(x) =α} (戸E*being 
non-zero，α五xed)ifα"(f(α) (resp.，α"(f(α) and not all be α，α<f(α)) for 
each member a of A. 

As a topological version of [21)， Th. 1]， we have 

THEOREM 1. Let E be a linear t，φological学aceand A a positively 
indφendent subset of E. A necessarツ ωzdsufficient condition that A lies 
(何学，lies semiアositively，lies 1うositively)on one side ofα closed maximal 
subsμce N(f) 01 E is that ther・eexists aムo.l.s.(E， 3e)， with Ac(E，必)十，
such that (i) holds (何学，(i)ρlus (叫んolds，(i)ρlus (iii) holds)， where 

(i) (E， A)十 containssome non叩 oidopen subset 0 of E ; 

(ii) some aoEA is an order unit of (E， 3e); 

(iii) each aEA is an order unit of (E， c9e). 

PROOF. We work with the semi-positive case， and the remains are 
likewise obtained by [21)， Lemmas 1， 2， 3 and 4]. (Necessity) Let 0 "(f(a) 
(aEA) and not all be zero. Take (E， ~1) so that Ac(E， 3e1)+， then (E， f(~l)) 
proves to be a t. 0.1. s. as required in view of the “closedness" of N(f). 
(Su伍ciency)Hypothesis implies AUOc(E，見t.Besides， not only αoEA， but 
also xE 0 all are the order units of (E， 3e) since 0 is open for linear to開
pology. These lead up to the conc1usion. 
EXAMPLES. Let the五nitesequence space I_~∞ be equipped with the 

local convexity by the usual inner product. Setting as A = {(αhαh…) :αt=O 

for almost allムZ叫 >O}，an example such that (iii) holds (i. eづ thesu伍cient
condition (strict case) of our [21)， Th. 1] is met) but (i) fails is furnished. 
On the other hand， therein taking another A = {(O，αbαぉ…):αt = 0 for 
almost allムZαt> O}， an example such that (i) holds (letting Xo = 0， the 
su伍cientcondition of [18)， chap. !I， ~ 5， exerc. 3] is met) or (iii) holds but 
(i) plus (ii) fails is furnished. These are because of the fact that given 

positive reals c， e"， there are positive integer n and real d satisfying nd<-c 
and (nd2)日 =s.

Now Theorem 1 is， in line with [21)， Th. 2]， also interpreted in terms 
of "absorbing (syn吋 radial)"by [21)， Lemma 4]. Henceforth， we shall 

proceed from this point of view. 

As a general form of the corresponding version of [21)， Th. 3]， there 
holds the next theorem. 1n this theorem， whenever we take into account 

the topological consideration for quotient space， we let it be equipped with 
the quotient topology. 

THEOREM 2. Let E be a linear t，ψological ~μce， M a linear sub学ace

of E， and let A be a system in E such that the image (jJ (A十xo)is positively 
inde少endentin EjM， where (jJ is the canonical mゆ ofE onto EjM. A ne同

(44) 



Tota!ly Ordered Lincar Spac巴 Structuresand Separation Theorem 45 

cessary and sufficient condition that A lies (re，学.， lies semiアositively，lies 
positively) on one side of a closed hy戸中laneH in E with HコM-xois 
that there existsαt. o.l. s. (E/lv!，必)， with IjJ(A+xo)c(E/M， 09t)+， such that 

(i) holds (何学.， (i) plus (叫んolds，(i)ρlus (iii) holds)， where 

(i) (E/Mラ必)+contains some non-void ψen subset of E/M; 

(ii) (E/M， ~)+ is absorbing at someρoint of IjJ(A十品); 

(iii) (E/M， c9e)十 β absorbingat each point of IjJ(A+xo). 

PROOF. We work with the case xoEE is equal to zero. The remains 

are readily verifIed from this by translation. Now， under the postulate 

f(x)=F(x+M) (xEE， x十MεE/M)the following assertions are equivalent: 

1) in E， A lies (resp.， lies semi-positively， lies positively) on one side of 

a closed maximal subspace H=N(f) with HコM;
2) in linear topological quotient space E/M， IjJ(A) lies (resp.， lies semi-

positively， lies positively) on one side of a closed maximal subspace N(F). 

