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Relativities between Sets and Measurements

Yoshio Kinokuniya*

Abstract

This is a renovation report on relativities between sets and measurements. The usual
outer measure plays an important role in relation to the a priori measure too. Construc-
tions themselves of sets imply many specifications relative to the measurements of sets.
The continuum problem, Lebesgue non-measurable sets and the notion of Baire category
are specially discussed to gain some lights for the renovation of the foundations of analysis.

0. Introduction

Starting the study under the title of “the theory of a priori measure
in connection with the empiricist theory of sets” and afterwards supple-
menting it by the pragmatist dogma®, we have more and more been made
convinced that there should be found tightly intimate relations between the
notions of ‘a set’ and ‘its measurement’. Recently we have arrived at some
important synthetic view on the relative construction of the two notions.
So we will in this paper state it in several steps of discussion.

Through several previous papers, we have obtained a course of axio-
matization which can be sketched as follows.

A collection S of elements in a given universe U is called a descriptive
collection or an aggregate if it is admitted as decidable that

(Vpel)(peS.V.p&S).

If an aggregate A in a euclidean space is considered as determinate, it should

be decidable that
(3.v.24Bc A)(#mB>0)

7 referring to the apriori measure. If all members of a family of aggregates
are contained in a set B and #B>0, then the family is said to be uniformly
bounded. A euclidean space is thought to be epistemologically and prag-
matisly comprehensive if it is related to the a priori measure such that:

(i) it conforms to the axiom of size-conformity, i.e., if an aggregate is
regarded as a limit of summation of some uniformly bounded increasing
family of aggregates, then its remainder of summation must be measured
by # as tending to zero;

(i1) the principle of destination is applicable, i.e., for any aggregate A,
if no other value than a can be induced to be equal to @A on the assump-
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30 Yoshio Kinokuniya

tion that A is #-measurable, then A is #-measurable and #“A=a;

(iii) the a priori construction of W-measurement is applicable, i.e., for

any m-measurable aggregate A the formula
mA =v(A)-p (0. 1)
is effectible.

In (0.1) g referes to the uniform point-measure called the normal poini-
dimension, and v(A) is called the inversion number of A in respect to f.
v(A) is considered as an exactification of the notion of ‘power’ (of a set), so
that, by (0.1), it may be concluded that: for any two aggregates A, B in
a euclidean space, if v(A)<v(B), it must be that

mA<mB,
and if v(A)/v(B)=4, then
mA|mB =i .

The aggregates being considered under the above constructions are taken
to be called (determinate) sets. In this view, any euclidean space is taken
as an a priori space” reconstructed by the above constructions.

We have firstly attained the following fundamental theorem.

Theorem 0 (Theorem of Measurement). Amny set in a euclidean space
is m-measurable, if we admit its WM-measure value to be possible to be infinite.

Subsequently, an important sight of construction has been obtained by
the following theorem.

Theorem 1 (Theorem of Limit). If an indexed class of sets (A,) (tel)
in a euclidean space is given such that I is simply ordered and

Ve, k€l: <. > A CA,,
and
A=Ugd,, (0. 2)
and if A is regarded as the limit of (A), then it must be that
mA =sup mA, .

In regard to (0.2), we should thus distinguish two cases: (i) 4 is the
limit of (A,); (i) A is not the limit of (A). However, it is notable that,
in case of (ii), A can also be admitted as an aggregate (and hence as a set),
because it is demonstrated as follows: Let E be the euclidean space in
which A and A, (¢e]) are containd. Then we have

(Veel) (VpeE)(peA,.V.pEA)).

Hence
(VpeE)(3.V.4el)(peA,).

(30)



Relativities between Sets and Measurements 31

So then, defining as
VA, = [pe E|3eel) (pe )},
we may have

(VpeE) (pe. V. & (UA)).

If (i) is the case we call A the sum of (A)) and (A,) summable, and if (i)
is the case we call A the union of (A).

By grace of Theorem 1 we have previously concluded, in the empiricist
pragmatism, that there.exists no ordinal number to correspond to the con-
tinuum®. In this paper, we refer to this subject again in Sect. 2.