Indeed，γニ FOIjJ"part is clear. Besides， quotient topology for E/M is 
compatible with the linear structure of EjM， and (N(f))' is open in E if 

and only if (N(F))' is open in E/ ]}1. Therefore the above fact is true and 

which achieves the desired end by Theorem 1 via [21)， Lemma 4]. 
REMARK l. In particular， the case where ヂ(A+ xo) is a convex subset 

of E川1not containing the origin (convex subset A of E not meeting M-xo 
is the case) satisfIes the initial hypothesis of Theorem 2. Hence， therewith 
letting IjJ(A十品)be open Cl1 is open is the case since ljJ is open)， a fortiori， 

the Hahn-Banach separation theorem follows. 

REMARK 2. For the separation by a (closed) maximal subspace， we are 

dealing with (cf. [21)， Rem. 1]) the positively independent systems in the 

space instead of the convex subsets not containing the origin. But， moreover， 

in doing with the convex subsets not radial at the origin for the same pur-

pose， we can proceed by use of Theorem 2 (of course， if possible， alternatively， 

by taking its non幽emptyradial kernel). 

By the way， we give here a variant of generalized Stiemke theorem. 

COROLLARY. Let E be a 刀o~トtri'vial locally convex学aceand Aαnon-

empty finite system in E. A nec出saJツ ωldsufficient condition that A does 

not lie positively (resjり.， does not lie semi-ρositively， does not lie) on one side 
ofαny closed maximal subs，μce of E is thatψ(A) isρositively d，φendent 
in Ej{O} (何学.， posiがvelyd，φendent therein τ:uith coefficients all not zero， 
ρositi'vely d，φendentαs z・njust beforeωld further the linearゆ仰 ofIjJ(A) 
is Ej{O})，日 hereljJ is the c，ωwnical mゆ ofE onto Ej{O}. 

PROOF. To prove the “only if" part of the五rstassertion， 品目tlet E 
be Hausdorff. Now， let A={ab a2， "'， an} be positively independent， i.e.， the 
convex hull co (A) does not contain the origin. While， as it is usually 
given， co (A) is compact and hence is closed. With this， take a convex 

(45) 
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symmetric open O-neighbourhood U such that U[ηco (A) = 0. Then con-

sidering the subset B = U {U十向 i= 1，2， ・・・，n}，it follows directly that 

co (B) s O. Hence by Theorem 1 via [21)， Lemmas 1 and 4]， a fortiori， A 

lies positively on one side of a closed maximal subspace of E. Now let E 

be non-Hausdor旺 Whereas，Hausdor妊 spaceEj{O} associated with E is at 

least one dimensional and locally convex. Therefore the present assertion 

is valid from the fact above and Theorem 2. The converse is clear since 

{O} cH  for any closed maximal subspace H of E. The remains of the 
proof are attained via these by reductio ad absurdum and by use of (further) 

quotient topology of Ej{O} (cf. every五nitedimensional subspace thereof is 
closed). 

Extension theorem. We next deal with the extension theorem of 

Krein-Rutman type. To do this， we take the following. 
DEFINITION 2. Let (E， 5') be a partially ordered linear space. The 

subset {x: 0くx(タ)}of E is called the positive cone of E and is simply 
denoted by C. But， if necessary， some of them are given by the form 
(E， 3e)+ as before. 
DEFINITION 3. A partially ordered linear space which is simultaneously 

a linear topological space is called an ordered linear topological space. By 

the way， linear topology for E will be denoted by 8. 

As a corresponding version of [21)， Th. 4 (2)]1， there holds the following. 
This is logically equivalent with [19)， (V， 5.4)， Theorem (Bauer岨Namioka)]

excepting the trivial case when fiεlJ1* is identicall)μzero， and so too is [21)， 
Th. 4 (2)] with Cor. 1 ibid. 