Let Q be the set of all rational numbers and

Q. ={zlz=a+y, yeQ}

and V be a set of real numbers such that

Va, yeV: z#+y. > .0.NQ0, =&

and

UxEVQz = (—OO, OO> .

Then V is a Vitali set. If a Vitali set V, is contained in a set A, then
Vi is called a Vitali set in A. Tt is well-known, in the classical analysis,
that no Vitali set is Lebesgue measurable. However, in our present view,
any Vitali set is possibly thought to be a (determinate) set (, therefore -
measurable, by Theorem 0). The reasoning for this assertion is shown in
Sect. 2.

Let U(p, ) be a set (called a closed ball (set)) in a euclidean space
defined as

Ulp, py=1{q| lg—pl<0}

where |g—p| denotes the distance between the points ¢ and p, and let d,(p)
be defined by
dip)=lim PLU L) 0.3

Then d,(p) is called the lower (normal) density of a set A at the point p.
In this context, one theorem is obtained in comparison with the density
theorem™ of Lebesgue, and gives us an interesting example of a set which
may be determinate (therefore #-measurable) but not Lebesgue measurable.
The proof of the theorem is attained by making a little modification of
a proof of the theorem of Lebesgue, that shall be shown in Sect. 3. Inci-
dentally, it will be shown that the usual outer measure (of Lebesgue) plays,

*) Its content is shown in Sect. 3.
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32 Yoshio Kinokuniya

in this connection, an important role relative to the a priori measure, too.
In Sect. 5, a counter example of a set is shown to break the distinc-
tiveness of the notion of Baire category.

1. Unfinishing Indication

When a set is taken as a total aggregate of indices, it is called an
indication. For a simply ordered indication [, denoting as

[(»c) = Uzérs {[} and 12»-) = U»r<.' {{} >
if for evrey intermediate x€l* it is observed that
vl i) =0, (1. 1)

then [ is said to be of unfinishing type or unfinishing.
For an indexed disjoint class of sets (E,)(¢cel) ({: simply ordered), if
there is a set £ such that

(VpeE)(Feel)(peE) and (Veel)(peE.. > .peE),

(E) is called a partition or an [-partition of E. For an [-partition (E))
denoting as

Ey=UFE,
if the family (E,))(c€l) is summable, we call (E,) summable. -
If (E)(cel) is an [-partition of E and if it is destined that
Ve, k€l : mE =nmE,,

(E,) is said to be size-preserving. In this case, in accordance with (0.1) we
may express it as

Vel : E, =v-p (1.2)
¢ being the normal point-dimension and v(E,)=v for all (¢/. Then, if
Ew=UE, and Ej =U- E,,
we may define v(/,)) and v(I{,) by the relations
ME g = v(l) 1t and WEy, = v(l(o) 1. (1.3)

In this case, to emphasize the relation (1.2), we call it a size-preserving
1-partition of E.

If 7 is unfinishing, then about v(/,,) and v(/{,) defined by (1.3) the
relation (1.1) holds. In this case, if

O<mE< o0

we have

*) Le., c#inf, sup ¢ (c€1).
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Relativities between Sets and Measurements 33

A?%Em . v(n) ¢ _ v({ ) < v(/ ()

mE (e W) Tl
As the right-most term vanishes by (1.1), it must be that
VICE[ : 7’72E(,) =0. <1. 4)

From our standpoint, (1.4) is contradictory, because then lim ®E.,,=mE>0
by Theorem 1, whereas lim % E.,, =0 by (1.4). Thus we conclude that:

Theorem 2. If [ is a simply ordered aggregate of unfinishing type,
then for any set E such that
0<mE< oo, (1.5)

there can exist no size-preserving I-partition of E to be summable.

The contradictory relation (1.4) may, at the first glance, give us the
suggestion that there possibly is an unvanishing atmosphere® in the process
lim (E—£,)). In effect, if we take, instead of #, some other measure con-
structed on a special foundation (e.g., the probability measure of homoge-
neous occurrence of points), the assertion of Theorem 2 may possibly be
related to the atmosphere at infinity.

Incidentally, if our work is succeeded by the integral calculus, a non-
summable partition of a set may sometimes be reinstated as meaningful.
If (E£,) (A=1,2,--) is a size-preserving partition of a set £ which satisfies
{1.5) and if a function f(x) is assigned its values by

flay=(1—¢;) for z€E, (k=1,2, ---)
and
lim ¢, =0,
then, for any positive number ¢, we may have
I—e<flo)<l+e (1. 6)

almost everywhere, because there is a finite integer N such that (1.6) may
hold whenever xz€E, and %2>N, whereof, if Ey,=UY E, we may, in a
similar way to the case of (1.4), have

%E(N)/;%E = O .

In addition, it is notable that we may then have

S f(@) de=FE.

2. Vitali Set and the Continuum

Given a set A and a simply ordered indication /, assume that for each
¢l there is a mapping ¢, such that ¢,(A)=A, and that

(33)



34 “Yoshio Kinokuniya

tc#Fe. > A NA=CT.
Then, defining
E=UA,,
if (A, is a size-preserving [-partition of E and
O<mE< o0,

according to Theorem 2, I cannot be of unfinishing type. However, if we
define as

Ez = {x:]{E]> ‘r: = 9’)[(3:)} >
we may have
E = UxeAEz

and this relation may not always be denied even when [ is unfinishing.
Now, let A=[—1,1], V, be a Vitali set in A and Q, be the set of
all rational numbers contained in A and let

Ae={yly—x€Q.}
and
E=U, A (2.1)
Then it is obvious that
O<mE< oo,

In this case, if we define as
V, = {xEEKHzE Vole=2z+ y)}

we may have
E=Uyq, V,. (2.2)

However, since Q, is an enumerable infinite set and hence, as easily seen,
is a set of unfinishing type, and since (V,)(y€Q,) is apparently sizepreserving
Q -partition of F, by Theorem 2 (2.2) must be meaningless as a summation
formula.

If we denote by Q the set of all rational numbers, by R the set of all
real numbers and define Q, by

Q.= {zlz=x+y, yeQ},
then we have
R = UxGRQm '

to be true. In this context, a Vitali set V; can be so defined that (Q,)
(zeV,) may be a minimal subclass of (Q,) to satisfy the condition

(34)
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R = UxEVAQz .

Then the conception of V, as a collection may be thought to be consistent
in the meaning that V, is an indication such that (Q,)(z€V,} may fll up
R with no overlapping. Such an operative meaning of “filling up R’ may
not be so clearly found in the collection along Q. because Q, is firstly
forced its essential property of enumerability which now turns out to be
rather independent of the naive meaning of the collection of (2.2). In effect,
since the enumerable infiniteness of O, implies the unfinishingness of Q,,
the formula (2.2) is, in our view, concluded to give no summation: formula.

In the classical analysis, the set V, has been decided to be Lebesgue
non-measurable because of the size-preserving repartition formula (2.2). In
our course, though the formula (2.2) is denied by Theorem 2, we may find
no reason to reject the set V, itself as inconsistent. Incidentally, if V4 is
admitted to be a (determinate) set, it seems no difficult to demonstrate that
if A is an interval of finite length

%VA = O .

For all above-stated, if V, is taken as a well-ordered aggregate to
correspond to some regular ordinal, (2.1) too turns to be inconsistent as
a summation, because any regular ordinal is apparently of unfinishing type.
Moreover, similar relativity is found on the continuum problem too. If the

continuum hypothesis of Cantor is true, it must be that, for any interval
set I of positive length, we may have

E=0

2 being the initial ordinal of 3rd class. Then, as £ is a regular ordinal
and hence is unfinishing, by Theorem 2 it is impossible that 0<mE< oo™,
so that it must be that

mE==0.
This apparently gives a contradiction. Thus we have the following results.

Theorem 3. If the ordinal of 3rd class is to be admitted, the con-
tinuum hypothesis of Cantor cannot hold in the empiricist pragmatism.

Theorem 4. If a regular ordinal corresponds to a bounded set A in
a euclidean space, then it must be that

mA=0.
Subsequently, by Theorem 4, it readily follows that:

Corollary 5. There can exist no ordinal to correspond to the con-
tinuum, in the empiricist pragmatism.
Corollary 6. The well-ordering theorem cannot generally be admitted

*)  Because ({z}) (r€ ) is considered as a size-preserving FE-partition of K.
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in the empiricist pragmatism.