THEOREM 3. Let E be an ordered lineαr t~ρological ゅαce ωith 1うositive

cone C. Let M be a linear subゃaceof E and f a non-identically・zerolinear 

form on M A necessary and sufficient condition that f c.αn be extended 

to a positive continuous linωr form F on E is that there existsαιo.l.s. 

(E， ~) with the following戸ゆe付zes:

(i) A/JCc(E， 3e)+， ωhere Af stands for {xEM: f(x)>O} ; 

(ii) (E， 3e)+ contains some OE8 which meets ivf. 

PROOF. (Necessity) Take (E，先1)so that AfUCc(E， 3e1)+ by [21)， Th. 
4 (1) and Lemma 1]. Then (E， F(鳥))turns out to be a t. 0.1. s. as required 
by [21)， Lemma 2] in view of the continuity of F. (Su伍ciency)By property 
(ii)， (E， 氏)+is absorbing at each point of MnO since 0 is 8・・open. Hence 
by [21， Th. 4 (2)]， we get a positive linear form F on E extending f Besides， 
it follows whereby that Oc{xEE: F(x)>O}， and F is continuous. 
SUPPLEMENT TO THEOREM 3. Our condition (i) plus (ii) above is， as 

a matter of fact， eqivalent to that AfUCUO (OE8 meets M) holds positive 

i' Here the author， adds the iollowing. In the case of [21， 1'h. 4 (2)]， on hypothesis， 
・'positivenessof f" was over-imposed. Henceforth， this imposition is rescinded. 

(46) 
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linear independence. In view of this， the logical equivalences aforesaid are 

directly ascertained too. Let us work with the former case， and the latter 

is similarly done from this. First， our condition is necessary. To see this， 

letting U be a convex symmetric O-neighbourhood in hypothesis， take rn1 
in lW so that f(rnl -rn) > 0 whenever rnεMn(U-(Cし!{O})). f is positive is 
immediate， and Afし!Cis positively independent. Suppose now that AfUCU 
(U + rn1) were no longer so， then there would exist both五nitemany respec-
tive vectors α，.εAj， c8EC， u， + rnlεU十 rnh and corresponding scalars 民 ~O，

，88~0， 1，>0 with 2'lt = 1， such that p=2'α，ar+ 2'んら+2'I，(Ut十rn1)=0. But 
then， by the aboveラ thisyields f(p) > 0ラ acontradiction. For the converse， 
we may assume with ease that 0εd in hypothesis be convex. Moreover， 
it follows thereby clearly that f(x)~O (xEMn(O+(CU{O}))). Hence by taking 

rn2εMnO， (-0) + rnz serves for a convex 0・neighbourhoodas required since 
f(rn2 -J刈~O whenever rnε1¥;ln( ( -0 + rnz)一(CU{O})).
In this connection， the hypothesis in [19)， (V， 5.4)ラ Corollary2 (Kreirト

Rutman)] explicitly implies that positively independent subset AfUC itself 

contains an OEd which meets M. Hence this cited comes under a special 

case of Theorem 3 except only when fE1'vl* is identically-zeru. 

'¥711 e close this note with focusing attention on an extreme case of 

Theorem 3 (one-sided specializations thereof are also easy). That is， the 
following is a just consequence of [21)， either Th. 2 (semi-strict case) or 

Th. 4 (2)] (resp.， Theorem 1 (semi-positive case) or Theorem 3). 

COROLLARY. Let E be a totally ordered linear t.φological ~ραce ωith 

positive cone C. Then there exists αnon白zeropositive (reslう.， non-zero 1うosz閑
tive continuous) linear forrn on E iff C is absorbing at sorneρoint (向学.，
C cont.αins sorne non-void OEd). 

1n other words， on putting C = (E，必)ト，above positi印刷tureis charac四

terized as C = (E， f(見))十戸rsorne non岨zerofEE* (何学.， non幽zerofεE')， 
叩 heretwo non-zero linear forrns are the case ijf they are positive scalar 

rnultiples each of the other. 

(Receivec1 May 19， 1973) 
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