3. Density Theorems
For a linear set E (of real numbers) if x€E and

. mEN[x—h, x+h]
o, 2 =1

m, referring to the outer measure, x is called a point of density of E. In
relation to this property the following theorem is known.

Theorem. 7 (Lebesgue Density Theorem) (1st Density Theorem). Almost
every point of a Lebesgue measurable set E is a point of density of E.

It seems very natural if one intends to apply, in any way, the a priori
measure in place of the outer measure in a similar construction to that of
Lebesgue density. Fortunately we obtained the following proposition to be
true by application of the lower normal density defined by (0.3). The proof
was attained by making a little modification of the proof of the Lebesgue
density theorem cited to a book by J. C. Oxtoby®. For any set E in a
euclidean space, let the subset E, of E be defined as

E, ={peE|d:p)<r}.

Theorem 8 (2nd Density Theorem). For a bounded set E in a euclidean
space, if there is a real number 0<r<1 for which

m . >0,
then we have
mE,.<r-m.E,.

Proof. For any ¢>0, there may be found a bounded open set G such
that £,C€G and

m E,>(1—¢) mG . (38.1)
Let 8 be the class of all closed ball sets of positive radius U such that
vcG
and
mENUL(+e) r-mU. (3.2)

Now we first take an arbitrary ball from 8 as U, and choose U,.,; in
sequence, as follows. U, «--, U,€8 are disjoint and &, denotes the subclass
of all members of 8§ that are disjoint to Uy, ---, U,,. Let 8, be the supremum
value of the diameters of balls of §,. Then we choose U,,; from §, such
that, denoting by |U| the diameter of a ball U, we may have

(36)
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1
|Unir] >0, (3.3)
Next, we set the assumption that for the set
E=E—urU, (3. 4)
we have
m E.>0. (3.5)
Then, since
mU, <mG< o0

there exists an integer NN such that, denoting by m the dimension of the
space®, we may have

3

~ 1
25 yamU, < B Me E,. (3.6)

We now take a ball V., that is concentric with Uy., and is such that
1VN+Ic! :3!UN+/¢1 . (3. 7)

Then we have
;"Z Uzojl ‘/N{-/; \<\ 2 77?» VN+I; == 37“2 ﬁ? UN-%»/.' )
k=1

hence by (3.6)

*

<m, E, .

*
So then Uf.,Vy., cannot cover up the set E,, so that

Er_Uz?:l VN+/c:/: @ ©

Hence, there is a point

PEE,—UT Viis. (3. 8)
Then, in regard to (3.4), we have
pel,—ul U,.

As U, are all closed, Uy ,U, is closed. So, there must be a ball U(p)eSy
which has p as its center. Then, if

Upinui Usin =&,
by the definition of 8y we have
U(p)eSyy, for all k=12, .-,

*) L'e., all points in question are contained in the same m-dimensional euclidean space.
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38 Yoshio Kinokuniya

hence by (3.3)
U (P)| <Oyir1<2|Upyisl -
On the other hand, as % #wU, is convergent, we have

lim |Uyee| =0,
k—roa

hence
)l =0.
This is a contradiction. So, there must eventually exist £’s such that
UpNUy#t S (3.9)

Now, let £ be the smallest of such £’s. Then, as
Ulp)eSyes-i,
by (3.3) we have again
U (P <Owir-1<2Unssl - (3.10)
Besides by grace of (3.9) we have

(the distance between p and the center of Uy 4)
1 1
<71U(P)l +?IUN+kI s

then by (3.10)

1 1 1 3
9 5N+k—1+§' |UN+k}<|UN+ki +_2‘]UN+/L-! = —Z—lUN+k| ’

<

then by (3.7)
1

-9 l VN—,L/c| .

Since Vy,, and Uy,, are concentric, this means that

PEVyis.
Therefore

j4a E;-_U;cczl Vaies

which is contradictory to (3.8).

This contradiction may firstly be conjectured as caused by the assump-
tion that (U,) make up an infinite sequence. However, as far as (3.5) holds,
we have

E —uz, U/c#@ >
then, since U?U, is closed, any point of E,—U7U, and the set U7 U, are in

(38)
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a positive distance, so that there may be chosen U,,, from 8, and con-
sequently (U,) must in fact make up an infinite sequence.

Thus, as the cause of the above-mentioned contradiction is left only
the assumption (3.5). So then we have

*

m.E, =0

m(E,—UU,)=0. (3.11)
Besides, as (U,) are disjoint closed sets, we have
mENUU,)=2mnENU,,
hence by (3.2)
<(A+e)r-2nU, <1+ r-mG,
then by (3.1)

e e E,. (3.12)

<

On the other hand
#HE, =wE.N0U,)+#(E~uU,)
<mE NUU,)+m(E—uU,),

so by (3.11) and (3.12)

1
<—1~—+E rem.kE, .
&

Since ¢ is arbitrary, we ultimately have

mE.<r-m.E, Q. E. D.

4. Homogeneous Probability

When observation of points is restricted within a set £ in a euclidean
space, if the occurrence of points in a special subset A of E is everywhere
expected with the same probability z, or, in other words, there is an aleatory
variable point P such that

Vp, geL: P(P=p)=P(P=q)
and for every open set GC K
P.(PeANG)/P.(PeENG)=z(<1),

then A is said to have homogeneous probability = in E. In this case, if E
is an open set, it s easily seen that

VpeEA: di(p)==.

(39)
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If we use a Vitali set V; in a bounded interval I, we may really, for
any 0<rx<1, construct a subset A of I which has homogeneous probability
7 in I, as follows: Denoting by QO the set of all rational numbers, we may
readily divide Q into two sets Q, and Q, such that Q,NQ,= ¢ and Q, has

homogeneous probability z in Q. Then, if we define as
A ={zel|@yeV,) (z—yeQ)},
obviously A has homogeneous probability = in I

Theorem 9. If a set A has homogeneous probability r in a bounded
open set G in a euclidran space and if =>0, then

m, A =m,G . | (4.1)
Proof. Since
mA=n-mG=n-mG>0 (4. 2)
and, by the assumption, apparently
A=A ={peAld.(p)<s],
we have
m,A,>0.
Then, by Theorem 8 and (4.2)
0<n-m,GL<n-mA

m,G<m, A .
Besides, as ACG
m, A< m, G .
Consequently it must be that
My A =m,G Q. E. D.
If a set A is Lebesgue measurable, we have
m,A=mA,

m referring to the Lebesgue measure. So, if (4.1) holds, by Theorem 8 it
must be that z=1 (because, when A is Lebesgue measurable, mA=mA).
Thus we see that: if a set A has homogeneous probability = in a bounded
open set and 0<z<1, then A cannot be Lebesgue measurable ; particularly
A cannot be a Borel set (because, as well-known, any Borel set is Lebesgue
measurable).

(40)
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’

5. Indistinctiveness of the Notion of Baire Category

In analysis, a null set is severally regarded to suggest a degree of
negligibility of a property which is taken to be examined for each point of
a' set whether it is satisfied or not. Similarly, a set of 1st category in the
sense of Baire™ has been expected to give a sort of negligibility analogous
to that of a null set. But, after all such expectation, it is found notable
that the property of 1st category is not so distinctive. We demonstrate it
in the following by constructing a counter example.

Let R be the set of all points represented as p=(xy, -+, x,) (x1, ***, Zp
being real numbers) the total of which make up a euclidean space of dimen-
sion 7, and Q be a subset of R that consists of all points for which all of
Xy, +++, &, are rational numbers. Then @ is enumerable, so let it be enu-
merated as Q=(q,) (=1, 2, ---).

Now, let it be that

Up=A{peR| lp—ql<1/2"}  (yk=12 ).
Then sets R® (v=1, 2, ---}) defined as
RY = (R—uz, UY)U (U321 {gs})
are all, as readily seen, nowhere dense, so that the set
R* =uR®

is found to be a set of 1st category. However, it is not difficult to prove
that

R*=R,

whereas R has generally been thought to be of 2nd category. Thus we find
that the notion of (Baire) category is not distinctive.
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*) A set is said to be of 1st category (in the sense of Baire) if it can be represented as an
enumerable union of nowhere dense sets. If A is not of 1st category, A is said to
be of 2nd category.
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